

Minimal Structures and Grill in Neutrosophic Topological Spaces

Gour Pal¹, Runu Dhar², and Binod Chandra Tripathy^{3,*}

¹Department of Mathematics, Dasaratha Deb Memorial College, Khowai, 799201, Tripura, India

¹E-mail: gourpal74@gmail.com

²Department of Applied Mathematics, Maharaja Bir Bikram University, Agartala, 799004, Tripura, India

²E-mail: runu.dhar@gmail.com

³Department of Mathematics, Tripura University, Agartala, 799022, Tripura, India

³E-mail: tripathybc@yahoo.com, tripathybc@rediffmail.com

*Correspondence: tripathybc@yahoo.com

Abstract: The main objective of this article is to introduce the notion of minimal structure (in short M-structure) and grill in neutrosophic topological space (in short N-T-space). Besides, we establish its relation with some existing notions on different types of open sets in N-T-space, and investigate some basic properties of the class of M-structure and grill in NT-space. Further, we furnish some suitable examples of M-structure and grill via NT-space.

Keywords: Neutrosophic Set; M-structure; Neutrosophic Topology; Neutrosophic Grill Topology.

1. Introduction: The concept of fuzzy set (in short F-set) theory was grounded by Zadeh [29] in 1965. Uncertainty plays an important role in our everyday life problems. Zadeh [29] associated the membership value with the elements to control the uncertainty. It was not sufficient to control uncertainty, so Atanaosv [3] added non-membership value along with the membership value, and introduced the notion of intuitionistic fuzzy set (in short IF-set). Still it was difficult to handle some real world problems under uncertainty, in particular for problems on decision making. In order to overcome this difficulty, Smarandache [24] considered the elements with truth-membership, indeterminacy-membership and false-membership values, and grounded the idea of neutrosophic set (in short N-set) theory in 1998. Till now, the concept of N-set has been applied in many branches of science and technology.

The notions of N-T-space was first grounded by Salama and Alblowi [22], followed by Salama and Alblowi [23], Iswaraya and Bageerathi [15], who studied the concept of neutrosophic semi-open set (in short NSO-set) and neutrosophic semi-closed set (in short NSC-set). Arokiarani et al. [2] studied some new notations and mappings via N-T-spaces. Iswarya and Bageerathi [15] established

the notion of neutrosophic semi-open sets via neutrosophic topological space. Afterwards, Rao and Srinivasa [21] introduced and studied neutrosophic pre-open set (in short NPO-set) and neutrosophic pre-closed set (in short NPC-set) via N-T-space. Das and Pramanik [7] grounded the notion of generalized neutrosophicx b-open set via neutrosophic topological space. Later on, Das and Pramanik [8] introduced the notion of neutrosophic ϕ -open set and neutrosophic ϕ -continuous function via neutrosophic topological space. Recently, Das and Tripathy [11] presented the notion of neutrosophic simply b-open set via neutrosophic topological space. Thereafter, Das and Tripathy [13] introduced the idea of pairwise neutrosophic b-open sets via N-T-space. Parimala et al. [19] introduced the notion of neutrosophic nano ideal topological space. Later on Parimala et al. [20] grounded the idea of neutrosophic $\alpha\psi$ -homomorphism via neutrosophic topological spaces.

Makai et al. [16] introduced and studied the concept of minimal structure (in short M-structure) via topological space. It is found to have useful applications and the notion was investigated by Madok [17]. The notion of minimal structure in a fuzzy topological space was introduce by Alimohammady and Roohi [1] and further investigated by Tripathy and Debnath [27] and others.

In this article, we introduce the idea of minimal structure and grill via N-T-spaces. We establish its relation with some existing notions on several types of open sets via N-T-spaces. Besides, we investigate some basic properties of the class of minimal structures and grill via N-T-spaces. Further, we furnish some suitable examples on minimal structures and grill via N-T-spaces.

The rest of the paper is divided into following sections:

In section 2, we provide some definitions and results those are very useful for the preparation of the main results of this article. In section 3, we introduce the concept of M-structure and gril via NT-spaces, and proved some basic results on them. In section 4, we introduce an operator ()* on M-structure via NT-spaces, and established several interesting results based on it. Finally, in section 5, we conclude the work done in this article.

2. Preliminaries & Definitions:

In this section, we provide some existing results on neutrosophic set and neutrosophic topology those are relevant to main results of this article.

Definition 2.1.[24] Suppose that \hat{G} be a fixed set. Then W, an N-set over \hat{G} is a set contains triplet having truth, indeterminacy and false membership values that can be characterized independently, denoted by Tw, Iw, Fw in the unit interval [0, 1].

We denote the N-set *W* as follows:

$$W = \{(r, Tw(r), Iw(r), Fw(r)): r \in \hat{G}\}, \text{ where } Tw(r), Iw(r), Fw(r) \in [0, 1], \text{ for all } r \in \hat{G}.$$

Since, no restriction on the values of Tw(r), Iw(r) and Fw(r) is imposed, so we have

$$0 \le T_W(r) + I_W(r) + F_W(r) \le 3$$
, for all $r \in \hat{G}$.

