

Fuzzy Neutrosophic Strongly Alpha Generalized Closed Sets in Fuzzy Neutrosophic Topological spaces

Shaymaa F. Matar¹ and Fatimah M. Mohammed ^{2,*}

Salah Al-din general directorate for education, Tikrit, IRAQ; shaimaa.1988@yahoo.com

²Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Tikrit, IRAQ; *,2 Correspondence: e-mail dr.fatimahmahmood@tu.edu.iq

Abstract: In this paper, we will define a new set called fuzzy neutrosophic strongly alpha generalized closed set, so we will prove some theorems related to this concept. After that, we will give some interesting properties were investigated and referred to some results related to the new definitions by theorems, propositions to get some relationships among fuzzy neutrosophic strongly alpha generalized closed sets, fuzzy neutrosophic closed sets, fuzzy neutrosophic regular closed sets, fuzzy neutrosophic alpha generalized closed sets and fuzzy neutrosophic pre closed sets which are compared with necessary examples based of fuzzy neutrosophic topological spaces.

Keywords: Fuzzy neutrosophic set, fuzzy neutrosophic topological space, fuzzy neutrosophic strongly alpha generalized closed set.

1. Introduction

The concept of fuzzy set "FS" was introduced by Lotfi Zadeh in 1965 [1], then Chang depended the fuzzy set to introduce the concept of fuzzy topological space "FTS" in 1968 [7]. After that the concept of fuzzy set was developed into the concept of intutionistic fuzzy set "IFS" by Atanassov in 1983 [4-6], the intutionistic fuzzy set gives a degree of membership and a degree of non-membership functions. Cokor in 1997 [7] relied on intutionistic fuzzy set to introduced the concept of intutionistic fuzzy topological space."IFTS". In 2005 Smaradache [23] study the concept of neutrosophic set. "NS". After that and as developed the term of neutrosophic set, Salama has studied neutrosophic topological space "NTS" and many of its applications [18-21]. In 2013 Arockiarani Sumathi and Martina Jency [2] introduced the concept of fuzzy neutrosophic set as generalizes the concept of fuzzy set and intutionistic fuzzy set, where each element had three associated defining functions on the universe of discourse X, namely the membership function (T), indeterminacy function (I), the non-membership function (F) that is added an indeterminacy degree between the

degree of membership and the degree of non- membership. In 2012 Salama and Alblowi defined fuzzy neutrosophic topological space [18].

In the present work, we will generalized the concept of strongly alpha generalized closed set in fuzzy neutrosophic topological spaces which was studied by Santhi and Sakthivel in 2011 [22] via intuitinistic topological spaces and generalizing our works in 2018 [9,10], the new set will called fuzzy neutrosophic strongly alpha generalized closed set in fuzzy neutrosophic topological spaces.

Finally, there are many application of neutrosophic sets in many fields so we can enhance our work, we will try in the future to applied this work in different fields such as many authors applications see [11] and [13-17].

2. Preliminaries:

In this section, we will define some basic definitions and some operations which are useful in our present study.

Definition 2.1 [18]: Let X be a non-empty fixed set. The fuzzy neutrosophic set (FNS, for short), η_N is an object having the form $\eta_N = \{ < x, \, \mu_{\eta N} \, (x), \, \sigma_{\eta N} \, (x), \, \nu_{\eta N} \, (x) >: \, x \in X \, \}$ where the functions $\mu_{\eta N}, \, \sigma_{\eta N}, \, \nu_{\eta N} \colon X \to [0, \, 1]$ denote the degree of membership function (namely $\mu_{\eta N} \, (x)$), the degree of indeterminacy function (namely $\sigma_{\eta N} \, (x)$) and the degree of non-membership (namely $\nu_{\eta N} \, (x)$) respectively of each element $x \in X$ to the set η_N and $0 \le \mu_{\eta N} \, (x) + \sigma_{\eta N} \, (x) + \nu_{\eta N} \, (x) \le 3$, for each $x \in X$.

Remark 2.2 [18]: FNS $\eta_N = \{ \langle x, \mu_{\eta N}(x), \sigma_{\eta N}(x), \nu_{\eta N}(x) \rangle : x \in X \}$ can be identified to an ordered triple $\langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle$ in [0, 1] on X.

