Algebraic Properties of the Path Complexes of Cycles

Seyed Mohammad Ajdani

(Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran) $\qquad \qquad \text{E-mail: majdani2@yahoo.com}$

Abstract: Let G be a simple graph and $\Delta_t(G)$ be a simplicial complex whose facets correspond to the paths of length t ($t \geq 2$) in G. It is shown that $\Delta_t(C_n)$ is matroid, vertex decomposable, shellable and Cohen-Macaulay if and only if n = t or n = t + 1, where C_n is an n-cycle. As a consequence we show that if n = t or t + 1 then $\Delta_t(C_n)$ is partitionable and Stanley's conjecture holds for $K[\Delta_t(C_n)]$.

Key Words: Vertex decomposable, simplicial complex, matroid, path.

AMS(2010): 13F20, 05E40, 13F55.

§1. Introduction

Let $R = K[x_1, \dots, x_n]$, where K is a field. Fix an integer $n \geq t \geq 2$ and let G be a directed graph. A sequence x_{i_1}, \dots, x_{i_t} of distinct vertices is called a path of length t if there are t-1 distinct directed edges e_1, \dots, e_{t-1} where e_j is a directed edge from x_{i_j} to $x_{i_{j+1}}$. Then the path ideal of G of length t is the monomial ideal $I_t(G) = (x_{i_1} \cdots x_{i_t} : x_{i_1}, \cdots, x_{i_t}$ is a path of length t in G in the polynomial ring $R = K[x_1, \dots, x_n]$. The distance d(x, y) of two vertices x and y of a graph G is the length of the shortest path from x to y. The path complex $\Delta_t(G)$ is defined by

$$\Delta_t(G) = \langle \{x_{i_1}, \cdots, x_{i_t}\} : x_{i_1}, \cdots, x_{i_t} \text{ is a path of length t in G } \rangle.$$

Path ideals of graphs were first introduced by Conca and De Negri [3] in the context of monomial ideals of linear type. Recently the path ideal of cycles has been extensively studied by several mathematicians. In [9], it is shown that $I_2(C_n)$ is sequentially Cohen-Macaulay, if and only if, n = 3 or n = 5. Generalizing this result, in [13], it is proved that $I_t(C_n)$, (t > 2), is sequentially Cohen-Macaulay, if and only if n = t or n = t + 1 or n = 2t + 1. Also, the Betti numbers of the ideal $I_t(C_n)$ and $I_t(L_n)$ is computed explicitly in [1]. In particular, it has been shown that

Theorem 1.1(Corollary 5.15, [1]) Let n, t, p and d be integers such that $n \ge t \ge 2$, n = (t+1)p+d, where $p \ge 0$ and $0 \le d < (t+1)$. Then,

¹Received June 17, 2019, Accepted November 26, 2019.

(i) The projective dimension of the path ideal of a graph cycle C_n or line L_n is given by

$$pd(I_t(C_n)) = \begin{cases} 2p, & d \neq 0 \\ 2p - 1, & d = 0 \end{cases} \quad pd(I_t(L_n)) = \begin{cases} 2p - 1, & d \neq t, \\ 2p, & d = t. \end{cases}$$

(ii) The regularity of the path ideal of a graph cycle C_n or line L_n is given by

$$\operatorname{reg}(I_t(C_n)) = (t-1)p + d + 1$$

$$\operatorname{reg}(I_t(L_n)) = \begin{cases} p(t-1) + 1, & d < t, \\ p(t-1) + t, & d = t. \end{cases}$$