Example 2.1. Suppose that $\hat{G} = \{b, c\}$ be a fixed set. Clearly, $W = \{(b, 0.4, 0.8, 0.7), (c, 0.2, 0.8, 0.7)\}$ is an N-set over \hat{G} .

Definition 2.2.[24] Suppose that $W = \{(r, Tw(r), Iw(r), Fw(r)): r \in \hat{G}\}$ be an N-set over \hat{G} . Then, W^c i.e., the complement of W is defined by $W^c = \{(r, 1-Tw(r), 1-Iw(r), 1-Fw(r)): r \in \hat{G}\}$.

Example 2.2. Suppose that $\hat{G}=\{b, c\}$ be a fixed set. Let $W=\{(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)\}$ be an N-set over \hat{G} . Then, the complement of W is $W^c=\{(b,0.5,0.5,0.3), (c,0.5,0.3,0.2)\}$.

Definition 2.3.[24] An N-set $W = \{(r, Tw(r), Iw(r), Fw(r)): r \in \hat{G}\}$ is called a subset of an N-set $L = \{(r, Tu(r), Iu(r), Fu(r)): r \in \hat{G}\}$ (i.e., $W \subseteq L$) if and only if $Tw(r) \leq Tu(r)$, $Iw(r) \geq Iu(r)$, $Fw(r) \geq Fu(r)$, for each $r \in \hat{G}$.

Example 2.3. Suppose that $\hat{G}=\{b, c\}$ be a fixed set. Let $M=\{(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)\}$ and $W=\{(b,0.7,0.2,0.5), (c,0.9,0.5,0.3)\}$ be two N-sets over \hat{G} . Clearly, $M\subseteq W$.

Definition 2.4.[24] Assume that $W = \{(r, T_W(r), I_W(r), F_W(r)): r \in \hat{G}\}$ and $L = \{(r, T_L(r), I_L(r), F_L(r)): r \in \hat{G}\}$ be any two N-sets over a fixed set \hat{G} . Then, their intersection and union are defined as follows:

$$W \cap L = \{(r, T_N(r) \wedge T_L(r), I_N(r) \vee I_L(r), F_N(r) \vee F_L(r)) : r \in \hat{G}\},$$

$$W \cup L = \{(r, T_N(r) \vee T_L(r), I_N(r) \wedge I_L(r), F_N(r) \wedge F_L(r)) : r \in \hat{G}\}.$$

Example 2.4. Suppose that $\hat{G}=\{b, c\}$ be a fixed set. Let $W=\{(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)\}$ and $M=\{(b,0.7,0.2,0.5), (c,0.9,0.5,0.3)\}$ be two N-sets over \hat{G} . Then, $W \cup M=\{(b,0.7,0.2,0.5), (c,0.9,0.5,0.3)\}$ and $W \cap M=\{(b,0.5,0.5,0.7), (c,0.5,0.7,0.8)\}$.

Definition 2.5.[22] The null N-set (0N) and absolute N-set (1N) over \hat{G} are represented as follows:

- (i) $0_N = \{(r, 0, 0, 1) : r \in \hat{G}\};$
- (ii) $0_N = \{(r, 0, 1, 0) : r \in \hat{G}\};$
- (iii) $0_N = \{(r, 0, 1, 1) : r \in \hat{G}\};$
- (iv) $0_N = \{(r, 0, 0, 0) : r \in \hat{G}\};$
- (v) $1_N = \{(r, 1, 0, 1) : r \in \hat{G}\};$
- (vi) $1_N = \{(r, 1, 1, 0) : r \in \hat{G}\};$ (vii) $1_N = \{(r, 1, 0, 0) : r \in \hat{G}\};$
- (viii) $1_N = \{(r, 1, 1, 1) : r \in \hat{G}\}.$

Clearly, $0_N \subseteq 1_N$. We have, for any N-set W, $0_N \subseteq W \subseteq 1_N$.

Throughout the article, we will use $0_N = \{(r, 0, 1, 1) : r \in \hat{G}\}\$ and $1_N = \{(r, 1, 0, 0) : r \in \hat{G}\}\$.

Definition 2.6.[22] Assume that \hat{G} be a fixed set. Then τ , a family of N-sets over \hat{G} is called an N-T on \hat{G} if the following condition holds:

- (i) 0_N , $1_N \in \tau$;
- (ii) W_1 , $W_2 \in \tau \Rightarrow W_1 \cap W_2 \in \tau$;
- $(iii) \{W_i : i \in \Delta\} \subseteq \tau \Rightarrow \bigcup_{i \in \Delta} W_i \in \tau.$

Then, the pair (\hat{G}, τ) is called an N-T-space. If $W \in \tau$, then W is called an neutrosophic open set (in short N-O-set) in (\hat{G}, τ) , and the complement of W is called an neutrosophic closed set (in short N-C-set) in (\hat{G}, τ) .

