On Right Distributive Torian Algebras

Ilojide Emmanuel

(Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria)

E-mail: emmailojide@yahoo.com, ilojidee@funaab.edu.ng

Abstract: Torian algebras were introduced in [7]. In this paper, torian algebras (X; *, 0) which satisfy the condition (y * z) * x = (y * x) * (z * x) for all $x, y, z \in X$ (called right distributive torian algebras) are studied. Their properties are investigated. It is shown that every right distributive torian algebra fixes its zero element. Moreover, necessary and sufficient conditions for a torian algebra to be right distributive are also presented.

Key Words: Torian algebras, right distributivity, Smarandachely torian algebra.

AMS(2010): 20N02, 20N05, 06F35.

§1. Introduction

In recent times, the study of algebras of type (2,0) has generated interest among mathematicians. Kim and Kim, in [1] introduced the notion of BE-algebras. In [2] and [3], Ahn and So introduced the notions of ideals and upper sets in BE-algebras and investigated related properties. In [6] and [7], Ilojide introduced the notions of obic algebras and torian algebras. The notion of ideals in torian algebras was also introduced and studied in [8]. In this paper, torian algebras (X;*,0) which satisfy the condition (y*z)*x=(y*x)*(z*x) for all $x,y,z\in X$ (called right distributive torian algebras) are studied. Their properties are investigated. It is shown that every right distributive torian algebra fixes its zero element. Moreover, necessary and sufficient conditions for a torian algebra to be right distributive are also presented.

§2. Preliminaries

Definition 2.1([6]) A triple (X; *, 0); where X is a non-empty set, * a binary operation on X, and 0 a constant element of X is called an obic algebra if the following axioms hold for all $x, y, z \in X$:

- (1) x * 0 = x;
- $(2)\ [x*(y*z)]*x = x*[y*(z*x)];$
- (3) x * x = 0.

Example 2.1([6]) Consider the multiplicative group $G = \{1, -1, i, -i\}$. Define a binary operation * on G by $a*b=ab^{-1}$. Then (G;*,1) is an obic algebra.

¹Received July 13, 2020, Accepted November 27, 2020.

Lemma 2.1([6]) Let X be an obic algebra. Then for all $x, y \in X$, the following hold:

$$x * y = [x * (y * x)] * x.$$

Definition 2.2([7]) An obic algebra X is called torian if [(x*y)*(x*z)]*(z*y) = 0 for all $x, y, z \in X$. Otherwise, if there are $x, y, z \in X$, such that $[(x*y)*(x*z)]*(z*y) \neq 0$, such an obic algebra X is called Smarandachely torian.

Lemma 2.2([7]) Let X be a torian algebra. Then the following hold for all $x, y, z \in X$:

$$(x*y)*z = (x*z)*y.$$

Definition 2.3([7]) Let X be a torian algebra. An element $x \in X$ is said to fix 0 if 0 * x = 0. If every element in X fixes 0, then X is said to fix 0.

Lemma 2.3([7]) Let X be a torian algebra. Define the relation \sim on X by $x \sim y \Leftrightarrow x * y = 0$ for all $x, y \in X$. Then $(X; \sim)$ is a partially ordered set.

Lemma 2.4([8]) Let X be a torian algebra with the partial ordering \sim . Then, $[(x*y)*(z*y)] \sim (x*z)$ for all $x, y, z \in X$.

Definition 2.4([7]) A torian algebra X is called a weak property torian algebra (WPTA) if x * y = 0 and y * x = 0 imply that x = y for all $x, y \in X$.

Proposition 2.1([7]) Let X be a WPTA. Then for all $x, y, z \in X$, the following hold:

$$x * [x * (x * y)] = x * y.$$

Lemma 2.5 Let X be a torian algebra with partial ordering \sim . Then $(x*y) \sim z \Leftrightarrow (x*z) \sim y$ for all $x, y, z \in X$.

From now on, X will denote a weak property torian algebra.

§3. Main Results

Definition 3.1 Let X be a torian algebra. An element $x \in X$ is said to be right distributive in X if (y*z)*x = (y*x)*(z*x) for all $y, z \in X$.

Example 3.1 For any torian algebra X, 0 is right distributive in X.

Remark 3.1 If every element in a torian algebra X is right distributive in X, then X is said to be a right distributive torian algebra.

The following Lemma follows from definition.

