Prime BI-Ideals of Po-Γ-Groupoids

J.Catherine Grace John and B. Elavarasan

(Department of Mathematics, Karunya University, Coimbatore-641114, India) E-mail: catherine gracejohn@gmail.com, belavarasan@gmail.com

Abstract: In this paper, we have studied the notion of prime bi-ideals and semi prime bi-ideals of Po-Γ-groupoids and explored the various properties of prime bi-ideals in Po-Γ-groupoids. Also we obtained the condition for Po-Γ-groupoids to be regular.

Key Words: Partially ordered Γ-groupoid (po-Γ-groupoid), left (right, two-sided) ideal, quasi-ideal, bi-ideal, prime (semi prime) bi-ideal, regular partially ordered -Γ-groupoid.

AMS(2010): 06F05, 20N02.

§1. Introduction

In 1983, A.P.J. van der Walt [5] introduced the interesting concepts of prime and semi prime bi-ideals for an associative ring with unity. In 1995, using the concepts defined by A. P. J. van der Walt, the structure of a ring containing prime and semi prime bi-ideals were studied by H. J. le Roux [2]. In 2001, Kehayopulu and Tsingelis [1] studied prime ideals of groupoids. Following [1], in 2005, S.K. Lee developed prime left (right) ideals of groupoids [3] and obtained some results on prime bi-ideals of groupoids [4]. In this paper we have studied the notion of prime bi-ideals and semi prime bi-ideals of Po- Γ -groupoids. Let M be a non empty set. M is called Γ -groupoid if for all $a, b \in M$ and $\gamma \in \Gamma$, $a\gamma b \in M$.

A set (G, Γ, \leq) is called a partial order- Γ -groupoid(or simply Po- Γ -groupoid) if

- (i) (G, \leq) is a partial ordered set;
- (ii) (G,Γ) is a Γ -groupoid such that $a \leq b \Rightarrow a\gamma x \leq b\gamma x$ and $x\gamma_1 a \leq x\gamma_1 b$ for all $a,b,x \in G$; $\gamma,\gamma_1 \in \Gamma$.

Throughout this paper G denotes a Po- Γ -groupiod.

A non empty subset A of G is called right(resp.left) ideal of G if

- (i) $A\Gamma G \subseteq A$ (resp. $G\Gamma A \subseteq A$);
- (ii) $a \in A$, $b \le a$ for $b \in G$ implies $b \in A$.

A non empty subset A is called an ideal of G if it is a right and left ideal of G.

For non-empty subsets A and B of a po- Γ -groupoid G, the product $A\Gamma B$ of A and B and the subset (A] of G are defined by $A\Gamma B = \{a\gamma b \in S : a \in A, b \in B, \gamma \in \Gamma\}$; $(A] = \{x \in G : \exists a \in A(x \leq a)\}$.

¹Received July 31, 2019, Accepted December 3, 2019.

A non empty subset Q of G is called a quasi ideal if

- (i) $(Q\Gamma G] \cap (G\Gamma Q] \subseteq Q$;
- (ii) $a \leq q; q \in Q$ implies $a \in Q$.

A non empty subset B of G is called a bi-ideal if

- (i) $(B\Gamma G\Gamma B) \subseteq B$;
- (ii) $a \leq b; b \in B$ implies $a \in B$.

Every quasi ideal is a bi-ideal. But the converse need not be true. A bi-ideal B of G is prime, for $x,y\in G, (x\Gamma G\Gamma y]\subseteq B$ implies $x\in B$ or $y\in B$. A bi-ideal B of G is semi-prime, for $x\in G, (x\Gamma G\Gamma x]\subseteq B$ implies $x\in B$. A non-empty subset I of G is prime if I is an ideal of G such that for any ideals A,B of G, $AB\subseteq I$ implies $A\subseteq I$ or $B\subseteq I$. It is clear that $(x)_I=(x\cup G\Gamma x](\operatorname{resp.}(x)_T=(x\cup x\Gamma G])$ is the principle left(resp.right) ideal generated by x.

§2. Main Results

Theorem 2.1 A bi-ideal B of G is prime if and only if for a right ideal R and a left ideal L of $G(R\Gamma L) \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$.

Proof Suppose that $(R\Gamma L] \subseteq B$ for a right ideal R and a left ideal L of G and $R \nsubseteq B$. Then there exists $x \in R \setminus B$ such that $(x\Gamma G\Gamma y] \subseteq (R\Gamma G\Gamma L) \subseteq (R\Gamma L) \subseteq B$ for any $y \in L$ which implies $y \in B$. So $L \subseteq B$.

