Independent Open Irredundant Colorings of Graphs

T.Muthulakshmi and M.Subramanian

(Department of Mathematics, Regional Centre, Anna University: Tirunelveli Region, Tirunelveli- 627 007, India)

E-mail: laxmemu@gmail.com, subramanian.m@auttvl.ac.in

Abstract: A vertex $v \in V - S$ is an external private neighbor of u with respect to S if v is adjacent to u but no other vertex in S. A set $S \subseteq V$ is open irredundant if every vertex in S has an external private neighbor with respect to S. A set S is called an independent open irredundant set or ioir-set if S is an independent set and every vertex in S has an external private neighbor with respect to S. An independent open irredundant coloring of a graph G is a partition of V(G) into independent open irredundant sets. In this paper, we introduce the study of independent open irredundant colorings of graphs.

Key Words: Independence, irredundance, open irredundant coloring, independent open irredundant coloring, Smarandachely *k*-independent open irredundant set.

AMS(2010): 05C15, 05C69.

§1. Introduction

By a graph G = (V, E) we mean a finite, undirected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [2].

Domination is a well studied concept in graph theory. For an excellent treatment of fundamentals of domination we refer to the book by Haynes et al. [6]. Several advanced topics in domination are given in the book edited by Haynes et al. [7].

The neighbourhood of a vertex $x \in V(G)$ in the graph G is denoted by N(x) and the closed neighbourhood $\{x\} \cup N(x)$ by N[x]. If X is a subset of V(G), then $N[X] = \bigcup_{x \in X} N[x]$ and the subgraph induced by X is denoted by G[X].

In 1999, Cockayne [3] introduced the study of a large class of generalized irredundant sets in graphs. Each type of a generalized irredundant set $S \subset V$ is defined by the types of private neighbors (i.e self, internal or external) that each vertex in the set must have. A subset S of V in a graph G is said to be *independent* if no two vertices in S are adjacent. Let $u \in S$. A vertex $v \in V - S$ is an external private neighbor of u with respect to S if v is adjacent to u but no other vertex in S. A vertex $u \in S$ is its own private neighbor if it is not adjacent to any vertex in S. A set S is called *irredundant* if every vertex in S is either its own private neighbor or has an external private neighbor, with respect to S. A set S is called an *independent open*

¹Received March 6, 2018, Accepted December 6, 2018.

irredundant set or ioir-set if S is an independent set and every vertex in S has an external private neighbor.

Generally, a set S is called a Smarandachely k-independent open irredundant set if there is a subset $V_0 \subset V$ with $|V_0| = k$ such that S is an independent set and every vertex in S has an external private neighbor in V_0 . Clearly, if $V_0 = V$, a Smarandachely |G|-independent open irredundant set is nothing else but an ioir-set.

In [3], Cockayne identifies 12 types of generalised irredundant sets the properties of which are hereditary. Perhaps the most interesting of these are the ioir-sets. One can therefore define ioir(G) to equal the minimum size of a maximal ioir-set and IOIR(G) to equal the maximum size of an ioir-set. These generalized irredundant sets are also studied by Finbow in [5] and Cockayne and Finbow in [4].

If a collection of edges between two sets of vertices, say A and B, define a bijection between A and B, then we call such a perfect matching a bijective matching.

A proper k-coloring of a graph G is a partition $\pi = \{V_1, V_2, \cdots, V_k\}$ of V into k non-empty independent sets. The chromatic number $\chi(G)$ equals the minimum integer k for which G has a k-coloring. More generally given a property P concerning subsets of V, a P-coloring is a partition $\pi = \{V_1, V_2, \dots, V_k\}$ of V into sets, such that each V_i has the property P. If the property P is independence, the P-coloring is the usual coloring and if the property P is domination, the corresponding P-coloring gives the concept of domatic partition. Haynes et al. [8] introduced the concept of irredundant colorings and open irredundant colorings of graphs. Arumugam et al. [1] initiate a study of open irredundant colorings and obtain some results on irredundant colorings and open irredundant colorings. Motivated by the work on [1,8], we initiate a study of independent open irredundant colorings. An independent open irredundant coloring of a graph G is a partition of V into nonempty independent open irredundant sets. The independent open irratic number is the minimum order of an independent open irredundant coloring of G, and it is denoted by $\chi_{ioir}(G)$. In section 2, we obtain some results on independent open irredundant colorings. A study of harmonious, achromatic coloring on middle graph, central graph, total graph, line graph of various classes of graphs can be found in [10, 11, 12, 13]. In Section 3, we investigate the independent open irratic number for the middle graph, central graph, total graph, line graph of double star graph families.