Lemma 3.1 Let X be a right distributive toran algebra. Then the following hold for all

```
x, y, z \in X:
```

```
(1) (0*z)*x = (0*x)*(z*x);
(2) y*x = (y*x)*(0*x);
(3) 0*x = 0;
(4) (x*z)*x = 0*(z*x);
(5) 0*z = 0*(z*x);
(6) (y*z)*z = y*z;
(7) (y*x)*z = (y*x)*(z*x);
(8) [(0*x)*z]*x = [(0*x)*x]*(z*x);
(9) (y*x) = (y*x)*[(0*x)*x];
(10) (x*z)*x = (0*x)*(z*x);
```

(11) (0*x)*z = (0*x)*(z*x);

(12) (x*z)*x = 0.

Proposition 3.1 Let X be a right distributive torian algebra. Then the following hold for all $x, y, z \in X$:

```
 \begin{aligned} &(1)\; (0*x)*[[z*(x*z)]*z] = (0*z)*x;\\ &(2)\; [y*(x*y)]*y = [[y*(x*y)]*y]*(0*x);\\ &(3)\; [[x*(z*x)]*x]*x = 0*[[z*(x*z)]*z];\\ &(4)\; 0*z = 0*[[z*(x*z)]*z];\\ &(5)\; [[y*(z*y)]*y]*z = [y*(z*y)]*y;\\ &(6)\; [[y*(x*y)]*y]*z = [[y*(x*y)]*y]*[z*(x*z)]*z;\\ &(7)\; [(0*x)*x]*[[z*(x*z)]*z] = [(0*x)*z]*x;\\ &(8)\; [y*(x*y)]*y = [[y*(x*y)]*y]*[(0*x)*x];\\ &(9)\; [[x*(z*x)]*x]*x = (0*x)*[[z*(x*z)]*z];\\ &(10)\; (0*x)*z = (0*x)*[[z*(x*z)]*z];\\ &(11)\; [[x*(z*x)]*x]*x = 0. \end{aligned}
```

Proof The proof follows from Lemmas 2.1 and 3.1.

Proposition 3.2 Let X be a right distributive torian algebra. Then the following hold for all $x, y, z \in X$:

```
 \begin{aligned} &(1)\ (0*x)*[z*[z*(z*x)]] = (0*z)*x;\\ &(2)\ y*[y*(y*x)] = [y*[y*(y*x)]]*(0*x);\\ &(3)\ [x*[x*(x*z)]]*x = 0*[z*[z*(z*x)]];\\ &(4)\ 0*z = 0*[z*[z*(z*x)]];\\ &(5)\ [y*[y*(y*z)]]*z = y*[y*(y*z)];\\ &(6)\ [y*[y*(y*x)]]*z = [y*[y*(y*x)]]*[z*[z*(z*x)]];\\ &(7)\ [(0*x)*]*[z*[z*(z*x)]] = [(0*x)*z]*x;\\ &(8)\ y*[y*(y*x)] = [y*[y*(y*x)]]*[(0*x)*x];\\ &(9)\ [x*[x*(x*z)]]*x = (0*x)*[z*[z*(z*x)]];\\ &(10)\ (0*x)*[z*[z*(z*x)]] = (0*x)*z; \end{aligned}
```

(11)
$$[x * [x * (x * z)]] * x = 0.$$

Proof The proof follows from Proposition 2.1 and Lemma 3.1.

The following proposition follows from Lemma 3.1.

Proposition 3.3 Every right distributive torian algebra fixes 0.

Example 3.2 Consider the set \mathbb{R} of real numbers. Define a binary operation * on \mathbb{R} by

$$x * y = \begin{cases} 0, & x \le y \\ x, & x > y \end{cases}$$

Then, $(\mathbb{R}; *, 0)$ is a right distributive torian algebra.

Theorem 3.1 Let X be a torian algebra such that [(x*z)*y]*[(x*z)*(y*z)] = 0 for all $x, y, z \in X$. Then X is right distributive if and only if (x*y)*y = x*y for all $x, y \in X$.

Proof Suppose (x*y)*y = x*y. Notice that $(x*z)*(y*z) = [(x*z)*z]*(y*z) \sim (x*z)*y$ (by Lemma 2.4). So, [(x*z)*(y*z)]*[(x*z)*y] = 0. Now, by the hypothesis, we have (x*z)*y = (x*z)*(y*z); giving us (x*y)*z = (x*z)*(y*z) as required.

The converse is obvious from Lemma 3.1(6). The proof is complete.

Corollary 3.1 Let X be a torian algebra such that [[x*(z*x)]*y]*[[x*[(z*x)]*x]]*[[y*[(z*y)]*y]]] = 0 for all $x, y, z \in X$. Then X is right distributive if and only if [x*[(y*x)]*x]*y = [x*(y*x)]*x for all $x, y \in X$.