Conversely, let $(x\Gamma G\Gamma y) \subseteq B$ for $x, y \in G$. Then $(x\Gamma G)\Gamma(G\Gamma y) \subseteq (x\Gamma G\Gamma G\Gamma y) \subseteq (x\Gamma G\Gamma y) \subseteq B$. By hypothesis, we have $(x\Gamma G) \subseteq B$ or $G\Gamma y \subseteq B$. If $(x\Gamma G) \subseteq B$, then $x\Gamma x \in (x\Gamma G)\Gamma G \subseteq B$. Now, $(x)_r(x)_l = (x \cup x\Gamma G)\Gamma(x \cup G\Gamma x) = (x\Gamma x \cup x\Gamma G\Gamma x \cup x\Gamma G\Gamma G\Gamma x) \subseteq (x\Gamma x \cup x\Gamma G) \subseteq B$ which implies $(x)_r \subseteq B$ or $(x)_l \subseteq B$. Therefore $x \in B$. If $(G\Gamma y) \subseteq B$, then by the similar method $y \in B$.

Theorem 2.2 If a bi-ideal B of G is prime, then B is a left or right ideal of G.

Proof Let B be a prime bi-ideal of G.Then $(B\Gamma G] \subseteq B$ or $(G\Gamma B] \subseteq B$ as $(B\Gamma G]\Gamma(G\Gamma B) \subseteq (B\Gamma G\Gamma B) \subseteq B$ and by Theorem 2.1. So B is a a left ideal or right ideal of G.

Theorem 2.3 Let G be a po- Γ -groupoid. Then the following statements are hold:

- (i) Any left/right/both sided ideal of G is a bi-ideal of G;
- (ii) Intersection of right and left ideals of G is a bi-ideal of G;
- (iii) Arbitrary intersection of bi-ideals of G is also a bi-ideal of G;
- (iv) If B is a bi-ideal of G, then $B\Gamma r$ and $r\Gamma B$ are bi-ideals of G, for any $r \in G$.

Proof This result can be immediately verified by definition.

Notation 1 For a bi-ideal of B of G, we define $L_B = \{x \in B : G\Gamma x \subseteq B\}$, $R_B = \{x \in B : x\Gamma G \subseteq B\}$, $I_L = \{y \in L_B : y\Gamma G \subseteq L_B\}$ and $I_R = \{y \in R_B : G\Gamma y \subseteq R_B\}$.

Theorem 2.4 Let B be bi-ideal of G. Then L_B is a left ideal of G contained in B if L_B is non empty.

Proof Let $x \in L_B$. Let $g \in G$ and $\gamma \in \Gamma$. Then $g\gamma x \in G\Gamma x \subseteq B$. Now $G\Gamma g\gamma x \subseteq G\Gamma G\Gamma x \subseteq G\Gamma x \subseteq B$ which implies $g\gamma x \in L_B$. $G\Gamma L_B \subseteq L_B$. hence L_B is a left ideal.

Theorem 2.5 Let B be bi-ideal of G. Then I_L is the largest ideal of G contained in B if I_L is non empty. Furthermore, I_L coincides with I_R .

Proof Let $x \in I_L$. Then $x\Gamma G \subseteq L_B$. For any $g \in G$ and $\gamma \in \Gamma$, we have $x\gamma g \in x\Gamma G \subseteq L_B$ and $x\gamma g\Gamma G \subseteq x\Gamma G\Gamma G \subseteq x\Gamma G \subseteq L_B$, So I_L is a right ideal of G.

Since $I_L \subseteq L_B \subseteq B$, we have $x \in L_B$ which implies $x \gamma g \in I_L$ and $G \Gamma x \subseteq B$.

Now, $G\Gamma g\gamma x\subseteq G\Gamma G\Gamma x\subseteq G\Gamma x\subseteq B$. So $g\gamma x\in L_B$. By Theorem 2.4 and $x\in I_L$, we have $x\Gamma G\subseteq L_B$. Then $g\gamma x\Gamma G\subseteq G\Gamma L_B\subseteq L_B$, and we have $g\gamma x\in I_L$. Therefore I_L is a left ideal.

Let A be an ideal of G such that $A \subseteq B$. If $x \in A$, then $x \in B$ and $G\Gamma \subseteq x \subseteq A \subseteq B$ which implies $x \in L_B$ and $A \subseteq L_B$.

Let $x \in A$. Then $x\Gamma G \subseteq A \subseteq L_B$. Hence $x \in I_L$ and $A \subseteq I_L$ which implies I_L is the largest ideal of G contained in B. Similarly I_R is the largest ideal of G contained in B.

Notation 2 We denote I_B as $I_B :\equiv I_R = I_L$ by Theorem 2.5.

Theorem 2.6 If B is a prime bi-ideal of G, then I_B is a prime ideal of G contained in B.

Proof Let B be a prime bi-ideal of G. Then by Theorem 2.5, I_B is an ideal of G.