Example 2.5. Suppose that W, E and Z be three N-sets over a fixed set \hat{G} ={p, q} such that:

 $W=\{(p,0.7,0.5,0.7), (q,0.5,0.1,0.5): p, q \in \hat{G}\};$

 $E=\{(p,0.6,0.9,0.8), (q,0.5,0.3,0.8): p, q \in \hat{G}\};$

 $Z=\{(p,0.5,1.0,0.8), (q,0.4,0.4,0.9): p, q \in \hat{G}\}.$

Then, the collection $\tau = \{0_N, 1_N, W, E, Z\}$ forms a neutrosophic topology on \hat{G} . Here, $0_N, 1_N, W, E, Z$ are NOSs in (\hat{G}, τ) , and their complements $1_N, 0_N, W^c = \{(p,0.3,0.5,0.3), (q,0.5,0.9,0.5): p, q \in \hat{G}\}$, $E^c = \{(p,0.4,0.1,0.2), (q,0.5,0.7,0.2): p, q \in \hat{G}\}$ and $Z = \{(p,0.5,0.0,0.2), (q,0.6,0.6,0.1): p, q \in \hat{G}\}$ are NCSs in (\hat{G}, τ) .

The neutrosophic interior and neutrosophic closure of an N-set are defined as follows:

Definition 2.7.[22] Assume that τ be an N-T on \hat{G} . Suppose that W be an N-set over \hat{G} . Then,

- (*i*) neutrosophic interior (in short N_{int}) of W is the union of all N-O-sets in (\hat{G} , τ) those are contained in W, i.e., $N_{int}(W) = \bigcup \{E : E \text{ is an N-O-set in } \hat{G} \text{ such that } E \subseteq W\};$
- (*ii*) neutrosophic closure (in short N_{cl}) of W is the intersection of all N-C-sets in (\hat{G}, τ) those containing W, i.e., $N_{cl}(W) = \bigcap \{F : F \text{ is an N-C-set in } \hat{G} \text{ such that } W \subseteq F\}$.

Clearly $N_{int}(W)$ is the largest N-O-set contained in W, and $N_{cl}(W)$ is the smallest N-C-set containing W.

Example 2.6. Suppose that (\hat{G}, τ) be an NT-space as shown in **Example 2.5.** Suppose that $U=\{(p,0.5,0.5,0.7), (q,0.5,0.7,0.8)\}$ be an N-set over \hat{G} . Then, $N_{int}(U)=0_N$ and $N_{cl}(U)=\{(p,0.5,0.0,0.2), (q,0.6,0.6,0.1)\}$.

Proposition 2.1.[22] For any N-set *B* in (\hat{G}, τ) , we have the following:

- (i) $N_{int}(B^c) = (N_{cl}(B))^c$;
- (ii) $N_{cl}(B^c) = (N_{int}(B))^c$.

Definition 2.2.[21] Suppose that (\hat{G}, τ) be an N-T-space, and W be an N-set over \hat{G} . Then, W is called (*i*) NSO-set if and only if $W \subseteq N_{cl}(N_{int}(W))$;

(ii) NPO-set if and only if $W \subseteq N_{int}(N_{cl}(W))$.

The collection of all NSO sets and NPO sets in (\hat{G}, τ) are denoted by NSO (τ) and NPO (τ) .

Example 2.7. Suppose that $\hat{G}=\{a, b\}$ be a fixed set. Clearly, (\hat{G}, τ) is an NT-space, where $\tau=\{0_N, 1_N, \{(a, 0.3, 0.3, 0.4), (b, 0.4, 0.4, 0.4, 0.3): a, b \in \hat{G}\}$. Then, the N-set $Q=\{(a, 0.6, 0.1, 0.4), (b, 0.9, 0.2, 0.1): a, b \in \hat{G}\}$ is an NSO set, and $P=\{(a, 0.3, 0.2, 0.9), (b, 0.3, 0.3, 0.4): a, b \in \hat{G}\}$ is an NPO set in (\hat{G}, τ) .

Definition 2.8.[2] Assume that (\hat{G}, τ) be an N-T-space. Then W, an N-set over \hat{G} is called an neutrosophic b-open set (in short N-b-O-set) in (\hat{G}, τ) if and only if $W \subseteq N_{int}(N_{cl}(W)) \cup N_{cl}(N_{int}(W))$.

An N-set G is called an neutrosophic b-closed set (in short N-b-C-set) in (\hat{G} , τ) if and only if its complement is an N-b-O-set in (\hat{G} , τ). The collection of all neutrosophic b-open sets in (\hat{G} , τ) is denoted by N-b-O(τ).

Example 2.8. Suppose that (\hat{G}, τ) be an NT-space as shown in **Example 2.7**. Then, the neutrosophic set $P=\{(a,0.3,0.2,0.9), (b,0.3,0.3,0.4): a, b \in \hat{G}\}$ is an neutrosophic b-open set in (\hat{G}, τ) .

3. Minimal Structure in Neutrosophic Topological Space

In this section, we procure the notions of M-structure and grill in N-T-space.

Definition 3.1. A family M of neutrosophic subsets of \hat{G} i.e., $M \subset P(\hat{G})$, where $P(\hat{G})$ is the collection of all N-sets defined over \hat{G} is said to be a M-structure on \hat{G} if 0_N and 1_N belong to M. By (\hat{G}, M) , we denote the neutrosophic minimal space (in short N-M-space). The members of M are called neutrosophic minimal-open (in short N-m-O) subset of \hat{G} .