Definition 2.3 [18]: Let X be a non-empty set and the FNSs η_N and γ_N be in the form:

```
\eta_N = \{ \langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle : x \in X \} and \gamma_N = \{ \langle x, \mu_{\gamma N}, \sigma_{\gamma N}, \nu_{\gamma N} \rangle : x \in X \} on X then:
```

- i. $\eta_N \subseteq \gamma_N \text{ iff } \mu_{\eta N} \le \mu_{\gamma N}$, $\sigma_{\eta N} \le \sigma_{\gamma N}$ and $\nu_{\eta N} \ge \nu_{\gamma N}$.
- ii. $\eta_N = \gamma_N$ iff $\eta_N \subseteq \gamma_N$ and $\gamma_N \subseteq \eta_N$,
- iii. $1_{N^-} \eta_N = \{ \langle x, \nu_{\eta N}, 1 \sigma_{\eta N}, \mu_{\eta N} \rangle : x \in X \},$
- iv. $\eta_N \cup \gamma_N = \{ \langle x, Max(\mu_{\eta N}, \mu_{\gamma N}), Max(\sigma_{\eta N}, \sigma_{\gamma N}, Min(\nu_{\eta N}, \nu_{\gamma N}) \rangle : x \in X \},$
- **v.** $\eta_N \cap \gamma_N = \{ \langle x, Min(\mu_{\eta N}, \mu_{\gamma N}), Min(\sigma_{\eta N}, \sigma_{\gamma N}), Max(\nu_{\eta N}, \nu_{\gamma N}) \rangle : x \in X \},$
- **vi.** $0_N = \langle x, 0, 0, 1 \rangle$ and $1_N = \langle x, 1, 1, 0 \rangle$.

Definition 2.4 [18]: "Fuzzy neutrosophic topology (FNT, for short) on a non-empty set X is a family τ_N of fuzzy neutrosophic subsets in X satisfying the following axioms.

- i. $0_N, 1_N \in \tau_N$
- ii. $\eta_{N1} \cap \eta_{N2} \in \tau_N$ for any η_{N1} , $\eta_{N2} \in \tau_N$,
- **iii.** $\cup \eta_{Ni} \in \tau_N, \forall \{ \eta_{Ni} : i \in J \} \subseteq \tau_N.$ "

In this case the pair (X, τ_N) is called fuzzy neutrosophic topological space (FNTS, for short). The elements of τ_N are called fuzzy neutrosophic open set (FNOS, for short). The complement of FNOS in the FNTS (X, τ_N) is called fuzzy neutrosophic closed set (FNCS, for short).

Definition 2.5 [18]: Let (X, τ_N) be FNTS and $\eta_N = \langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle$ be FNS in X. Then the fuzzy neutrosophic closure of η_N (FNCL, for short) and fuzzy neutrosophic interior of η_N (FNIn, for short) are defined by:

FNCL
$$(\eta_N) = \bigcap \{C_N: C_N \text{ is FNCS in X and } \eta_N \subseteq C_N \},$$

FNIn $(\eta_N) = \bigcup \{O_N: O_N \text{ is FNOS in X and } O_N \subseteq \eta_N \}.$

We know, FNCL(η_N) is FNCS and FNIn (η_N) is FNOS in X. Further,

- **i.** η_N is FNCS in X iff FNCL $(\eta_N) = \eta_N$,
- **ii.** η_N is FNOS in X iff FNIn $(\eta_N) = \eta_N$.

Proposition 2.6 [25]: Let (X, τ_N) is FNTS and η_N , γ_N are FNSs in X. Then the following properties hold:

- **i.** FNIn $(\eta_N) \subseteq \eta_N$ and $\eta_N \subseteq FNCL(\eta_N)$,
- **ii.** $\eta_N \subseteq \gamma_N \Longrightarrow FNIn (\eta_N) \subseteq FNIn (\gamma_N)$ and $\eta_N \subseteq \gamma_N \Longrightarrow FNCL(\eta_N) \subseteq FNCL(\gamma_N)$,
- iii. FNIn (FNIn (η_N)) = FNIn (η_N) and FNCL(FNCL (η_N)) = FNCL (η_N) ,
- **iv.** FNIn $(\eta_N \cap \gamma_N)$ = FNIn $(\eta_N) \cap$ FNIn (γ_N) and FNCL $(\eta_N \cup \gamma_N)$ = FNCL $(\eta_N) \cup$ FNCL (γ_N) ,
- **v.** FNIn $(1_N) = 1_N$ and FNCL $(1_N) = 1_N$,
- vi. FNIn $(0_N) = 0_N$ and FNCL $(0_N) = 0_N$.