In [8] it has been shown that, $\Delta_t(G)$ is a simplicial tree if G is a rooted tree and $t \geq 2$. One of interesting problems in combinatorial commutative algebra is the Stanley's conjectures. The Stanley's conjectures are studied by many researchers. Let R be a \mathbb{N}^n -graded ring and M a \mathbb{Z}^n - graded R- module. Then, Stanley [10] conjectured that

$$\operatorname{depth}(M) \leq \operatorname{sdepth}(M)$$

He also conjectured in [11] that each Cohen-Macaulay simplicial complex is partitionable. Herzog, Soleyman Jahan and Yassemi in [7] showed that the conjecture about partitionability is a special case of the Stanley's first conjecture. In this work, we study algebraic properties of $\Delta_t(C_n)$. In Section 1, we recall some definitions and results which will be needed later. In Section 3, we show that the following conditions are equivalent for all t > 2:

- (i) $\Delta_t(C_n)$ is matroid;
- (ii) $\Delta_t(C_n)$ is vertex decomposable;
- (iii) $\Delta_t(C_n)$ is shellable;
- (iv) $\Delta_t(C_n)$ is Cohen-Macaulay;
- (v) n = t or t + 1.

(See Theorem 3.6).

In Section 4 as an application of our results we show that if n = t or t + 1 then $\Delta_t(C_n)$ is partitionable and Stanley's conjecture holds for $K[\Delta_t(C_n)]$.

§2. Preliminaries

In this section we recall some definitions and results which will be needed later.

Definition 2.1 A simplicial complex Δ over a set of vertices $V = \{x_1, \dots, x_n\}$, is a collection of subsets of V, with the property that:

- (a) $\{x_i\} \in \Delta$ for all i;
- (b) If $F \in \Delta$, then all subsets of F are also in Δ (including the empty set).

An element of Δ is called a face of Δ and complement of a face F is $V \setminus F$ and it is denoted by F^c . Also, the complement of the simplicial complex $\Delta = \langle F_1, \dots, F_r \rangle$ is $\Delta^c = \langle F_1^c, \dots, F_r^c \rangle$. The dimension of a face F of Δ , dim F, is |F| - 1 where, |F| is the number of elements of F and dim $\emptyset = -1$. The faces of dimensions 0 and 1 are called vertices and edges, respectively. A non-face of Δ is a subset F of V with $F \notin \Delta$, we denote by $\mathcal{N}(\Delta)$, the set of all minimal non-faces of Δ . The maximal faces of Δ under inclusion are called facets of Δ . The dimension of the simplicial complex Δ , dim Δ , is the maximum of dimensions of its facets. If all facets of Δ have the same dimension, then Δ is called pure.

Let $\mathcal{F}(\Delta) = \{F_1, \dots, F_q\}$ be the facet set of Δ . It is clear that $\mathcal{F}(\Delta)$ determines Δ completely and we write $\Delta = \langle F_1, \dots, F_q \rangle$. A simplicial complex with only one facet is called a *simplex*. A simplicial complex Γ is called a *subcomplex* of Δ , if $\mathcal{F}(\Gamma) \subset \mathcal{F}(\Delta)$.

For $v \in V$, the subcomplex of Δ obtained by removing all faces $F \in \Delta$ with $v \in F$ is denoted by $\Delta \setminus v$. That is,

$$\Delta \setminus v = \langle F \in \Delta : \ v \notin F \rangle.$$

The link of a face $F \in \Delta$, denoted by $link_{\Delta}(F)$, is a simplicial complex on V with the faces, $G \in \Delta$ such that, $G \cap F = \emptyset$ and $G \cup F \in \Delta$. The link of a vertex $v \in V$ is simply denoted by $link_{\Delta}(v)$.

$$\operatorname{link}_{\Delta}(v) = \{ F \in \Delta : v \notin F, F \cup \{v\} \in \Delta \}.$$

Let Δ be a simplicial complex over n vertices $\{x_1, \dots, x_n\}$. For $F \subset \{x_1, \dots, x_n\}$, we set:

$$\mathbf{x}_F = \prod_{x_i \in F} x_i.$$

We define the facet ideal of Δ , denoted by $I(\Delta)$, to be the ideal of S generated by $\{\mathbf{x}_F \colon F \in \mathcal{F}(\Delta)\}$. The non-face ideal or the Stanley-Reisner ideal of Δ , denoted by I_{Δ} , is the ideal of S generated by square-free monomials $\{\mathbf{x}_F \colon F \in \mathcal{N}(\Delta)\}$. Also we call $K[\Delta] := S/I_{\Delta}$ the Stanley-Reisner ring of Δ .