We need the following theorems.

Theorem 1.1([6]) If a graph G has no isolated vertices, then G has a minimum dominating set which is also open irredundant.

Theorem 1.2([8]) For any graph G, $n/IR(G) \le \chi_{ir}(G) \le n - IR(G) + 1$.

Observation 1.3([1]) Since any *oir*-coloring of G is an *ir*-coloring of G, it follows that $\chi_{ir}(G) \leq \chi_{oir}(G)$.

Theorem 1.4([8]) For any graph G, $\chi_{oir}(G) = 2$ if and only if V(G) can be partitioned into two subsets V_1 and V_2 such that there exists a bijective matching between V_1 and V_2 .

Throughout, we assume that G is a graph without isolated vertices.

§2. Independent Open Irredundant Colorings

Observation 2.1 Since any *ioir*-coloring of G is an *oir*-coloring and χ -coloring of G, it follows that $\chi_{ir}(G) \leq \chi_{oir}(G) \leq \chi_{ioir}(G)$ and $\chi_{ir}(G) \leq \chi_{(ioir)}(G)$.

Observation 2.1 Since V(G) is not an *ioir*-set of G, it follows that $2 \le \chi_{ioir}(G) \le n$.

Theorem 2.3 For any graph G, $\chi_{ioir}(G) = 2$ if and only if V(G) can be partitioned into two independent subsets V_1 and V_2 such that there exists a bijective matching between V_1 and V_2 .

Proof The proof follows from Theorem 1.4.

Theorem 2.4 Let G be a graph of order n. Then $\chi_{ioir}(G) = n$ if and only if for any independent set $S \subset V$, there exists $v, w \in S$ such that $N(v) \subseteq N(w)$ or $N(w) \subseteq N(v)$.

Proof Assume that $\chi_{ioir}(G) = n$. Suppose there is an independent set $S \subset V$ such that $N(v) \nsubseteq N(w)$ and $N(w) \nsubseteq N(v) \ \forall v, w \in S$. Then there exists a vertex $z_1 \in N(v)$ such that z_1 is not adjacent to w and there exists a vertex $z_2 \in N(w)$ such that z_2 is not adjacent to v. Hence $\{v, w\}$ is an ioir-set and $IOIR(G) \ge 2$. Therefore $\chi_{ioir}(G) \le n-1$ which is a contradiction. The converse is obvious.

Observation 2.5 For any complete graph K_n and complete bipartite graph $K_{m,n}$, we have $\chi_{ioir}(K_n) = n$ and $\chi_{ioir}(K_{m,n}) = m + n$.

Observation 2.6 For any tree T, $\chi_{ioir}(T) = n$ if and only if T is a star.

Theorem 2.7 For the path $P_n = (v_1, v_2, \dots, v_n)$, we have $\chi_{ioir}(P_n) = 3$.

Proof Let $V_1 = \{v_1, v_4, v_7, v_{10}, \dots\}$, $V_2 = \{v_2, v_5, v_8, v_{11}, \dots\}$, $V_3 = \{v_3, v_6, v_9, v_{12}, \dots\}$. Clearly $\{V_1, V_2, V_3\}$ is a partition of V(G) into independent open irredundant sets. Hence $\chi_{ioir}(P_n) \leq 3$. By Theorem 2.3, $\chi_{ioir}(P_n) \geq 3$ and so $\chi_{ioir}(P_n) = 3$.

Theorem 2.8 For the cycle $C_n = (v_1, v_2, \dots, v_n)$, we have

$$\chi_{ioir}(C_n) = \begin{cases} 4 & \text{if } n = 4 \text{ or } n = 7\\ 3 & \text{otherwise} \end{cases}$$

Proof We can easily observe that $\chi_{ioir}(C_4) = 4$. We now prove that $\chi_{ioir}(C_n) = 3$ for $n \neq 4$ or 7. By Theorem 2.3, $\chi_{ioir}(C_n) \geq 3$. Now we consider three cases.

Case 1. $n \equiv 0 \pmod{3}$.

Let $V_1 = \{v_1, v_4, v_7, v_{10}, \dots, v_{n-2}\}$, $V_2 = \{v_2, v_5, v_8, v_{11}, \dots, v_{n-1}\}$ and $V_3 = \{v_3, v_6, v_9, v_{12}, \dots, v_n\}$. Clearly $\{V_1, V_2, V_3\}$ is a partition of V(G) into independent open irredundant sets since any three consecutive vertices in the cycle receives distinct colors. Hence $\chi_{ioir}(C_n) \leq 3$.