Definition 2.7 [9]: FNS η_N in FNTS (X, τ_N) is called:

- i. Fuzzy neutrosophic regular closed set (FNRCS, for short) if $\eta_N = FNCL(FNIn(\eta_N))$.
- ii. Fuzzy neutrosophic pre closed set (FNPCS, for short) if FNCL(FNIn (η_N)) $\subseteq \eta_N$.
- iii. Fuzzy neutrosophic α closed set (FN α CS, for short) if FNCL(FNIn(FNCL(η_N))) $\subseteq \eta_N$.

Definition 2.8 [10]: Let (X, τ_N) be FNTS and $\eta_N = \langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle$ be FNS in X. Then the fuzzy neutrosophic alpha closure of η_N (FNαCL, for short) and fuzzy neutrosophic alpha interior of η_N (FNαIn,

for short) are defined by:

FN
$$\alpha$$
CL(η_N) = \cap {C_N: C_N is FN α CS in X and $\eta_N \subseteq C_N$ },
FN α In (η_N) = \cup {O_N: O_N is FN α OS in X and O_N $\subseteq \eta_N$ }.

We know, FN α CL(η_N) is FN α CLS and FN α In (η_N) is FN α OS in X. Further,

- i. η_N is FN α CS in X iff FN α CL(η_N) = η_N ,
- **ii.** η_N is FN α OS in X iff FN α In $(\eta_N) = \eta_N$.

Definition 2.9 [9,10]: Fuzzy neutrosophic sub set η_N of FNTS (X, τ_N) is called:

- i. fuzzy neutrosophic generalized closed set (FNGCS, for short) if FNCL(η_N) $\subseteq U_N$ wherever, $\eta_N \subseteq U_N$ and U_N is FNOS in X. And η_N is said to be fuzzy neutrosophic generalized open set (FNGOS, for short) if the complement 1_{N^-} η_N is FNGCS set in (X, τ_N) .
- ii. fuzzy neutrosophic alpha generalized closed set (FN α GCS, for short) if FN α CL(η_N) \subseteq U_N wherever, $\eta_N \subseteq U_N$ and U_N is FNOS in X. And η_N is said to be fuzzy neutrosophic

alpha generalized open set (FN α GOS, for short) if the complement $1_{N^-}\eta_N$ is FN α GCS set in (X, τ_N) .

3. Fuzzy Neutrosophic Strongly Alpha Generalized Closed Sets in Fuzzy Neutrosophic Topological Spaces.

Now, we will introduce the concept of fuzzy neutrosophic strongly alpha generalized closed set in fuzzy neutrosophic topological spaces.

Definition 3.1: Fuzzy neutrosophic subset η_N of FNTS (X, τ_N) is called fuzzy neutrosophic strongly alpha generalized closed set (FNS α GCS, for short) if FN α CL $(\eta_N) \subseteq U_N$ wherever, $\eta_N \subseteq U_N$ and U_N is FNGOS in X.

Example 3.2: Let $X = \{a, b\}$ define FNS η_N in X as follows:

 $\eta_N = < x$, $(0.2_{(a)}, 0.3_{(b)})$, $(0.5_{(a)}, 0.5_{(b)})$, $(0.8_{(a)}, 0.7_{(b)}) >$, where the family $\tau_N = \{0_N, 1_N, \eta_N \}$.

If we take, $\psi_N = \langle x, (0.8_{(a)}, 0.7_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.1_{(a)}, 0_{(b)}) \rangle$.

And, $U_N = 1_N$ where U_N is FNGOS such that, $\psi_N \subseteq U_N$. Then, $FN\alpha CL(\psi_N) = 1_N$. So, $FN\alpha CL(\psi_N) \subseteq U_N$.

Hence, ψ_N is FNS α GCS.

Theorem 3.3: For any FNSs, the following statements are true in general:

- i. Every FNOS is FNGOS.
- ii. Every FNCS is FNαCS.
- iii. Every FNCS is FNSαGCS.
- iv. Every FNRCS is FNS α GCS.
- v. Every FNαCS is FNSαGCS.
- vi. Every FNαGCS is FNSαGCS.
- vii. Every FNRCS is FNCS.
- **viii.** Every FNαCS is FNαGCS.

Proof:

i. Let $\eta_N = \langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle$ be FNOS in the FNTS (X, τ_N) .

Then **by Definition 2.5 ii** we get, FNIn $(\eta_N) = \eta_N$.

Now, let U_N is FNCS such that, $U_N \subseteq \eta_N$. Therefore, FNIn $(\eta_N) = \eta_N \supseteq U_N$.

Hence, η_N is FNGOS in (X, τ_N) .

ii. Let $\eta_N = \langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle$ be FNCLS in the FNTS (X, τ_N) .

Then by **Definition 2.5** (i) we get, $FNCL(\eta_N) = \eta_N.....(1)$.

