E-Super Arithmetic Graceful Labelling of Some Special Classes of Cubic Graphs Related to Cycles

Anubala Sekar

Research Scholar, Department of Mathematics and Research Centre Mannar Thirumalai Naicker College, Madurai, Tamil Nadu, India

V.Ramachandran

Department of Mathematics, Mannar Thirumalai Naicker College, Madurai, Tamil Nadu, India E-mail: anubala.ias@gmail.com, me.ram111@gmail.com

Abstract: We introduce a new concept called E-Super arithmetic graceful graphs.A (p,q) - graph G is said to be E-Super arithmetic graceful if there exists a bijection f from $V(G) \cup E(G)$ to $\{1,2,\cdots,p+q\}$ such that $f(E(G)) = \{1,2,\cdots,q\}, \ f(V(G)) = \{q+1,q+2,\cdots,q+p\}$ and the induced mapping f^* given by $f^*(uv) = f(u) + f(v) - f(uv)$ for $uv \in E(G)$ has the range $\{p+q+1,p+q+2,\cdots,p+2q\}$. In this paper we prove that $W(C_n), D(C_{2n}), \ D_1(C_{2n}), \ D_2(C_{4n})$ are E-Super arithmetic graceful.

Key Words: E-Super arithmetic graceful graph, Smarandachely edge magic, $W(C_n)$, $D(C_{2n})$, $D_1(C_{2n})$, $D_2(C_{4n})$.

AMS(2010): 05C78.

§1. Introduction

Acharya and Hegde [1] have defined (k, d) – arithmetic graphs. Let G be a graph with q edges and let k and d be positive integers. A labelling f of G is said to be (k, d) – arithmetic if the vertex labels are distinct nonnegative integers and the edge labels induced by f(x) + f(y) for each edge xy are $k, k + d, k + 2d, \dots, k + (q-1)d$. The case where k = 1 and d = 1 was called additively graceful by Hegde [3].

A labelling of G(V, E) is said to be E-Super if $f(E(G)) = \{1, 2, 3, \dots, |E(G)|\}$. A labelling of G(V, E) is said to be E-Super if $f(E(G)) = \{1, 2, 3, \dots, |E(G)|\}$. Marimuthu and Balakrishnan [5] defined a graph G(V, E) to be edge magic graceful if there exists a bijection f from $V(G) \cup E(G)$ to $\{1, 2, \dots, p+q\}$ such that |f(u)+f(v)-f(uv)| is a constant for all edges uv of G. Otherwise, it is said to be S marandachely edge magic, i.e., $|\{|f(u)+f(v)-f(uv)|, uv \in E(G)\}| \geq 2$.

We introduce a new concept called E-Super arithmetic graceful graphs. We define a graph G(p,q) to be E-Super arithmetic graceful if there exists a bijection f from $V(G) \cup E(G)$ to $\{1,2,\cdots,p+q\}$ such that $f(E(G))=\{1,2,\cdots,q\},\ f(V(G))=\{q+1,q+2,\cdots,q+p\}$ and the induced mapping f^* given by $f^*(uv)=f(u)+f(v)-f(uv)$ for $uv\in E(G)$ has the range $\{p+q+1,p+q+2,\cdots,p+2q\}$. In this paper, we prove that graphs $W(C_n),D(C_{2n}),\ D_1(C_{2n}),\ D_2(C_{4n})$ are E-Super arithmetic graceful.

¹Received June 14, 2020, Accepted November 29, 2020.

§2. Preliminaries

Definition 2.1 Let C_n denote the cycle for $n \geq 3$. Let $W(C_n)$ denote the graph with vertices $\{u_1, u_2, \cdots, u_n\}$ and $\{v_1, v_2, \cdots, v_n\}$ and edges $\{u_i u_{i+1}\}, \{u_i v_i\}$ and $\{v_i v_{i+1}\}$ where addition is modulo n.

 $W(C_n)$ is a cubic graph.

Illustration 2.1 The cubic graph $W(C_4)$ is shown in Fig.2.1.