Example 3.1. Let W, E and Z be three neutrosophic sets over a fixed set $\hat{G}=\{b,c\}$ such that:

 $W=\{(b,0.7,0.5,0.7), (c,0.5,0.1,0.5): b, c \in \hat{G}\};$

 $E=\{(b,0.6,0.9,0.8), (c,0.5,0.3,0.8): b, c \in \hat{G}\};$

 $Z=\{(b,0.5,1.0,0.8), (c,0.4,0.4,0.9): b, c \in \hat{G}\}.$

Clearly, the collection $M=\{0_N, 1_N, W, E, Z\}$ forms a neutrosophic minimal structure on \hat{G} , and the pair (\hat{G}, M) is a neutrosophic minimal structure space.

Definition 3.2. The complement of N-m-O set W is an neutrosophic m-closed set (in short N-m-C set) in (\hat{G}, M) .

Example 3.2. Let us consider a neutrosophic minimal structure space as shown in Example 3.1. Here, 0_N , 1_N , W, E, Z are neutrosophic minimal open sets in (\hat{G}, M) , and $(0_N)^c = 1_N$, $(1_N)^c = 0_N$, $W^c =$

 $\{(b,0.3,0.5,0.3), (c,0.5,0.9,0.5)\}, E^c = \{(b,0.4,0.1,0.2), (c,0.5,0.7,0.2)\}, Z^c = \{(b,0.5,0.0,0.2), (c,0.6,0.6,0.1)\}$ are neutrosophic minimal closed sets in (\hat{G}, M) .

Example 3.3. From the above definitions, it is clear that NPO-sets, NSO-sets, N- α -O-sets, N-b-O-sets are N-m-O sets.

Example 3.4. Let W, E and Z be three neutrosophic sets over a non-empty set $\hat{G} = \{b, c\}$ such that:

 $W=\{(b,0.7,0.5,0.7), (c,0.5,0.5,0.1): b, c \in X\};$

 $E = \{(b, 0.6, 0.8, 0.9), \, (c, 0.5, 0.8, 0.3) : b, \, c \in X\};$

 $Z=\{(b,0.5,0.8,1.0), (c,0.4,0.9,0.4): b, c \in X\}.$

Here, the family τ ={0 $_N$, 1 $_N$, W, E, Z} forms a neutrosophic topology on X, and so (\hat{G} , τ) is a neutrosophic topological space. Suppose $M = \tau \cup NPO(\tau) \cup NSO(\tau) \cup N-b-O(\tau)$, then (\hat{G} , M) is a neutrosophic minimal structure. Now, from the above it is clear that, every neutrosophic pre-open sets, neutrosophic semi-open sets, neutrosophic b-open sets in (\hat{G} , τ) are neutrosophic m-open sets in (\hat{G} , τ).

Remark 3.1. We can define neutrosophic minimal interior (in short N_{mint}), neutrosophic minimal closure (in short N_{mel}) etc. in an N-M-space as we have define in the previous section.

Example 3.5. Suppose that (\hat{G}, M) be a neutrosophic minimal structure space as shown in Example 3.1. Then, the neutrosophic minimal interior of $D=\{(b,0.2,0.6,0.4), (c,0.4,0.9,0.7)\}$ is $N_{m-int}(D)=\{(b,0.1,1), (c,0.1,1)\}$, and the neutrosophic minimal closure of $D=\{(b,0.2,0.6,0.4), (c,0.4,0.9,0.7)\}$ is $N_{m-cl}(D)=\{(b,0.3,0.5,0.3), (c,0.5,0.9,0.5)\}$ respectively.

In view of the definitions given in this article, we state the following result without proof.

Theorem 3.1. Suppose that (\hat{G}, M) be an N-M-space. Then, for any N-sets S and R over \hat{G} , the following holds:

- (i) $(N_{mcl}(S))^c = N_{mcl}(S^c)$ and $(N_{mint}(S))^c = N_{mcl}(S^c)$.
- (ii) $N_{mcl}(S)$ =S if and only if S is an N-m-C set in (\hat{G}, M) .
- (iii) $N_{mint}(S)$ =S if and only if S is an N-m-O set in (\hat{G}, M) .
- (*iv*) $S \subseteq R \Rightarrow N_{mcl}(S) \subseteq N_{mcl}(R)$ and $N_{mint}(S) \subseteq N_{mint}(R)$.
- (v) $S \subseteq N_{mcl}(S)$ and $N_{mint}(S) \subseteq S$.
- (vi) $N_{mcl}(N_{mcl}(S))=N_{mcl}(S)$ and $N_{mint}(N_{mint}(S))=N_{mint}(S)$.

Theorem 3.2. Assume that (\hat{G}, M) be an N-M-space. Suppose that M satisfies the property B. Then, for an neutrosophic subset S of \hat{G} , the followings hold:

- (i) $S \in M$ if and only if $N_{mint}(S)=A$.
- (ii) S is N-m-C set if and only if $N_{mcl}(S)=S$.
- (iii) $N_{mint}(S) \in M$ and $N_{mcl}(S)$ is an N-m-C set.