And by Proposition 2.6 i we get, FNIn $(\eta_N) \subseteq \eta_N$.

So we get, FNIn $(FN\underline{CL}(\eta_N)) \subseteq \eta_N$ This implies $FN\underline{CL}(FNIn (FNCL(\eta_N))) \subseteq FNCL(\eta_N)$. So **by** (1) we get, $FNCL(FNIn (FNCL(\eta_N))) \subseteq \eta_N$.

Hence, η_N is FN α CS in (X, τ_N) .

iii. Let $\eta_N = \langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle$ be FNCS in FNTS (X, τ_N) .

Then by **Definition 2.5** (i) we get, $FNCL(\eta_N) = \eta_N$. Now, let U_N be FNGOS such that, $\eta_N \subseteq U_N$.

Since, $FN\alpha CL(\eta_N) \subseteq FNCL(\eta_N)$ by Definition 2.5 and Definition 2.8.

So we get, $FN\alpha CL(\eta_N) \subseteq FNCL(\eta_N) = \eta_N \subseteq U_N$.

Hence, η_N is FNS α GCS in (X, τ_N) .

iv. Let $\eta_N = \langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle$ be FNRCS in the FNTS (X, τ_N) .

Then, FNCL(FNIn (η_N)) = η_N(1).

This implies, FNCL(FNIn (η_N)) = FNCL (η_N)(2).

Now, let U_N be FNGOS such that, $\eta_N \subseteq U_N$.

From (1) and (2) we get, $FNCL(\eta_N) = \eta_N$.

That η_N is FNCS in X.

So **by iii** we get, $FN\alpha CL(\eta_N) \subseteq FNCL(\eta_N) = \eta_N \subseteq U_N$.

Hence, η_N is FNS α GCS in (X, τ_N) .

v. Let $\eta_N = \langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle$ be FN α CLOS in the FNTS (X, τ_N) .

Then **by Definition 2.8 i** we get, FN α CL $(\eta_N) = \eta_N$.

Now, let U_N be FNGOS such that, $\eta_N \subseteq U_N$. So, FN α CL $(\eta_N) = \eta_N \subseteq U_N$.

Hence, η_N is FNS α GCS in (X, τ_N) .

vi. Let $\eta_N = \langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle$ be FN α GCS in the FNTS (X, τ_N) .

Then, FN α CL $(\eta_N) \subseteq U_N$, $\eta_N \subseteq U_N$ and U_N be FNOS, so **by i** we get , FNOS be FNGOS in (X, τ_N) .

Therefore, FN α CL $(\eta_N) \subseteq U_N$, $\eta_N \subseteq U_N$ and U_N be FNGOS. Hence, η_N is FNS α GCS in (X, τ_N) .

vii. Let $\eta_N = \langle x, \mu_{\eta N}, \sigma_{\eta N}, \nu_{\eta N} \rangle$ be FN α CS in the FNTS (X, τ_N) . Then, FN α CL $(\eta_N) = \eta_N$. Now, let U_N be FNOS such that, $\eta_N \subseteq U_N$, so, FN α CL $(\eta_N) = \eta_N \subseteq U_N$. Hence, η_N is FN α GCS in (X, τ_N) .

Remark 3.4: The convers of **Theorem 3.3** is not true and this can be clarified in the following examples.

Example 3.5:

i. Let $X = \{a, b\}$ define FNS η_N in X as follows:

$$\eta_N = <\!\! x,\, (0.5_{(a)},\, 0.7_{(b)}),\, (0.5_{(a)},\, 0.5_{(b)}),\, (0.5_{(a)}, 0.2_{(b)})>.$$

The family $\tau_N = \{0_N, 1_N, \eta_N\}$ be FNT.

If we take, $\psi_N = \langle x, (0.1_{(a)}, 0.6_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.9_{(a)}, 0.3_{(b)}) \rangle$.

And let, $U_N = 0_N$, where U_N be FNCS such that, $U_N \subseteq \psi_N$.

Then, FNIn $(\psi_N) = \langle x, (0_{(a)}, 0_{(b)}), (0_{(a)}, 0_{(b)}), (1_{(a)}, 1_{(b)}) \rangle \subseteq \langle x, (0.1_{(a)}, 0.6_{(b)}), (0.5_{(a)}, 0.6_{(b)}) \rangle$

 $(0.5_{(b)}), (0.9_{(a)}, 0.3_{(b)}) > \text{ such that, } (0_{(a)}, 0_{(b)}) \le (0.1_{(a)}, 0.6_{(b)}), (0_{(a)}, 0_{(b)}) \le (0.5_{(a)}, 0.5_{(b)})$

and $(1_{(a)}, 1_{(b)}) \ge (0.9_{(a)}, 0.3_{(b)}) = 0_N$. So, FNIn $(\psi_N) \supseteq U_N$. Hence, ψ_N is FNGOS but, not FNOS.