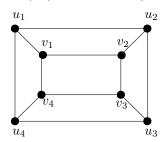


Fig.2.1

Definition 2.2 Let C_{2n} , $n \geq 2$ denote the even cycle with 2n vertices $\{u_1, u_2, \cdots, u_{2n}\}$. By drawing n diagonals suitably we obtain cubic graphs related to even cycles. $D(C_{2n})$ denotes the cubic graph with vertices $\{u_1, u_2, \cdots, u_{2n}\}$ and edges $\{u_i u_{i+1} | i = 1, 2, \cdots, 2n, \text{ where } u_{2n+1} = u_1\}$ and $\{u_i u_{n+i} | i = 1, 2, \cdots, n\}$, $D(C_{2n})$ has 2n vertices and 3n edges. Particularly, $D(C_4)$ is the complete graph K_4 .

Illustration 2.2 The cubic graph $D(C_8)$ is shown in Fig.2.2.

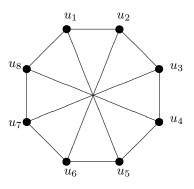


Fig.2.2

Definition 2.3 $D_1(C_{2n})$ denotes the cubic graph with vertices $\{u_1, u_2, \dots, u_{2n}\}$ and edges $\{u_i u_{i+1} | i = 1, 2, \dots, 2n \text{ where } u_{2n+1} = u_1\}$, $u_1 u_{n+1}$ and $\{u_i u_{2n+2-i} | i = 2, 3, \dots, n\}$. $D_1(C_{2n})$ is a cubic graph with 2n vertices and 3n edges.

Illustration 2.3 The cubic graph $D_1(C_6)$ is shown in Fig.2.3.

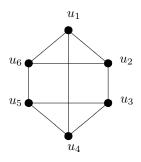


Fig.2.3

Definition 2.4 $D_2(C_{4n})$ denotes the cubic graph with vertices $\{u_1, u_2, \dots, u_{4n}\}$ and edges $\{u_i u_{i+1} | i = 1, 2, \dots, 4n \text{ where } u_{n+1} = u_1\}, \{u_i u_{3n+1+i} | i = 1, 2, \dots, n\}$ and $\{u_i u_{5n+1-i} | i = n+1, n+2, \dots, 2n\}$. $D_2(C_{4n})$ has 4n vertices and 6n edges.

Illustration 2.4 The cubic graph $D_2(C_{12})$ is shown in Fig.2.4.

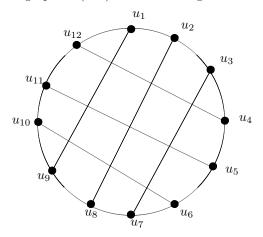


Fig.2.4

§3. Main Results

Theorem 3.1 $W(C_n)$ is E-Super arithmetic graceful for all $n \geq 3$.

Proof $W(C_n)$ has 2n vertices and 3n edges. Define $f: V \cup E \longrightarrow \{1, 2, ..., 5n\}$ as follows:

$$f(u_i) = 3n + i, \quad i = 1, 2, \dots, n,$$

 $f(v_i) = 4n + i, \quad i = 1, 2, \dots, n,$

 $f(u_i u_{i+1}) = n + i, \quad i = 1, 2, \dots, n \text{ where } u_{n+1} = u_1,$

 $f(u_i v_i) = i, \quad i = 1, 2, \cdots, n,$

 $f(v_i v_{i+1}) = 2n + i, \quad i = 1, 2, \dots, n \text{ where } v_{n+1} = v_1.$

Clearly, f is a bijection and $f^*(E(W(C_n))) = \{5n+1, \cdots, 8n\}$. Therefore, $W(C_n)$ is E-Super arithmetic graceful for $n \geq 3$.

Example 3.2 A E-Super arithmetic graceful labelling of $W(C_5)$ is shown in Fig.3.1.

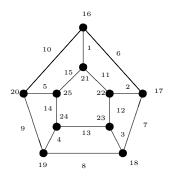


Fig.3.1

Theorem 3.3 $D(C_{2n})$ is E-Super arithmetic graceful for all $n \geq 2$.

Proof Let $\{u_1, u_2, \dots, u_{2n}\}$ be the vertices of $D(C_n)$. Define $f: V \cup E \longrightarrow \{1, 2, \dots, 5n\}$ as follows:

$$f(u_i) = 3n + i, \quad i = 1, 2, \dots, 2n,$$

 $f(u_i u_{i+1}) = i, \quad i = 1, 2, \dots, 2n \text{ where } u_{2n+1} = u_1,$
 $f(u_i u_{n+i}) = 2n + i, \quad i = 1, 2, \dots, n.$

Clearly, f is a bijection and $f^*(E(D(C_{2n}))) = \{5n+1, \cdots, 8n\}$. Therefore $D(C_{2n})$ is E-Super arithmetic graceful for $n \geq 2$.