Definition 3.3. An N-M-structure M on a non-empty set \hat{G} is said to be have property B if the union of only family of neutrosophic subsets belonging M belongs to M.

Example 3.6. Suppose that R, E and Y be three neutrosophic sets over a fixed set \hat{G} ={b, c} such that:

 $R=\{(b,0.8,0.5,0.8), (c,0.6,0.1,0.6): b, c \in \hat{G}\};$

 $E=\{(b,0.7,0.9,0.9), (c,0.6,0.3,0.9): b, c \in \hat{G}\};$

 $Y = \{(b,0.6,1.0,0.9), (c,0.5,0.4,1.0): b, c \in \hat{G}\}.$

Here, the collection $M=\{0_N, 1_N, R, E, Y\}$ forms a N-M-structure on \hat{G} , and so the pair (\hat{G}, M) is a neutrosophic minimal structure space. Clearly, the N-M-structure on \hat{G} satisfied the property B which was stated in Definition 3.3.

Definition 3.4. An N-M-structure (\hat{G} , M) satisfies the property J if the finite intersection of N-m-O sets is an N-m-O set.

Example 3.7. Let us consider a N-M-structure M on \hat{G} as shown in Example 3.6. Clearly, the N-M-structure M on \hat{G} satisfied the property j which was stated in Definition 3.4.

Remark 3.2. If a N-M-structure M on \hat{G} is a neutrosophic topology on \hat{G} , then M satisfied the property j which was stated in Definition 3.4.

Definition 3.5. A family G ($0_N \notin G$) of N-sets over \hat{G} is called a grill on \hat{G} if G satisfies the following condition:

- (i) $S \in G$ and $S \subseteq R \Rightarrow R \in G$;
- (ii) $S, R \subseteq \hat{G}$ and $S \cup R \in G \Rightarrow S \in G$ or $R \in G$.

Example 3.8. Suppose that $\hat{G} = \{b, c\}$ be a fixed set. Then, the collection M= $\{1_N, \{(b,0.9,0.0,0.0), (c,0.9,0.0,0.0)\}, \{(b,0.8,0.0,0.0,0.0), (c,0.8,0.0,0.0)\}$ forms a grill on \hat{G} .

Remark 3.3. Since $0_N \notin G$, so G is not a N-M-structure on \hat{G} . An N-M-structure with a grill is called as a neutrosophic grill minimal space (in short N-G-M-space), denoted by (\hat{G}, M, G) .

4. ()*-Operator on Neutrosophic Minimal Structure:

Definition 4.1. Suppose that (\hat{G}, M, G) be an N-G-M-space. A function $()^{*m}$: $P(\hat{G}) \to P(\hat{G})$ called as neutrosophic minimal local function (N-M-L-function) is defined by

()*m ={
$$x \in \hat{G}$$
: $S \cap U \in M$, for all $U \in M(x)$ }.

Now we discuss about some properties of the neutrosophic minimal local function ()* *m in (\hat{G} , M, G).

Definition 4.2. Assume that (\hat{G}, M, G) be a N-G-M-space. Then, the boundary of a N-set S over \hat{G} is defined by $(\partial S)^{*m} = (S)^{*m} \cap (S^c)^{*m}$.

We state the following two results without prove in view of the above definitions.

Proposition 4.1. Suppose that (\hat{G}, M, G) be a N-G-M-space. Then, the following holds:

- (i) $(0_N)^{*m} = 0_N$;
- (ii) (S)*m = 0_N , if $S \notin G$;
- (iii) $(S)^{*mP} \subseteq (S)^{*mQ}$, where P and Q are neutrosophic grill on \hat{G} with $P \subseteq Q$.

Proposition 4.2. Suppose that $P(\hat{G})$ be the collection of all neutrosophic sets defined over \hat{G} . Assume that (\hat{G}, M, G) be a N-G-M-space. Then, for $S \in P(\hat{G})$,

- (i) $(S)^{*m} = S \cup (\partial S)^{*m}$;
- (ii) $(S)^{*m} = \bigcap_{n \in \Delta} F_n$, where $\{F_n\}_{n \in \Delta}$ is the collection of all ()*m-closed sets in (\hat{G} , M, G).

Theorem 4.1. Assume that (\hat{G}, M, G) be a N-G-M-space. Then, the following holds:

- (i) $S, R \in P(\hat{G})$ and $S \subseteq R \Rightarrow (S)^{*m} \subseteq (R)^{*m}$;
- (ii) For $S \subseteq \hat{G}$, $N_{mcl}(S)^{*m} \subseteq (S)^{*m}$;
- (iii) For $S \subseteq \hat{G}$, $(S)^{*m}$ is a N-m-C set;
- (*iv*) For $S \subseteq \hat{G}$, $(S)^{* m} \subseteq N_{mcl}(S)$;
- (v) For $S \subseteq \hat{G}$, $[(S)^{*m}]^{*m} \subseteq (S)^{*m}$.

Proof. (*i*) Assume that $S \subseteq R$ and $x \in (S)^*m$. Then, for all $U \in M$, we have by definition, that $U \cap S \in G$.