Since $\psi_N \notin \tau_{N}$.

ii. Let $X=\{a\}$ define the FNSs η_N and γ_N in X as follows:

$$\eta_N = <\!\! x,\, (0.5_{(a)}),\, (0.4_{(a)}),\, (0.7_{(a)})>, \quad \gamma_N = <\!\! x,\, (0.4_{(a)}),\, (0.1_{(a)}),\, (0.8_{(a)})>.$$

The family $\tau_N = \{0_N, 1_N, \eta_N, \gamma_N \}$ be FNT.

If we take, $\psi_N = \langle x, (0.8_{(a)}), (0.6_{(a)}), (0.5_{(a)}) \rangle$.

Then,
$$FNCL(\psi_N) = \langle x, (0.8_{(a)}), (0.9_{(a)}), (0.4_{(a)}) \rangle$$
. And, $FNIn(FNCL(\psi_N)) = \langle x, (0.5_{(a)}), (0.5_{(a)}), (0.5_{(a)}), (0.5_{(a)}) \rangle$

$$(0.4_{(a)}),\,(0.7_{(a)})>. \text{ So, FNCL(FNIn (FNCL(}\psi_{N})))=<\!\!x,\,(0.7_{(a)}),\,(0.6_{(a)}),\,(0.5_{(a)})>.$$

Therefore, $\langle x, (0.7_{(a)}), (0.6_{(a)}), (0.5_{(a)}) \rangle \subseteq \psi_N$.

Hence, ψ_N is FN α CS but not FNCS. Since $\psi_N \notin 1_N$ - τ_N .

iii. Take **Example 3.2.** Then, ψ_N is FNS α GCS but, not FNCS.

Since, $\psi_N \notin 1_{N^-} \tau_N$.

iv. Take Example 3.2. Then ψ_N is FNS α GCS but, not FNRCS.

Since, FNIn
$$(\psi_N) = \langle x, (0.2_{(a)}, 0.3_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.8_{(a)}, 0.7_{(b)}) \rangle$$
 and

FNCL(FNIn
$$(\psi_N)$$
) = $\langle x, (0.8_{(a)}, 0.7_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.2_{(a)}, 0.3_{(b)}) \rangle \neq \psi_N$.

v. Let $X = \{a, b\}$ define the FNSs η_N and γ_N in X as follows:

$$\eta_{\rm N} = \langle x, (0.4_{\rm (a)}, 0.2_{\rm (b)}), (0.5_{\rm (a)}, 0.5_{\rm (b)}), (0.6_{\rm (a)}, 0.7_{\rm (b)}) \rangle$$

$$\gamma_N = \langle x, (0.8_{(a)}, 0.8_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.2_{(a)}, 0.2_{(b)}) \rangle.$$

The family $\tau_N = \{0_N, 1_N, \eta_N, \gamma_N \}$ be FNT.

Now if, $\psi_N = \langle x, (0.6_{(a)}, 0.7_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.4_{(a)}, 0.3_{(b)}) \rangle$.

By **Theorem 3.3** i. If U_N is FNOS then is FNGOS.

So, $U_N = \gamma_N$ where, U_N be FNGOS such that, $\psi_N \subseteq U_N$.

By **Theorem 3.3** ii. Every FNCS is $FN\alpha CS$.

Then, $FN\alpha CL(\psi_N) = 1_{N^-} \eta_N$. Therefore $FN\alpha CL(\psi_N) \subseteq U_N$.

Hence, ψ_N is FNS α GCS but, not FN α CS.

Since, FNCL(ψ_N) = 1_N- η_N , FNIn (FNCL(ψ_N)) = η_N and

FNCL(FNIn (FNCL(ψ_N))) = 1_N - $\eta_N \not\subseteq \psi_N$.

vi. Let $X=\{a\}$ define the FNSs η_N and γ_N in X as follows:

$$\eta_N = \langle x, (0.5_{(a)}), (0.5_{(a)}), (0.5_{(a)}) \rangle, \quad \gamma_N = \langle x, (0.5_{(a)}), (0_{(a)}), (1_{(a)}) \rangle.$$

The family $\tau_N = \{0_N, 1_N, \eta_N, \gamma_N \}$ be FNT.