Example 3.4 An E-Super arithmetic graceful labelling of $D(C_6)$ is shown in Fig.3.2.

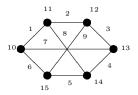


Fig.3.2

Theorem 3.5 $D_1(C_{2n})$ for $n \geq 3$ is E-Super arithmetic graceful.

Proof Let u_1, u_2, \dots, u_{2n} be the vertices of $D_1(C_{2n})$. Define $f: V \cup E \longrightarrow \{1, 2, \dots, 5n\}$ as follows:

$$f(u_i) = 3n + i, \quad i = 1, 2, \dots, 2n,$$

 $f(u_i u_{i+1}) = i, \quad i = 1, 2, \dots, 2n \text{ where } u_{2n+1} = u_1,$
 $f(u_1 u_{n+1}) = 2n + 1,$
 $f(u_i u_{2n+2-i}) = 2n + i, \quad i = 2, 3, \dots, n.$
Clearly, f is a bijection and

$$f^*(E(D_1(C_{2n}))) = \{5n+1, \cdots, 8n\}.$$

Therefore, $E(D_1(C_{2n}))$ is E-Super arithmetic graceful for $n \geq 3$.

Example 3.6 An E-Super arithmetic graceful labelling of $D_1(C_8)$ is shown in Fig.3.3.

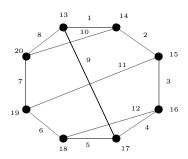


Fig.3.3

Theorem 3.7 $D_2(C_{4n})$ for $n \ge 2$ is E-Super arithmetic graceful.

Proof Define $f: V \cup E \longrightarrow \{1, 2, \cdots, 10n\}$ as follows:

$$f(u_i) = 6n + i, \quad i = 1, 2, \dots, 4n,$$

 $f(u_i u_{i+1}) = i$, $i = 1, 2, \dots, 4n$ where $u_{4n+1} = u_1$,

$$f(u_i u_{3n+1-i}) = 4n + i, \quad i = 1, 2, \dots, n,$$

$$f(u_i u_{5n+1-i}) = 4n+i, \quad i = n+1, \dots, 2n.$$

Clearly, f is a bijection and

$$f^*(E(D_2(C_{4n}))) = \{10n + 1, 10n + 2, \dots, 16n\}.$$

Therefore $D_2(C_{4n})$ is E-Super arithmetic graceful for $n \geq 2$.

Example 3.8 An E-Super arithmetic graceful labelling of $D_2(C_{16})$ is shown in Fig.3.4.

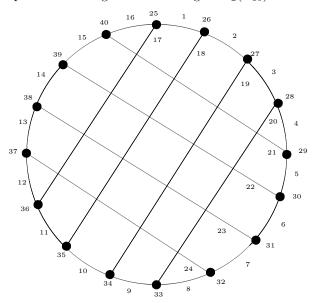


Fig.3.4

References

- [1] B.D.Acharya and S.M.Hedge, Arithmetic graphs, J. Graph Theory, 14 (1990) 275-299.
- [2] S.W.Golomb, How to number a graph, in *Graph Theory and Computing*, R.C.Reed ed., Academic press, New York(1972) 23-37.
- [3] S.M.Hedge, Additively graceful graphs, Mat. Acad, Sci. Lett., 12(1989) 387-390.
- [4] Joseph A.Gallian, A Dynamic Survey of Graph Labelling, *The Electronic Journal of combinatorics*, DS6 (2016).
- [5] A Kotzig and A.Rosa, Magic valuation of finite graphs, *Canad.Math.Bull*, 13(1970) 451-456
- [6] J.A.MacDougall, M.Miller, Slamin and W.D.Walls, Vertex magic total labelling of graphs, Util.Math.61(2002) 3-21.
- [7] G.Marimuthu and M.Balakrishnan, Super edge magic graceful graphs, *Information Sciences*, 287 (10)(2014) 140-151.
- [8] V.Ramachandran, C.Sekar, (1,N)-arithmetic graphs, *International Journal of Computers* and Applications, Vol.38 (1) (2016) 55-59.
- [9] A.Rosa, On certain valuations of the vertices of a graph, *Theory of graphs* (International Symposium, Rome, July 1966), Gordon and Breach, N.Y and Dunod Paris (1967) 349-355.