Case 2. $n \equiv 1 \pmod{3}$.

Let
$$V_1 = \{v_1, v_3, v_6, v_8, v_{11}, v_{14}, v_{17}, \dots, v_{l-3}, v_l, v_{l+3}, \dots, v_{n-2}\}, V_2 = \{v_2, v_4, v_7, v_9, v_{12}, \dots, v_{n-2}\}$$

 $v_{15}, v_{18}, \dots, v_{l-3}, v_l, v_{l+3}, \dots, v_{n-1}$, $V_3 = \{v_5, v_{10}, v_{13}, v_{16}, v_{19}, \dots, v_{l-3}, v_l, v_{l+3}, \dots, v_n\}$. We now prove that $\{V_1, V_2, V_3\}$ is a partition of V(G) into independent open irredundant sets. Clearly the sets V_i , i = 1, 2, 3 are independent. Hence it is enough to prove that every vertex in the set V_i has an external private neighbour with respect to V_i , i = 1, 2, 3. Note that v_1, v_5, v_6 are the external private neighbors of v_2, v_4, v_7 respectively and v_n, v_4, v_7 and v_{10} are the external private neighbors of v_1, v_3, v_8 and v_9 respectively. All other remaining vertices v_i have external private neighbor v_{i-1} .

Case 3. $n \equiv 2 \pmod{3}$.

Let $V_1 = \{v_1, v_4, v_7, v_{10}, \dots, v_{n-1}\}$, $V_2 = \{v_2, v_5, v_8, v_{11}, \dots, v_n\}$ and $V_3 = \{v_3, v_6, v_9, v_{12}, \dots, v_{n-2}\}$. Since v_2, v_{n-1}, v_{n-2} are the external private neighbors of v_1, v_n, v_{n-1} respectively and remaining vertices v_i have external private neighbor $v_{i+1}, \{V_1, V_2, V_3\}$ is a partition of V(G) into independent open irredundant sets. Hence $\chi_{ioir}(C_n) \leq 3$. Now we prove that $\chi_{ioir}(C_7) = 4$. Since any independent open irredundant set of C_7 has at most two vertices, minimum four colors are required to color the vertices of C_7 . Let $V_1 = \{v_1, v_3\}$, $V_2 = \{v_2, v_6\}$, $V_3 = \{v_3, v_5\}$ and $V_4 = \{v_7\}$. Clearly $\{V_1, V_2, V_3, V_4\}$ is an *ioir*-coloring of C_7 . Hence $\chi_{ioir}(C_7) = 4$.

Proposition 2.9 For any graph G, $n/IOIR(G) \le \chi_{ioir}(G) \le n-IOIR(G)+1$, where IOIR(G) is the upper independent open irredundance number of G.

Proof Let $\chi_{ioir}(G) = k$. Let $\{V_1, V_2, \dots, V_k\}$ be an ioir-coloring of G. Since $|V_i| \leq IOIR(G)$, it follows that $n = \sum_{i=1}^k |V_i| \leq k.IOIR(G)$. Hence $n/IOIR(G) \leq \chi_{ioir}(G)$. Now, let S be an independent open irredundant set of G with |S| = IOIR(G). Then $\{S\} \cup \{\{v\} : v \in V - S\}$ is an ioir-coloring of G. Hence $\chi_{ioir}(G) \leq n - IOIR(G) + 1$.

Theorem 2.10 Let G be a connected graph with $\delta = 1$ and let r denote the maximum number of leaves adjacent to a support vertex v of G. Then $\chi_{ioir}(G) \geq r + 2$.

Proof Let v_1, v_2, \dots, v_r be the leaves adjacent to v. Since any independent open irredundant set in G contains at most one of the leaves v_i , the result follows.

Observation 2.11 Let $T \neq K_{1,n}$ be any tree and let r denote the maximum number of leaves adjacent to a support vertex v of T. Then $\chi_{ioir}(T) \geq r + 2$.

§3. IOIR-Coloring on Double Star Graph Families

In this section we investigate the independent open irratic number for the central graph, middle graph, total graph, line graph of star graph $K_{1,n}$ and double star graph $K_{1,n,n}$.

The central graph C(G) of a graph G is formed by adding an extra vertex on each edge of G, and then joining each pair of vertices of the original graph which were previously non-adjacent.

Let G be a graph with vertex set V(G) and edge set E(G). The middle graph of G, denoted by M(G) is defined as follows. The vertex set of M(G) is $V(G) \cup E(G)$. Two vertices x, y in the vertex set M(G) are adjacent in M(G) in case one of the following holds: (i)x, y are in E(G) and x, y are adjacent in G. (ii)x is in V(G), y is in E(G), and x, y are incident in G.