Thus by definition of neutrosophic grill we have $U \cap R \in G$. Hence, $x \in (R)^{*_m}$. Therefore, $(S)^{*_m} \subseteq (R)^{*_m}$.

- (ii) Assume that $x \notin N_{mcl}(S)$, for some $S \in \hat{G}$. Then by a known result there exists an $U_x \in M$ such that $U_x \cap S = 0_N \notin G$. Therefore, $x \notin (S)^{*_m}$. Hence, we have $(S)^{*_m} \subseteq N_{mcl}(S)$.
- (iii) Assume that $x \in N_{mcl}(S)^{*m}$ and $U \in M(x)$, then $U \cap (S)^{*m} \neq 0_N$. Next, let $y \in U \cap (S)^{*m}$. Then, we have $y \in U$ and $y \in (S)^{*m}$. Therefore, $U \cap S \in G$, which implies $x \in (S)^{*m}$.

Thus, we have $N_{mcl}(S)^{*_m} \subseteq (S)^{*_m}$.

(iv) Suppose that $S \in P(\hat{G})$. Then, we have $(S)^{*_m} \subseteq N_{mcl}(S)^{*_m}$ and $N_{mcl}(S)^{*_m} = (S)^{*_m}$. Thus, we have for any $(S)^{*_m} = N_{mcl}(S)^{*_m}$, since $N_{mcl}(S)^{*_m}$ is an N-m-C set, so $(S)^{*_m}$ is an N-m-C set.

(v) Suppose that $S \in P(\hat{G})$. Then from (iv) we have $N_{mcl}(S)^{*m} \subseteq (S)^{*m}$. Further on considering $(S)^{*m}$ is place of S, from (vi) we have $((S)^{*m})^{*m} \subseteq N_{mcl}(S)^{*m}$. Hence, from these two inclusion we have $((S)^{*m})^{*m} \subseteq (S)^{*m}$.

Theorem 4.2. Assume that (\hat{G}, M, G) be a N-G-M-space. Suppose that (\hat{G}, M) satisfies the property J. Then, the following holds:

(*i*)
$$(S \cup R)^{*m} = (S)^{*m} \cup (R)^{*m}$$
, for $S, R \subseteq M$;

(ii)
$$(S \cap R)^{*_m} \subseteq (S)^{*_m} \cap (R)^{*_m}$$
, for $S, R \subseteq M$.

Proof. (*i*) We have $S \subseteq S \cup R$, $R \subseteq S \cup R$. Thus, we have $(S)^{*_m} \subseteq (S \cup R)^{*_m}$ and $(R)^{*_m} \subseteq (S \cup R)^{*_m}$. This implies, $(S)^{*_m} \cup (R)^{*_m} \subseteq (S \cup R)^{*_m}$ (1)

Suppose that $x \notin (S)^{*m} \cup (R)^{*m}$. Therefore there exists U_1 , $U_2 \in M(x)$ such that $U_1 \cap S \notin G$, $U_2 \cap R \notin G$. This implies, $(U_1 \cap S) \cup (U_2 \cap R) \notin G$.

Now, U_1 , $U_2 \in M(x) \Rightarrow U_1 \cap U_2 \in M(x)$ and $(S \cup R) \cap (U_1 \cap U_2) \subseteq (U_1 \cap S) \cup (U_2 \cap R) \notin G$.

Therefore,
$$x \notin (S \cup R)^{*m}$$
. Thus, we have $(S \cup R)^{*m} \subseteq (S)^{*m} \cup (R)^{*m}$ (2)

From (1) and (2) we have, $(S \cup R)^{*m} = (S)^{*m} \cup (R)^{*m}$.

(ii) We have $S \cap R \subseteq S$ and $S \cap R \subseteq R$. This implies, $(S \cap R)^{*m} \subseteq (S)^{*m}$ and $(S \cap R)^{*m} \subseteq (R)^{*m}$. Therefore, $(S \cap R)^{*m} \subseteq (S)^{*m} \cap (R)^{*m}$.

Theorem 4.3. Suppose that (\hat{G}, M, G) be a N-G-M-space. Assume that (\hat{G}, M) satisfies the property J. Then, the following holds:

- (i) For $W \subseteq M$ and $S \subseteq \hat{G}$, $W \cap (S)^{*_m} = W \cap (W \cap S)^{*_m}$;
- (ii) For S, $R \subseteq \hat{G}$, $[(S)^{*m} \setminus (R)^{*m}] = [(S \setminus R)^{*m} \setminus (R)^{*m}]$;
- (iii) For S, $R \subseteq \hat{G}$, with $R \notin G$. $(S \cup R)^{*m} = (S)^{*m} = (S \setminus R)^{*m}$.

Proof. (*i*) It is known that $(W \cap S) \subseteq S$.

Now, $(W \cap S) \subseteq S$

$$\Rightarrow (W \cap S)^{*_m} \subset (S)^{*_m}$$

$$\Rightarrow W \cap (W \cap (S))^{*_{m}} \subseteq W \cap (S))^{*_{m}} \tag{3}$$

Assume that $x \in W \cap (S)^{*m}$ and $V \in M(x)$.