Definition 2.2 A simplicial complex Δ on $\{x_1, \dots, x_n\}$ is said to be a matroid if, for any two facets F and G of Δ and any $x_i \in F$, there exists a $x_j \in G$ such that $(F \setminus \{x_i\}) \cup \{x_j\}$ is a facet of Δ .

Definition 2.3 A simplicial complex Δ is recursively defined to be vertex decomposable, if it is either a simplex, or else has some vertex v so that

- (a) Both $\Delta \setminus v$ and link $\Delta(v)$ are vertex decomposable, and
- (b) No face of $link_{\Delta}(v)$ is a facet of $\Delta \setminus v$.

A vertex v which satisfies in condition (b) is called a shedding vertex.

Definition 2.4 A simplicial complex Δ is shellable, if the facets of Δ can be ordered F_1, \dots, F_s such that, for all $1 \leq i < j \leq s$, there exists some $v \in F_j \setminus F_i$ and some $l \in \{1, \dots, j-1\}$ with $F_j \setminus F_l = \{v\}$.

A simplicial complex Δ is called disconnected, if the vertex set V of Δ is a disjoint union $V = V_1 \cup V_2$ such that no face of Δ has vertices in both V_1 and V_2 . Otherwise Δ is connected. It is well-known that

 $\operatorname{matroid} \Longrightarrow \operatorname{vertex} \operatorname{decomposable} \Longrightarrow \operatorname{Shellable} \Longrightarrow \operatorname{Cohen-Macaulay}$

Definition 2.5 For a given simplicial complex Δ on V, we define Δ^{\vee} , the Alexander dual of Δ , by

$$\Delta^{\vee} = \{ V \setminus F : \ F \notin \Delta \}.$$

It is known that for the complex Δ one has $I_{\Delta^{\vee}} = I(\Delta^c)$. Let $I \neq 0$ be a homogeneous ideal of S and \mathbb{N} be the set of non-negative integers. For every $i \in \mathbb{N} \cup \{0\}$, one defines:

$$t_i^S(I) = \max\{j: \ \beta_{i,j}^S(I) \neq 0\}$$

where $\beta_{i,j}^S(I)$ is the i, j-th graded Betti number of I as an S-module. The Castelnuovo-Mumford regularity of I is given by:

$$reg(I) = sup\{t_i^S(I) - i : i \in \mathbb{Z}\}.$$

We say that the ideal I has a d-linear resolution, if I is generated by homogeneous polynomials of degree d and $\beta_{i,j}^S(I) = 0$, for all $j \neq i + d$ and $i \geq 0$. For an ideal which has a d-linear resolution, the Castelnuovo-Mumford regularity would be d. If I is a graded ideal of S, we write (I_d) for the ideal generated by all homogeneous polynomials of degree d belonging to I.

Definition 2.6 A graded ideal I is componentwise linear if (I_d) has a linear resolution for all d.

Also, we write $I_{[d]}$ for the ideal generated by the squarefree monomials of degree d belonging to I.

Definition 2.7 A graded S-module M is called sequentially Cohen-Macaulay (over K), if there exists a finite filtration of graded S-modules,

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

such that each M_i/M_{i-1} is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

$$\dim(M_1/M_0) < \dim(M_2/M_1) < \cdots < \dim(M_r/M_{r-1}).$$

The Alexander dual, allows us to make a bridge between (sequentially) Cohen-Macaulay ideals and (componetwise) linear ideals.