Suppose $X\Gamma Y \subseteq I_B$ for any ideals X, Y of G. Since $I_B \subseteq L_B \subseteq B$, we have $X\Gamma Y \subseteq B$. By Theorem 2.1, $X \subseteq B$ or $Y \subseteq B$. But I_B is the largest ideal contained in B, so $X \subseteq I_B$ or $Y \subseteq I_B$ which implies I_B is a prime ideal of G.

Corollary 2.7 If B be a semi-prime bi-ideal of G, then I_B is a semi-prime ideal of G if I_B is non empty.

Theorem 2.8 If a bi-ideals B of G is semi-prime, then

- (i) for any left ideal L of G, $L\Gamma L \subseteq B$ implies $L \subseteq B$;
- (ii) for any right ideal R of G, $R\Gamma R \subseteq B$ implies $R \subseteq B$.

Proof Suppose $L\Gamma L \subseteq B$ for a left ideal L of G and $L \nsubseteq B$. Then there exists $x \in L \setminus B$, $x\Gamma G\Gamma x \subseteq L\Gamma G\Gamma L \subseteq L\Gamma L \subseteq B$. Since B is a semi-prime we have $x \in B$, a contradiction.

The second assertion can be proved similarly.

Theorem 2.9 If a bi-ideal B of G is semi-prime, then B is a quasi-ideal of G.

Proof Let $y \in (B\Gamma G] \cap (G\Gamma B]$. Then $(y\Gamma G\Gamma y) \subseteq ((B\Gamma G)\Gamma G\Gamma (G\Gamma B)) \subseteq (B\Gamma G\Gamma B) \subseteq B$. Since B is a semi prime, we have $y \in B$. Hence B is a quasi-ideal of G.

Remark 2.10 For a Po- Γ -groupoid G,

(a) The set of all prime ideal of G is denoted by spec(G);

- (b) Bspec(G) denotes the set of prime bi-ideals of G;
- (c) Sspec(G) denotes the set of all semi prime bi-ideals of G.

Then we know conclusions following easily by definition.

Theorem 2.11 If G is finite, then $\bigcap spec(G) = \bigcap Bspec(G)$.

Theorem 2.12 A bi-ideal B of G is semi prime if and only if for a right ideal (left ideal) A of $G(A\Gamma A) \subseteq B$ implies $A \subseteq B$.

Theorem 2.13 The intersection of any family of prime bi-ideals of G is a semi prime bi-ideal of G.

Theorem 2.14 If G is finite, then $\bigcap spec(G) = \bigcap Sspec(G)$.

We note that G is regular if for any $x \in G$, there exist $a \in G$ and $\gamma_1, \gamma_2 \in \Gamma$ such that $x \leq x\gamma_1a\gamma_2x$.

The following results shows the necessary and sufficient condition for a Po- Γ -groupiod to be regular.

Theorem 2.15 Let G be Po-gamma-groupiod. Then G is regular if and only if every bi-ideal of G is semi-prime.

Proof Let G be regular and B a bi-ideal of G. Suppose that $x\Gamma G\Gamma x \subseteq B$ for $x \in G$. Then there exist $a \in G$ and $\gamma_1, \gamma_2 \in \Gamma$ such that $x \leq x\gamma_1 a\gamma_2 x \in x\Gamma a\Gamma x \in x\Gamma G\Gamma x \subseteq B$ which implies $x \in B$. Hence B is semi-prime.

Conversely, assume that every bi-ideal of G is semi-prime. Let $B=(a\Gamma G\Gamma a]$ for $a\in G$. Then $B\Gamma G\Gamma B=(a\Gamma G\Gamma a]\Gamma G\Gamma (a\Gamma G\Gamma a]\subseteq (a\Gamma G\Gamma a]=B$, which implies B is a bi-ideal of G and by assumption $(a\Gamma G\Gamma a]$ is semi-prime. Since $a\Gamma G\Gamma a\subseteq (a\Gamma G\Gamma a]=B$, we get $a\in (a\Gamma G\Gamma a]=B$. Then there exist $x\in G$ and $\gamma_1,\gamma_2\in \Gamma$ such that $a\leq a\gamma_1x\gamma_2a$.

References

- [1] N. Kehayopulu, On prime ideals of groupoids-ordered groupoids, *Scientiae Mathematicae Japonicae*, 5 (2001), 83-86.
- [2] H. J. le Roux, A note on prime and semiprime bi-ideals of rings, *Kyungpook Math. J.*, 35 (1995), 243-247.
- [3] S.K.Lee, On prime left (right) ideals of grou[iogs- ordered groupiods, *Kangweon-Kyungki Math. J.*, 13(1) (2005), 13-18.
- [4] S.K.Lee, Prime bi-ideals groupiods, Kangweon-Kyungki Math. J., 13(2) (2005), 217-221.
- [5] A. P. J. van der Walt, Prime and semiprime bi-ideals, Quaestiones Matematicae, 5 (1983), 341-345.