Then, we have $W \cap V \in M(x)$ and $x \in (S)^{*m}$ implies $(W \cap V) \cap S \in G$.

Thus, $(W \cap S) \cap V \in G$. Thus, we have $x \in (W \cap S)^{*m}$, which implies $x \in W \cap (W \cap S)^{*m}$.

Hence,
$$(W \cap S)^{*m} \subseteq W \cap (W \cap S)^{*m}$$
 (4)

From (3) and (4), we have $W \cap (S)^{*m} = W \cap (W \cap S)^{*m}$.

(ii) We have,

$$(S)^{*m} = [(S \setminus R) \cup (S \cap R)]^{*m}$$

$$= (S \setminus R)^{*m} \cup (S \cap R)^{*m} \quad \text{[by part (i)]}$$

$$\subset [(S \setminus R)^{*m} \cup (R)^{*m}].$$

Thus, we have $[(S)^{*_m} \setminus (R)^{*_m}] \subseteq [(S \setminus R)^{*_m} \cup (R)^{*_m}]$.

We have, $S \setminus R \subseteq S \Rightarrow (S \setminus R)^{*m} \subseteq (S)^{*m}$. This implies, $[(S \setminus R)^{*m} \setminus (R)^{*m}] \subseteq [(S)^{*m} \setminus (R)^{*m}]$.

Hence, we have $[(S)^{*m} \setminus (R)^{*m}] = [(S \setminus R)^{*m} \setminus (R)^{*m}].$

(iii) By Theorem 4.4 (i), we have for S, $R \subseteq \hat{G}$, $(S \cup R)^{*m} = (S)^{*m} \cup (R)^{*m}$.

Further the earlier result we have $R \notin G$ implies $(R)^{*m} = 0_N$, so $(S)^{*m} \cup (R)^{*m} = (S)^{*m}$.

We have, $S \setminus R \subseteq S \Rightarrow (S \setminus R)^{*_m} \subseteq (S)^{*_m}$, by part (iii) we have,

$$[(S)^{*m} \setminus (R)^{*m}] \subseteq (S \setminus R)^{*m}$$
, since $(R)^{*m} = 0_N$ implies $(S)^{*m} \subseteq (S \setminus R)^{*m}$.

Thus, we have $(S)^{*m} = (S \setminus R)^{*m}$.

Definition 4.3. Suppose that (\hat{G}, M, G) be an N-G-M-space. Then, the mapping N_{clmG} : $P(\hat{G}) \rightarrow P(\hat{G})$ is define by $N_{clmG}(S) = S \cup (S)^{*m}$, for all $S \in P(\hat{G})$.

Theorem 4.4. The mapping N_{clmG} : $P(\hat{G}) \rightarrow P(\hat{G})$ satisfies the Kuratowski closure axioms.

Proof. We have, $N_{clmG}(0_N) = 0_N \cup (0_N)^{*_m} = 0_N \cup 0_N = 0_N$. By the definition of N_{clmG} , we have for all $S \in P(\hat{G})$, $N_{clmG}(S) = S \cup (S)^{*_m} \supseteq S$.

Further, we have

$$\begin{aligned} N_{clmG}(S \cup R) &= (S \cup R) \cup (S \cup R)^{*_{m}} \\ &= ((S \cup R) \cup ((S)^{*_{m}} \cup (R)^{*_{m}}) \\ &= (S \cup (S)^{*_{m}}) \cup (R \cup (R)^{*_{m}}) = N_{clmG}(S) \cup N_{clmG}(R). \end{aligned}$$
 [by Theorem 4.3]

Suppose that $S \in P(\hat{G})$. Then, we have

$$N_{clmG}(N_{clmG}(S)) = N_{clmG}(S \cup (S)^{*m})$$

$$= [(S \cup (S)^{*m})] \cup [(S \cup (S)^{*m}]^{*m}$$

$$= [(S \cup (S)^{*m})] \cup [(S)^{*m} \cup ((S)^{*m})^{*m}]$$
 [by Theorem 4.3]
$$= S \cup (S)^{*m}$$

Hence, the mapping N_{clmG} satisfies the Kuratowski closure axioms.

5. Conclusions: In this article, we have introduced the notion of minimal structure and grill via N-T-spaces. Besides, we have established its relation with some existing notions on several types of open sets via N-T-spaces, and investigated some basic properties of the class of minimal structures and grill via N-T-spaces. Further, we have furnished some suitable examples on minimal structures and grill via N-T-spaces. In the future, it is hoped that the notion of minimal structures and grill on N-T-spaces can also be applied in neutrosophic supra topological space [5], quadripartitioned neutrosophic topological space [12], neutrosophic bitopological space [18], neutrosophic tri-topological space [10], neutrosophic soft topological space [9], neutrosophic multiset topological space [14], multiset mixed topological space [4], etc.