Proof The proof follows from Theorem 3.1 and Lemma 2.1. \Box

Corollary 3.2 Let X be a torian algebra such that [[x * [x * (x * z)]] * y] * [[x * [x * (x * z)]] * [y * [y * (y * z)]]] = 0 for all $x, y, z \in X$. Then X is right distributive if and only if [x * [*(x * y)]] * y = x * [x * (x * y)] for all $x, y \in X$.

Proof The proof follows from Theorem 3.1 and Proposition 2.1. \Box

Theorem 3.2 Let X be a right distributive torian algebra with partial ordering \sim such that the following hold for all $x, y, z, p, v \in X$:

- (1) $[x*(y*z)]*[x*(y*p)] \sim (z*p);$
- $(2)\ x \sim y \Rightarrow (z*y) \sim (z*x);$
- (3) $(x * y) \sim v \Rightarrow (x * v) \sim [x * (x * y)];$
- (4) [(x*z)*y]*[(x*z)*(y*z)] = 0.

Then, [x * [x * [y * (y * x)]]] = [x * (x * y)] * (y * x) for all $x, y \in X$.

Proof Notice that $[x*(x*y)]*[x*[x*[y*(y*x)]]] \sim [y*[y*(y*x)]] = y*x$. Hence, $[x*(x*y)]*(y*x) \sim [x*[x*[y*(y*x)]]]$. Now let [x*[y*(y*x)] = v. Then we have $(x*v) \sim [y*(y*x)]$. Notice that $[y*(y*x)] \sim y$. So, $(x*y) \sim [x*[y*(y*x)]]$; giving us $(x*y) \sim v$;

so that $(x*v) \sim [x*(x*y)]$. Now notice also that $[y*(y*x)] = [y*(y*x)]*(y*x) \sim [x*(y*x)]$. Since $(x*v) \sim [y*(y*x)]$ and $[y*(y*x)] \sim [x*(y*x)]$, we have $(x*v) \sim [x*(y*x)]$.

Now, multiply both sides of the last relation on the right by v to get $[(x*v)*v] \sim [x*(y*x)]*v$. That is, $[(x*v)*v] \sim (x*v)*(y*x)$; giving us $(x*v) \sim [(x*v)*(y*x)]$; leading to $(x*v) \sim [[x*(x*y)]*(y*x)]$. Substituting back for v, we have $[x*[x*[y*(y*x)]]] \sim [x*(x*y)]*(y*x)$. Since $[x*(x*y)]*(y*x) \sim [x*[x*[y*(y*x)]]]$ and $[x*[x*[y*(y*x)]]] \sim [x*(x*y)]*(y*x)$, we conclude that [x*[x*[y*(y*x)]]] = [x*(x*y)]*(y*x) as required.

Corollary 3.3 Let X be a right distributive torian algebra with partial ordering \sim such that the following hold for all $x, y, z, p, v \in X$:

(1)
$$[x * [[y * (z * y)] * y]] * [[x * [y * (p * y)] * y]] \sim [[z * (p * z)] * z];$$

(2)
$$x \sim y \Rightarrow [[z * (y * z)] * z] \sim [[z * (x * z)] * z];$$

(3)
$$[[x*(y*x)]*x] \sim v \Rightarrow [[x*(v*x)]*x] \sim [x*[[x*(y*x)]*x]];$$

(4)
$$[[[x*(z*x)]*x]*y]*[[[x*[(z*x)]*x]]*[[y*[(z*y)]*y]]] = 0.$$

Then, [x * [x * [y * [y * (x * y)] * y]]] = [[x * [x * (y * x)] * x]] * [[y * [(x * y)] * x]] for all $x, y \in X$.

Proof The proof follows from Theorem 3.2 and lemma 2.1. \Box

Corollary 3.4 Let X be a right distributive torian algebra with partial ordering \sim such that the following hold for all $x, y, z, p, v \in X$:

(1)
$$[x * [y * [y * (y * z)]]] * [x * [y * [y * (y * p)]]] \sim [z * [z * (z * p)]];$$

(2)
$$x \sim y \Rightarrow [z * [z * (z * y)]] \sim [z * [z * (z * x)]];$$

(3)
$$[x * [x * (x * y)]] \sim v \Rightarrow [x * [x * (x * v)]] \sim [x * [x * [x * (x * y)]]];$$

(4)
$$[[x * [x * (x * z)]] * y] * [[x * [x * (x * z)]] * [y * [y * (y * z)]]] = 0.$$

Then, [x * [x * [y * [y * (y * x)]]]]] = [x * [x * [x * (x * y)]]] * [y * [y * (y * x)]] for all $x, y \in X$.