Now if, $\psi_N = \langle x, (0.6_{(a)}), (0.6_{(a)}), (0.6_{(a)}) \rangle$.

Let $U_N = \langle x, (1_{(a)}), (1_{(a)}), (0.4_{(a)}) \rangle$ be FNGOS such that, $\psi_N \subseteq U_N$.

Then, $FN\alpha CL(\psi_N) = 1_{N^-} \gamma_N$. So $FN\alpha CL(\psi_N) \subseteq U_N$.

Hence, ψ_N is FNS α GCS but, not FN α GCS.

Since, U_N is FNGOS but not FNOS.

vii. Let $X=\{a\}$ define the FNSs η_N and γ_N in X as follows:

$$\eta_N = <\!\!x,\, (0.5_{(a)}),\, (0.5_{(a)}),\, (0.7_{(a)})>, \quad \gamma_N = <\!\!x,\, (0.4_{(a)}),\, (0_{(a)}),\, (1_{(a)})>.$$

The family $\tau_N = \{0_N, 1_N, \eta_N, \gamma_N \}$ be FNT.

Now if, $\psi_N = \langle x, (1_{(a)}), (1_{(a)}), (0.4_{(a)}) \rangle$.

Then, ψ_N is FNCS. Since $\psi_N \in 1_N$ - τ_N but, not FNRCS.

Since FNIn $(\psi_N) = \langle x, (0.5_{(a)}), (0.5_{(a)}), (0.7_{(a)}) \rangle$ and

 $FNCL(FNIn (\psi_N)) = \langle x, (0.7_{(a)}), (0.5_{(a)}), (0.5_{(a)}) \rangle \neq \psi_N.$

viii. Let $X=\{a\}$ define the FNSs η_N and γ_N in X as follows:

$$\eta_N = \langle x, (0.5_{(a)}), (0.5_{(a)}), (0.6_{(a)}) \rangle, \quad \gamma_N = \langle x, (0.5_{(a)}), (0_{(a)}), (1_{(a)}) \rangle.$$

The family $\tau_N = \{0_N, 1_N, \eta_N, \gamma_N \}$ be FNT.

Now if, $\psi_N = \langle x, (0.6_{(a)}), (0.6_{(a)}), (0.6_{(a)}) \rangle$.

Let, $U_N = 1_N$ be FNOS such that, $\psi_N \subseteq U_N$.

Then, $FNCL(\psi_N) = \langle x, (1_{(a)}), (1_{(a)}), (0.5_{(a)}) \rangle$ and $FNCL(\psi_N) \subseteq U_N$.

Hence, ψ_N is FN α GCS but, not FN α CS.

Since, FNCL(ψ_N) = $\langle x, (1_{(a)}), (1_{(a)}), (0.5_{(a)}) \rangle$, FNIn (FNCL(ψ_N)) = $\langle x, (0.5_{(a)}), (0.5_{(a)}), (0.5_{(a)}), (0.5_{(a)}) \rangle$

 $(0.6_{(a)}) > and$

FNCL(FNIn (FNCL(ψ_N))) = $\langle x, (0.6_{(a)}), (0.5_{(a)}), (0.5_{(a)}) \rangle \not\subseteq \psi_N$.

Remark 3.6: i. The relation between FNPCS and FNS α GCS is independent and this can be clarified in the next example.

Shaymaa F. Matar and Fatimah M. Mohammed Fuzzy Neutrosophic Strongly Alpha Generalized Closed Sets in Fuzzy Neutrosophic Topological spaces

ii. The intersection of two FNS α GCS is not FNS α GCS in general and we explained it in the next example.

Example 3.7:

i. (1) Let $X = \{a, b\}$ define FNS η_N in X as follows:

$$\eta_N = <\!\! x,\, (0.5_{(a)},\, 0.5_{(b)}),\, (0.5_{(a)},\, 0.5_{(b)}),\, (0.4_{(a)}, 0.5_{(b)})>.$$

The family $\tau_N = \{0_N, 1_N, \eta_N\}$ be FNT.

Now if, $\psi_N = \langle x, (0.5_{(a)}, 0.4_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.6_{(a)}, 0.5_{(b)}) \rangle$.

Then, FNIn $(\psi_N) = 0_N$ and FNCL(FNIn $(\psi_N) = 0_N$. So, FNCL(FNIn $(\psi_N) \subseteq \psi_N$.

Hence, ψ_N is FNPCS but, not FNS α GCS. Since

Let, $U_N = \eta_N$, where U_N be FNGOS such that, $\psi_N \subseteq U_N$. Then, $FN\alpha CL(\psi_N) = 1_N$. So $FN\alpha CL(\psi_N) \nsubseteq U_N$.