References:

- 1. Alimohammady, S., & Roohi, M. (2006). Fuzzy minimal structure and fuzzy minimal vector space. *Chaos, Solotons & Fractals*, 27, 599-605.
- 2. Arokiarani, I., Dhavaseelan, R., Jafari S., & Parimala M. (2017). On some new notations and functions in neutrosophic topological spaces. *Neutrosophic Sets Systems*, 16, 16-19.
- 3. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96.
- 4. Tripathy, B.C., & Das, R. (In Press). Multiset Mixed Topological Space. *Transactions of A. Razmadze Mathematical Institute*.
- 5. Das, S. (2021). Neutrosophic Supra Simply Open Set and Neutrosophic Supra Simply Compact Space. *Neutrosophic Sets and Systems*, 43, 105-113. DOI: 10.5281/zenodo.4914821
- 6. Das, S., Das, R., & Granados, C. (2021). Topology on Quadripartitioned Neutrosophic Sets. *Neutrosophic Sets and Systems*, 45, 54-61.
- 7. Das, S., & Pramanik, S. (2020). Generalized neutrosophic *b*-open sets in neutrosophic topological space. *Neutrosophic Sets and Systems*, 35, 522-530.
- 8. Das, S., & Pramanik, S. (2020). Neutrosophic Φ-open sets and neutrosophic Φ-continuous functions. *Neutrosophic Sets and Systems*, 38, 355-367.
- 9. Das, S., & Pramanik, S. (2020). Neutrosophic simply soft open set in neutrosophic soft topological space. *Neutrosophic Sets and Systems*, 38, 235-243.
- 10. Das, S., & Pramanik, S. (2021). Neutrosophic Tri-Topological Space. *Neutrosophic Sets and Systems*, 45, 366-377.
- 11. Das, S., & Tripathy, B.C. (In Press). Neutrosophic simply *b*-open set in neutrosophic topological spaces. *Iraqi Journal of Science*.
- 12. Das, S., & Tripathy, B.C. (2021). Pentapartitioned Neutrosophic Topological Space. *Neutrosophic Sets and Systems*, 45, 121-132.
- 13. Das, S., & Tripathy, B.C. (2020). Pairwise neutrosophic-b-open set in neutrosophic bitopological spaces. *Neutrosophic Sets and Systems*, 38, 135-144.
- 14. Das R., & Tripathy, B.C. (2020). Neutrosophic multiset topological space. *Neutrosophic Sets and Systems*, 35, 142-152.
- 15. Iswarya, P., & Bageerathi, K. (2016). On Neutrosophic semi-open sets in Neutrosophic topological spaces. *Internat. Jour. Math Trends Tech.*, 37(3), 214-223.
- 16. Makai, H., Umehara, J., & Noiri, T. (1996). Every J topological space is pre T_{1/2}. *Mem Fac Sci Kochi Univ Ser Math.*, 12, 33-42.
- 17. Modak, S. (2017). Minimal spaces with a mathematical structure. *Jour Assoc Arab Univ Basic Appl Sc.*, 22, 98-101.

- 18. Ozturk, T.Y., & Ozkan, A. (2019). Neutrosophic Bitopological Spaces. *Neutrosophic Sets and Systems*, 30, 88-97.
- 19. Parimala, M., Karthika, M., Jafari, S., Smarandache, F., & Udhayakumar, R. (2019). Neutrosophic Nano ideal topological structure. *Neutrosophic Sets and Systems*, 24, 70-76.
- 20. Parimala, M., Jeevitha, R., Jafari, S., Smarandache, F., & Udhayakumar, R. (2018). Neutrosophic $\alpha\psi$ -Homeomorphism in Neutrosophic Topological Spaces. *Information*, 9, 187; doi:10.3390/info9080187
- 21. Rao, V.V., & Srinivasa R. (2017). Neutrosophic pre-open sets and pre-closed sets in Neutrosophic topology. *Internat Jour Chem Tech Research*, 10(10), 449-458.
- 22. Salama, A.A., & Alblowi, S.A. (2012). Neutrosophic set and neutrosophic topological space. *ISOR Journal of Mathematics*, 3(4), 31-35.
- 23. Salama, A.A., & Alblowi, S.A. (2012). Generalized neutrosophic set and generalized neutrosophic topological space. *Comp. Sci. Engg.*, 21, 29-132.
- 24. Smarandache, F. (2005). Neutrosophic set: a generalization of the intuitionistic fuzzy sets. *Inter J Pure Appl Math.*, 24, 287-297.
- 25. Tripathy, B.C., & Das, S. (2021). Pairwise Neutrosophic *b*-Continuous Function in Neutrosophic Bitopological Spaces. *Neutrosophic Sets and Systems*, 43, 82-92.
- 26. Tripathy, B.C., & Debnath, S. (2013). γ -open sets and γ -continuous mappings in fuzzy bitopological spaces. *Journal of Intelligent and Fuzzy Systems*, 24(3), 631-635.
- 27. Tripathy, B.C., & Debnath, S. (2019). Fuzzy m-structures, m-open multifunctions and bitopological spaces. *Boletim da Sociedade Paranaense de Matemática*, 37(4), 119-128.
- 28. Tripathy, B.C., & Sarma, D.J. (2011). On *b*-locally open sets in bitopological spaces. *Kyungpook Math J.*, 51(4), 429-433.
- 29. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338-353.

Received: June 29, 2022. Accepted: September 20, 2022.