Proof The Proof follows from Theorem 3.2 and Proposition 2.1. \Box

Theorem 3.3 Let X be a right distributive torian algebra with partial ordering \sim such that the following hold for all $x, y, z, p, v \in X$:

(1)
$$[x*(y*z)]*[x*(y*p)] \sim (z*p);$$

(2)
$$x \sim y \Rightarrow (z * y) \sim (z * x)$$
;

(3)
$$(x * y) \sim v \Rightarrow (x * v) \sim [x * (x * y)];$$

(4)
$$[(x*z)*y]*[(x*z)*(y*z)] = 0.$$

Then $(x * y) * [x * (x * y)] = x * y \text{ for all } x, y \in X.$

Proof From Theorem 3.2, for all $x, y \in X$, we have

$$[x * (x * y)] * (y * x) = [x * [x * [y * (y * x)]]]$$
(1)

Put x * y for x, and put x for y in expression (1). Then, the left hand side becomes

$$\begin{aligned} [(x*y)*[(x*y)*x]]*[x*(x*y) &= [(x*y)*[(x*x)*y]*[x*(x*y)\\ &= [(x*y)*(0*y)]*[x*(x*y)\\ &= (x*y)*[x*(x*y)]. \end{aligned}$$

Also, the right hand side becomes

$$(x * y) * [(x * y) * [x * [x * (x * y)]]] = (x * y) * [(x * y) * (x * y)] = x * y.$$

Hence, equating the left and right hand sides, we have (x*y)*[x*(x*y)] = x*y as required. The proof is complete.

Corollary 3.5 Let X be a right distributive torian algebra with partial ordering \sim such that the following hold for all $x, y, z, p, v \in X$:

- (1) $[x * [[y * (z * y)] * y]] * [x * [[y * (p * y)] * y]] \sim [[z * (p * z)] * z];$
- (2) $x \sim y \Rightarrow [[z * (y * z)] * z] \sim [[[z * (x * z)] * z];$
- (3) $[[x*(y*x)]*x] \sim v \Rightarrow [[x*(v*x)]*x] \sim [x*[x*(y*x)]*x];$
- $(4) \left[\left[\left[x * (z * x) \right] * x \right] * y \right] * \left[\left[\left[x * (z * x) \right] * x \right] * \left[\left[y * (z * y) \right] * y \right] \right] = 0.$

Then, $[[x*(y*x)]*x]*[[x*[[x*(y*x)]*x]=[[x*(y*x)]*x] for all <math>x,y \in X$.

Proof The proof follows from Theorem 3.3 and Lemma 2.1.

Corollary 3.6 Let X be a right distributive torian algebra with partial ordering \sim such that the following hold for all $x, y, z, p, v \in X$:

- (1) $[x * [y * [y * (y * z)]]] * [x * [y * [y * (y * p)]]] \sim [z * [z * (z * p)]];$
- (2) $x \sim y \Rightarrow [z * [z * (z * y)]] \sim [z * [z * (z * x)]];$
- (3) $[x * [x * (x * y)]] \sim v \Rightarrow [x * [x * (x * v)]] \sim [[x * [x * [x * (x * y)]]]];$
- $(4) \left[\left[x * \left[x * (x * z) \right] \right] * y \right] * \left[\left[x * \left[x * (x * z) \right] \right] * \left[y * \left[y * (y * z) \right] \right] \right] = 0.$

Then, [x * [x * (x * y)]] * [x * [x * (x * y)]] for all $x, y \in X$.

Proof The proof follows from Theorem 3.3 and Proposition 2.1. \Box

Remark 3.2 Let X be a torian algebra. We define $x * y^k = [(x * y) * y] * \cdots] * y (k \text{ times});$ where k is a natural number.

Theorem 3.4 Let X be a right distributive torian algebra with partial ordering \sim such that the following hold for all $x, y, z \in X$:

- (1) $x \sim y \Rightarrow (x * z) \sim (y * z)$;
- (2) $x * y^k = x * y^{k+1}$, where $k \in \mathbb{N}$; the set of natural numbers;
- (3) $x * y^k = x * y^l$ for all $l \ge k \in \mathbb{N}$;
- (4) $(x*z^k)*(y*z^k \sim (x*y).$

Then, $(x * y) * z^k = (x * z^k) = (x * z^k) * (y * z^k)$ for all $x, y, z \in X$.