Definition 2.8(Alexander Duality) For a square-free monomial ideal $I = (M_1, \dots, M_q) \subset S =$

 $K[x_1, \cdots, x_n]$, the Alexander dual of I, denoted by I^{\vee} , is defined to be

$$I^{\vee} = P_{M_1} \cap \cdots \cap P_{M_n}$$

where, P_{M_i} is prime ideal generated by $\{x_j: x_j|M_i\}$.

Theorem 2.9(Proposition 8.2.20, [6]; Theorem 3, [4]) Let I be a square-free monomial ideal in $S = K[x_1, \dots, x_n]$.

- (i) The ideal I is componentwise linear ideal if and only if S/I^{\vee} is sequentially Cohen-Macaulay;
- (ii) The ideal I has a q-linear resolution if and only if S/I^{\vee} is Cohen-Macaulay of dimension n-q.

Remark 2.10 Two special cases, we will be considering in this paper, are when G is a cycle C_n , or a line graph L_n on vertices $\{x_1, \dots, x_n\}$ with edges

$$E(C_n) = \{\{x_1, x_2\}, \{x_2, x_3\}, \cdots, \{x_{n-1}, x_n\}, \{x_n, x_1\}\};$$

$$E(L_n) = \{\{x_1, x_2\}, \{x_2, x_3\}, \cdots, \{x_{n-1}, x_n\}\}.$$

§3. Vertex Decomposability Path Complexes of Cycles

As the main result of this section, it is shown that $\Delta_t(C_n)$ is matroid, vertex decomposable, shellable and Cohen-Macaualay if and only if n = t or n = t + 1. For the proof we shall need the following lemmas and propositions.

Lemma 3.1 Let $\Delta_t(L_n)$ be a simplicial complex on $\{x_1, \dots, x_n\}$ and $2 \le t \le n$. Then $\Delta_t(L_n)$ is vertex decomposable.

Proof If t = n, then $\Delta_n(L_n)$ is a simplex which is vertex decomposable. Let $2 \le t < n$ then one has

$$\Delta_t(L_n) = \langle \{x_1, \dots, x_t\}, \{x_2, \dots, x_{t+1}\}, \dots, \{x_{n-t+1}, \dots, x_n\} \rangle.$$

So $\Delta_t(L_n) \setminus x_n = \langle \{x_1, \dots, x_t\}, \{x_2, \dots, x_{t+1}\}, \dots, \{x_{n-t}, \dots, x_{n-1}\} \rangle$. Now we use induction on the number of vertices of L_n and by induction hypothesis $\Delta_t(L_n) \setminus x_n$ is vertex decomposable. On the other hand, it is clear that $\lim_{\Delta_t(L_n)} \{x_n\} = \langle \{x_{n-t+1}, \dots, x_{n-1}\} \rangle$. Thus $\lim_{\Delta_t(L_n)} \{x_n\}$ is a simplex which is not a facet of $\Delta_t(L_n) \setminus x_n$. Therefore $\Delta_t(L_n)$ is vertex decomposable. \square

Lemma 3.2 Let $\Delta_2(C_n)$ be a simplicial complex on $\{x_1, \dots, x_n\}$. Then $\Delta_2(C_n)$ is vertex decomposable.

Proof Since
$$\Delta_2(C_n) = \langle \{x_1, x_2\}, \{x_2, x_3\}, \cdots, \{x_{n-1}, x_n\}, \{x_n, x_1\} \rangle$$
, we have

$$\Delta_2(C_n) \setminus x_n = \langle \{x_1, x_2\}, \{x_2, x_3\}, \cdots, \{x_{n-2}, x_{n-1}\} \rangle.$$

By lemma $3.1 \Delta_2(C_n) \setminus x_n$ is vertex decomposable. Also it is trivial that $\lim_{\Delta_2(C_n)} \{x_n\} = \langle \{x_{n-1}\}, \{x_1\} \rangle$ is vertex decomposable and no face of $\lim_{\Delta_2(C_n)} \{x_n\}$ is a facet of $\Delta_2(C_n) \setminus x_n$. Therefore $\Delta_2(C_n)$ is vertex decomposable.