(2) Let $X=\{a, b\}$ define the FNSs η_N and γ_N in X as follows:

$$\eta_N = <\!\! x,\, (0.5_{(a)},\, 0.2_{(b)}),\, (0.5_{(a)},\, 0.5_{(b)}),\, (0.5_{(a)}, 0.7_{(b)})>,$$

$$\gamma_{N} = \langle x, (0.8_{(a)}, 0.8_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.2_{(a)}, 0.2_{(b)}) \rangle$$
.

The family $\tau_N = \{0_N, 1_N, \eta_N, \gamma_N \}$ be FNT.

Now if, $\psi_N = \langle x, (0.5_{(a)}, 0.7_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.5_{(a)}, 0.3_{(b)}) \rangle$.

Let, $U_N = \gamma_N$, where U_N be FNGOS such that, $\psi_N \subseteq U_N$.

Then, $FN\alpha CL(\psi_N) = \langle x, (0.5_{(a)}, 0.7_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.5_{(a)}, 0.2_{(b)}) \rangle \subseteq U_N$.

Hence, ψ_N is FNS α GCS but, not FNPCS.

Since, FNIn $(\psi_N) = \eta_N$ and FNCL(FNIn (ψ_N)) = $\langle x, (0.5_{(a)}, 0.7_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.5_{(a)}, 0.2_{(b)}) \rangle$.

So, FNCL(FNIn (ψ_N)) $\nsubseteq \psi_N$.

ii. Let $X = \{a, b\}$ define FNS η_N in X as follows: $\eta_N = \langle x, (0.5_{(a)}, 0_{(b)}), (0.5_{(a)}, 0.5_{(b)}), (0.1_{(a)}, 1_{(b)}) \rangle$. The family $\tau_N = \{0_N, 1_N, \eta_N\}$ be FNT.

$$\begin{split} &Now\ if, \psi_{N1} = < x, (0.2_{(a)}, \, 1_{(b)}), \, (1_{(a)}, \, 1_{(b)}), \, (0.7_{(a)}, 0_{(b)}) > \text{and}\ \psi_{N2} = \\ &< x, \, (0.6_{(a)}, \, 0_{(b)}), \, (1_{(a)}, \, 1_{(b)}), \, (0.3_{(a)}, 1_{(b)}) \\ &> \text{are}\ FNS\alpha GCS.\ But, \, \psi_{N1} \cap\ \psi_{N2} = < x, \, (0.2_{(a)}, \, 0_{(b)}), \, (1_{(a)}, \, 1_{(b)}), \, (0.7_{(a)}, 1_{(b)}) >. \end{split}$$

Now let, $U_N = \eta_N$, where U_N be FNGOS such that, $\psi_{N1} \cap \psi_{N2} \subseteq U_N$. Then, $FN\alpha CL(\psi_{N1} \cap \psi_{N2}) = 1_N \nsubseteq U_N$.

Hence, $\psi_{N1} \cap \psi_{N2}$ is not FNS α GCS.

Remark 3.8: The next diagram explains the relationships among different sets in the FNTS and the convers is not true in general.

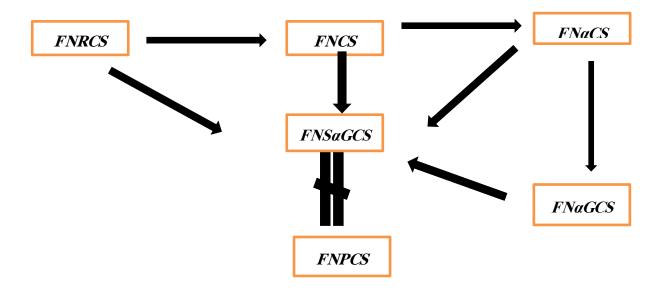


Diagram 3.1

5. Conclusions

In this present paper, we have defined new class of neutrosophic generalized closed sets called, fuzzy neutrosophic strongly alpha generalized closed set in fuzzy neutrosophic topological spaces. Many results have been discussed with some properties. Further, we giving some theorems, propositions and provided some useful examples where such properties failed to be preserved in order to get the relations between fuzzy neutrosophic strongly alpha generalized closed set and existing fuzzy neutrosophic closed sets in fuzzy neutrosophic topological spaces. We think, our studied class of sets belongs to the new class of fuzzy neutrosophic sets which is useful not only in the deepening of our understanding of some special features of the well-known notions of fuzzy neutrosophic topology but also useful in neutrosophic control theory.