Proof By hypothesis, we have $x*z^k=x*z^{2k}$. Since, $(x*z^k)*(y*z^k)\sim (x*y)$, we have $[(x*z^k)*(y*z^k)]*z^k\sim (x*y)*z^k$; which gives $[(x*z^k)*z^k]*(y*z^k)\sim (x*y)*z^k$; which results to $(x*z^{2k})*(y*z^k)\sim (x*y)*z^k$. Since $x*z^k=x*z^{2k}$, we now have

$$(x*z^k)*(y*z^k) \sim (x*y)*z^k$$
 (1)

Notice that $(y*z^k)*y=0$. So, $(y*z^k)\sim y$. We therefore have $[(x*z^k)*y]\sim [(x*z^k)*(y*z^k)]$; which gives

$$[(x*y)*z^k] \sim [(x*z^k)*(y*z^k)]$$
 (2)

By expressions (1) and (2), we have $(x*y)*z^k=(x*z^k)*(y*z^k)$ as required. The proof is complete.

Proposition 3.4 Let X be a right distributive torian algebra. If $(x*y)*z^k = (x*z^k)*(y*z^k)$, then $x*z^k = x*z^{k+1}$ for all $x, y, z \in X$; $k \in \mathbb{N}$.

Proof By hypothesis, we have $(x*z)*z^k = (x*z^k)*(z*z^k)$, which gives $x*z^{k+1} = x*z^k$ as required. The proof is complete.

Theorem 3.5 Let X be a right distributive torian algebra with partial ordering \sim such that the following hold for all $x, y, z \in X$:

- (1) $x \sim y \Rightarrow (x * z) \sim (y * z)$:
- (2) $x * y^k = x * y^{k+1}$; where $k \in \mathbb{N}$, the set of natural numbers;
- (3) $x * y^k = x * y^l$ for all $l > k \in \mathbb{N}$.

Then. $[u * (u * x)^k] * (x * y)^k = [x * (x * y)^k] * (y * x)^k$ for all $x, y \in X$.

Proof By hypothesis, we have

$$x * (x * y)^{k_1} = x * (x * y)^{k_1}$$
(3)

and

$$y * (y * x)^{k_2} = y * (y * x)^{k_2}$$
(4)

Let k be the maximum of k_1 and k_2 . Then

$$x * (x * y)^k = x * (x * y)^{k+1}$$
(5)

and

$$y * (y * x)^k = y * (y * x)^{k+1}$$
(6)

Notice that [x*(x*y)]*y=0. So, $x*(x*y)\sim y$ and from expression (5), we have

$$x * [(x * y)^k \sim y * (x * y)^k$$

$$\tag{7}$$

Now, multiply expression (7) on both sides on the right by y * x (k times) to get

$$[x * (x * y)^{k}] * (y * x)^{k} \sim [y * (x * y)^{k}] * (y * x)^{k}$$
(8)

Now apply Lemma 2.2 to expression (8) to get

$$[x * (x * y)^{k}] * (y * x)^{k} \sim [y * (y*)^{k}] * (x * y)^{k}$$
(9)

Also notice that [y*(y*x)]*x=0. So, $[y*(y*x)] \sim x$; and so from expression (6), we have

$$[y * (y * x)^k] \sim [x * (y * x)^k]$$
 (10)

Multiply both sides of expression (10) on the right by x * y (k times) to get

$$[y * (y * x)^{k}] * (x * y)^{k} \sim [x * (y * x)^{k}] * (x * y)^{k}$$
(11)

Now apply Lemma 2.2 to expression (11) to get

$$[y * (y * x)^{k}] * (x * y)^{k} \sim [x * (x * y)^{k}] * (y * x)^{k}$$
(12)

From expressions (9) and (12), we have $[y*(y*x)^k]*(x*y)^k = [x*(x*y)^k]*(y*x)^k$ as required. The proof is complete.

References

- [1] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn., 66(2007), 113–116.
- [2] S.S. Ahn and K. S. So, On ideals and upper sets in BE-algebras, *Sci. Math. Jpn.*, 68(2008), 351–357.
- [3] S.S. Ahn and K. S. So, On generalized upper sets in BE-algebras, *Bull. Korean Math. Soc.*, 46(2009), 281–287.
- [4] R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1966, 185pp.
- [5] J. Dene and A. D. Keedwell, Latin Squares and Their Applications, the English University press Ltd, 1974, 549pp.
- [6] E. Ilojide, On obic algebras, International J. Math. Combin., 4(2019), 80–88.
- [7] E. Ilojide, A note on torian algebras, International J. Math. Combin., 2(2020), 80–87.
- [8] E. Ilojide, On ideals of torian algebras, International J. Math. Combin., 2(2020), 101–108.