Lemma 3.3 Let $\Delta_t(C_n)$ be a simplicial complex on $\{x_1, \dots, x_n\}$ and $3 \le t \le n-2$. Then $\Delta_t(C_n)$ is not Cohen-Macaulay.

Proof It suffices to show that $I_{\Delta_t(C_n)^{\vee}}$ has not a linear resolution. Since $I_{\Delta_t(C_n)^{\vee}} = I(\Delta_t(C_n)^c)$ then one can easily check that $I_{\Delta_t(C_n)^{\vee}} = I_{n-t}(C_n)$. By Theorem 1.1 we have

$$reg(I_{\Delta_t(C_n)^{\vee}}) = (n-t-1)p + d + 1.$$

Since $3 \le t \le n-2$ then one has $\operatorname{reg}(I_{\Delta_t(C_n)^\vee}) \ne n-t$ and by Theorem 2.9 $\Delta_t(C_n)$ is not Cohen-Macaulay.

Proposition 3.4 Let $\Delta_t(C_n)$ be a simplicial complex on $\{x_1, \dots, x_n\}$ and $t \geq 3$. Then $\Delta_t(C_n)$ is vertex decomposable if and only if n = t or t + 1.

Proof By Lemma 3.3 it suffices to show that if n = t or t + 1, then $\Delta_t(C_n)$ is vertex decomposable. If n = t, then $\Delta_n(C_n)$ is a simplex which is vertex decomposable. If t = n - 1, then we have

$$\Delta_{n-1}(C_n) = \langle \{x_1, \cdots, x_{n-1}\}, \{x_2, \cdots, x_n\}, \{x_3, \cdots, x_n, x_1\}, \cdots, \{x_n, x_1, \cdots, x_{n-2}\} \rangle.$$

Now we use induction on the number of vertices of C_n and show that $\Delta_{n-1}(C_n)$ is vertex decomposable. It is clear that $\Delta_{n-1}(C_n) \setminus x_n = \langle \{x_1, \dots, x_{n-1}\} \rangle$ is a simplex which is vertex decomposable.

On the other hand,

$$\operatorname{link}_{\Delta_{n-1}(C_n)}\{x_n\} = \langle \{x_1, \cdots, x_{n-2}\}, \cdots, \{x_{n-1}, x_1, \cdots, x_{n-3}\} \rangle = \Delta_{n-2}(C_{n-1}).$$

By induction hypothesis $\operatorname{link}_{\Delta_{n-1}(C_n)}\{x_n\}$ is vertex decomposable. It is easy to see that no face of $\operatorname{link}_{\Delta_{n-1}(C_n)}\{x_n\}$ is a facet of $\Delta_{n-1}(C_n)\setminus x_n$. Therefore $\Delta_{n-1}(C_n)$ is vertex decomposable.

Proposition 3.5 $\Delta_2(C_n)$ is a matroid if and only if n=3 or 4.

Proof If n=3 or 4, then it is easy to see that $\Delta_2(C_n)$ is a matroid. Now we prove the converse. It suffices to show that $\Delta_2(C_n)$ is not a matroid for all $n \geq 5$. We consider two facets $\{x_1, x_2\}$ and $\{x_{n-1}, x_n\}$. Then we have $(\{x_1, x_2\} \setminus \{x_1\}) \cup \{x_{n-1}\} = \{x_2, x_{n-1}\}$ and $(\{x_1, x_2\} \setminus \{x_1\}) \cup \{x_n\} = \{x_2, x_n\}$. Since $\{x_2, x_{n-1}\}$ and $\{x_2, x_n\}$ are not the facets of $\Delta_2(C_n)$. So $\Delta_2(C_n)$ is not matroid for all $n \geq 5$.