Acknowledgments:

In this section the authors would like to thank the referees for their valuable suggestions to improve the paper.

References

- 1. L A.. Zadeh. (1965). Fuzzy Sets, Inform. and Control, Vol. 8, 338-353.
- 2. I. Arockiarani, I.R.Sumathi & J.Martina Jency. (2013). Fuzzy Neutrosophic Soft Topological Spaces, IJMA, Vol. 4, 225-238.
- 3. I. Arockiarani & J. Martina Jency. (2014). More on Fuzzy Neutrosophic Sets and Fuzzy Neutrosophic Topological Spaces, IJIRS, 3(5), 642-652.

- 4. K. Atanassov & S. Stoeva. (1983). Intuitionistic Fuzzy Sets, in: Polish Syrup. On Interval and Fuzzy Mathematics, Poznan, 23-26.
- 5. K. Atanassov. (1986). Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, Vol. 20, 87-96.
- 6. K. Atanassov. (1988). Review and New Results on Intuitionistic Fuzzy Sets, Preprint IM- MFAIS, Sofia, 1-88.
- 7. C.L. Chang. (1968). Fuzzy Topological Space, J. Math. Anal. Appl., Vol. 24, 182-190.
- 8. D. Coker. (1997). An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets and System, Vol. 88, 81-89.
- **9.** F. M. Mohammed & Shaymaa F. Matar. (2018). Fuzzy Neutrosophic Alpha^m- closed set in Fuzzy Neutrosophic Topological Spaces, Neutrosophic set and systems, Vol. 21, 56-65.
- 10. F. M. Mohammed, Anas A. Hijab & Shaymaa F. Matar . (2018). Fuzzy Neutrosophic Weakly-Generalized closed set in Fuzzy Neutrosophic Topological Spaces, University of Anbar for Pure Science, Vol. 12, 63-73.
- **11.** F. M. Mohammed & Sarah W. Raheem. (2020). Generalized b Closed Sets and Generalized b Open Sets in Fuzzy Neutrosophic bi-Topological Spaces, Neutrosophic set and systems, Vol.35, 188-197.
- 12. D. Jayanthi. (2018). Alpha Generalized closed set in Neutrosophic Topological Spaces, IJMTT, ISSN: 2231-5373, 88-91.
- 13. Abdel-Basset, M., Mohamed, R., Elhoseny, M., & Chang, V. (2020). Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing, 145, 106-941.
- 14. Abdel-Basset, M., Ali, M., & Atef, A. (2020). Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers & Industrial Engineering, 141, 106-286
- 15. Abdel-Basset, M., Ali, M., & Atef, A. (2020). Resource levelling problem in construction projects under neutrosophic environment. The Journal of Supercomputing, 76(2), 964-988.
- 16. Abdel-Basset, M., Gamal, A., Son, L. H., & Smarandache, F. (2020). A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences, 10(4), 12-20.
- 17. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., & Smarandache, F. (2020). Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets (pp. 1-19). Academic Press.
- 18. A. A. Salama & S. A. Alblowi. (2012). Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, 3(4), 31-35.
- 19. A. A. Salama, Florentin Smarandache & S. A. Alblowi. (2014). Characteristic Function of Neutrosophic Set, Neutrosophic Sets and Systems, Vol. 3, 14-17.
- 20. A. A. Salama, Florentin Smarandache & Valeri Kromov. (2014). Neutrosophic Closed Set and Neutrosophic Continuous Functions, Neutrosophic Sets and Systems, Vol. 4, 4-8.
- 21. A. A. Salama. (2015). Basic Structure of Some Classes of Neutrosophic Crisp Nearly Open Sets & Possible Application to GIS topology, Neutrosophic Sets and Systems, Vol. 7, 18-22.
- 22. R. Santhi & K. Sakthivel. (2011). Strongly Alpha Generalized closed set in Intuitionistic Topological Spaces, International Journal Pure Applied Sciences and Technology, Vol. 3, 51-58.
- 23. F. Smaradache. (2005). Neutrosophic Set: A Generalization of the Intuitionistic Fuzzy Sets, Inter. J. Pure Appl. Math., Vol. 24, 287-297.

- 24. F. Smaradache. (2010). Neutrosophic Set: A Generalization of Intuitionistic Fuzzy Set, Journal of Defense Resourses Management, Vol. 1, 1-10.
- 25. Y. Veereswari . (2017). An Introduction To Fuzzy Neutrosophic Topological Spaces, IJMA, 8(3), 145-149.

Received: May 2, 2020. Accepted: September 22, 2020