For the simplicial complexes one has the following implication:

 $Matroid \Rightarrow vertex \ decomposable \Rightarrow shellable \Rightarrow Cohen-Macaulay$

Note that these implications are strict, but by the following theorem, for path complexes, the reverse implications are also valid.

Theorem 3.6 Let $t \geq 3$. Then the following conditions are equivalent:

- (i) $\Delta_t(C_n)$ is matroid;
- (ii) $\Delta_t(C_n)$ is vertex decomposable;
- (iii) $\Delta_t(C_n)$ is shellable;
- (iv) $\Delta_t(C_n)$ is Cohen-Macaulay;
- (v) n = t or t + 1.

Proof $(i) \Longrightarrow (ii), (ii) \Longrightarrow (iii)$ and $(iii) \Longrightarrow (iv)$ is well-known.

- $(iv) \Longrightarrow (v)$ follows from Lemma 3.3 and Proposition 3.4.
- $(v) \Longrightarrow (i)$: If n = t, then $\Delta_t(C_n)$ is a simplex which is a matroid. If n = t + 1, then

$$\Delta_t(C_n) = \langle \{x_1, \cdots, x_t\}, \{x_2, \cdots, x_{t+1}\}, \{x_3, \cdots, x_{t+1}, x_1\}, \cdots, \{x_{t+1}, x_1, \cdots, x_{t-1}\} \rangle.$$

For any two facets F and G of $\Delta_t(C_n)$ one has $|F \cap G| = t - 1$. We claim that for any two facets F and G of $\Delta_t(C_n)$ and any $x_i \in F$, there exists a $x_j \in G$ such that $(F \setminus \{x_i\}) \cup \{x_j\}$ is a facet of $\Delta_t(C_n)$. We have to consider two cases. If $x_i \in F$ and $x_i \notin G$, then we choose $x_j \in G$ such that $x_j \notin F$. Thus $(F \setminus \{x_i\}) \cup \{x_j\} = G$ which is a facet of $\Delta_t(C_n)$.

For other case, if $x_i \in F$ and $x_i \in G$, then we choose $x_j \in G$ such that x_j is the same x_i . Therefore $(F \setminus \{x_i\}) \cup \{x_i\} = F$ is a facet of $\Delta_t(C_n)$ which completes the proof.

§4. Stanley Decompositions

Let R be any standard graded K- algebra over an infinite field K, i.e, R is a finitely generated graded algebra $R = \bigoplus_{i \geq 0} R_i$ such that $R_0 = K$ and R is generated by R_1 . There are several characterizations of the depth of such an algebra. We use the one that depth (R) is the maximal length of a regular R- sequence consisting of linear forms. Let $x_F = \sqcap_{i \in F} x_i$ be a squarefree monomial for some $F \subseteq [n]$ and $Z \subseteq \{x_1, \dots, x_n\}$. The K- subspace $x_F K[Z]$ of $S = K[x_1, \dots, x_n]$ is the subspace generated by monomials $x_F u$, where u is a monomial in the polynomial ring K[Z]. It is called a square free Stanley space if $\{x_i : i \in F\} \subseteq Z$. The dimension of this Stanley space is |Z|. Let Δ be a simplicial complex on $\{x_1, \dots, x_n\}$. A square free Stanley decomposition \mathcal{D} of $K[\Delta]$ is a finite direct sum $\bigoplus_i u_i K[Z_i]$ of squarefree Stanley spaces which is isomorphic as a \mathbb{Z}^n - graded K- vector space to $K[\Delta]$, i.e.

$$K[\Delta] \cong \bigoplus_{i} u_i K[Z_i].$$

We denote by sdepth (\mathcal{D}) the minimal dimension of a Stanley space in \mathcal{D} and define sdepth $(K[\Delta])$ = max{sdepth (\mathcal{D}) }, where \mathcal{D} is a Stanley decomposition of $K[\Delta]$. Stanley conjectured in [10]

the upper bound for the depth of $K[\Delta]$ holding with

$$\operatorname{depth}(K[\Delta]) \leq \operatorname{sdepth}(K[\Delta]).$$

Also we recall another conjecture of Stanley. Let Δ be again a simplicial complex on $\{x_1, \dots, x_n\}$ with facets G_1, \dots, G_t . The complex Δ is called partitionable if there exists a partition $\Delta = \bigcup_{i=1}^t [F_i, G_i]$ where $F_i \subseteq G_i$ are suitable faces of Δ . Here the interval $[F_i, G_i]$ is the set of faces $\{H \in \Delta : F_i \subseteq H \subseteq G_i\}$. In [11] and [12] respectively Stanley conjectured each Cohen-Macaulay simplicial complex is partitionable. This conjecture is a special case of the previous conjecture. Indeed, Herzog, Soleyman Jahan and Yassemi [7] proved that for Cohen-Macaulay simplicial complex Δ on $\{x_1, \dots, x_n\}$ we have that depth $(K[\Delta]) \le$ sdepth $(K[\Delta])$ if and only if Δ is partitionable. Since each vertex decomposable simplicial complex is shellable and each shellable complex is partitionable. Then as a consequence of our results, we obtain

Corollary 3.1 If n = t or t + 1 then $\Delta_t(C_n)$ is partitionable and Stanley's conjecture holds for $K[\Delta_t(C_n)]$.

Acknowledgment. The author is deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

- [1] A. Aliloee and S. Faridi, Betti numbers of the path ideals of cycles and lines, preprint (2011).
- [2] A. Bj'orner, Topological methods, Handbook of combinatorics, Vol.1, 2, 1819-1872, Elsevier, Amsterdam, (1995).
- [3] A. Conca and E. De Negri, M-sequences, graph ideals and ladder ideals of linear type, J. Algebra, 211 (1999), no. 2, 599-624.
- [4] J. A. Eagon and V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure and Applied Algebra, 130 (1998), 265-275.
- [5] J. Herzog and T. Hibi, Monomial Ideals, in: GTM 260, Springer, London, (2010).
- [6] J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math. J., 153 (1999), 141-153.
- [7] J. Herzog, A. Soleyman Jahan and S. Yassemi, Stanley decompositions and partitionable simplicial complexes, *J. Alger. Comb.*, 27(2008), 113-125
- [8] J. He and A. Van Tuyl, Algebraic properties of the path ideal of a tree, *Comm. Algebra.*, 38 (2010), 1725-1742.
- [9] C. A. Francisco and A. Van Tuyl, Sequentially Cohen-Macaulay edge ideals, Proc. Amer. Math. Soc., (2007). No.8, 2327-2337.
- [10] R. P. Stanley, Linear Diophantine equations and local cohomology, *Invent. Math.*, 68(1982), No 2, 175-193.
- [11] R. P. Stanley, Combinatorics and Commutative Algebra (Second edition), Progress in Mathematics, 41, Birkhauser Boston 1996.

- [12] R. p. Stanley, Positivity problems and conjectures in algebraic combinatorics, In *Mathematics: Frontiers and Perspectives*, 295-319, Amer. Math. Soc., Providence, RI 2000.
- [13] S. Saeedi Madani, D. Kiani and N. Terai, Sequentially Cohen-Macaulay path ideals of cycles, *Bull. Math. Soc. Sci. Math. Roumanie Tome*, 54 (102), No. 4, (2011), 353-363.
- [14] E. Sampathkumar, P.S.K Reddy, M.S Subramanya, The line n- sigraph of a Symmetric n-sigraph, *Southeast Asian Bull. Matt.*, 34 (5)(2010), 953-958.
- [15] R. Woodroofe, Vertex decomposable graphs and obstructions to shellability, *Proc. Amer. Math. Soc.*, 137 (2009), 3235-3246.