The total graph of G has vertex set $V(G) \cup E(G)$, and edges joining all elements of this vertex set which are adjacent or incident in G.

The line graph of G denoted by L(G) is the graph with vertices are the edges of G with two vertices of L(G) adjacent whenever the corresponding edges of G are adjacent.

A star is a complete bipartite graph $K_{1,m}$ with $m \geq 2$, and the unique vertex v of this star of degree m is called the center.

Double star $K_{1,n,n}$ is a tree obtained from the star $K_{1,n}$ by adding a new pendant edge of the existing n pendant vertices. It has 2n+1 vertices and 2n edges. Let $V(K_{1,n,n}) = \{v\} \cup \{v_1, v_2, \dots, v_n\} \cup \{u_1, u_2, \dots, u_n\}$ and $E(K_{1,n,n}) = \{e_1, e_2, \dots, e_n\} \cup \{s_1, s_2, \dots, s_n\}$.

Proposition 3.1 For any star graph $K_{1,n}$, we have

- (i) $\chi_{ioir}(M(K_{1,n})) = n + 2;$
- (ii) $\chi_{ioir}(C(K_{1,n})) = n + 1;$
- $(iii) \chi_{ioir}(T(K_{1,n})) = n + 2;$
- (iv) $\chi_{ioir}(L(K_{1,n})) = n$.

Proof (i) By the definition of middle graph, each edge vv_i in $K_{1,n}$ is subdivided by the vertex e_i in $M(K_{1,n})$ and the vertices v, e_1, e_2, \dots, e_n induce a clique of order n+1 in $M(K_{1,n})$. i.e $V(M(K_{1,n}) = \{v\} \cup \{v_i : 1 \le i \le n\} \cup \{e_i : 1 \le i \le n\}$. Hence n+1 distinct colors are required to color the vertices v, e_1, e_2, \dots, e_n . Note that e_i is the only external private neighbour of v_i with respect to any set $S \subseteq V$. Therefore we assign the color which is different from the already assigned colors to v_i . Hence $\chi_{ioir}(M(K_{1,n})) \ge n+2$. Assign ioir-coloring as follows: For $1 \le i \le n$, assign the color c_i for e_i and assign the color c_{n+1} to v. For $1 \le i \le n$, assign the color c_{n+2} to all the vertices v_1, v_2, \dots, v_n . Hence $\chi_{ioir}(M(K_{1,n})) \le n+2$.

- (ii) By the definition of central graph, each edge vv_i in $K_{1,n}$ is subdivided by the vertex e_i in $C(K_{1,n})$ and the vertices v_1, v_2, \cdots, v_n induce a clique of order n in $C(K_{1,n})$. i.e $V(C(K_{1,n}) = \{v\} \cup \{v_i : 1 \le i \le n\} \cup \{e_i : 1 \le i \le n\}$. Since v_i $(1 \le i \le n)$ induce a clique of order n, we have $\chi_{ioir}(C(K_{1,n})) \ge n$. We now prove that $\chi_{ioir}(C(K_{1,n})) \ge n + 1$. Suppose $\chi_{ioir}(C(K_{1,n})) = n$. Let V_i be the set of vertices which are colored with c_i , i = 1 to n. Let we assign the color c_i to v_i $(1 \le i \le n)$ and assign the color c_1 to v. Therefore the vertices e_1, e_2, \cdots, e_n are colored by $c_2, c_3, \cdots, c_{n-1}, c_n$ in some arrangement. Hence at least two of the vertices e_i and e_j are colored with the same color c_m . Clearly any vertex adjacent to vertices e_i and e_j is also joined to vertex of color c_m . It follows that there is no external private neighbour for the vertices e_i and e_j with respect to V_m . This is a contradiction. Hence $\chi_{ioir}(C(K_{1,n})) \ge n + 1$. Assign ioir-coloring as follows: For $1 \le i \le n$, assign the color c_i for v_i and assign the color c_{n+1} for each e_i . Finally we assign the color c_1 to v. Hence $\chi_{ioir}(C(K_{1,n})) \le n + 1$.
- (iii) By the definition of total graph, we have $V(T(K_{1,n})) = \{v\} \cup \{v_i : 1 \le i \le n\}$ $\cup \{e_i : 1 \le i \le n\}$, in which the vertices v, e_1, e_2, \dots, e_n induce a clique of order n+1. Clearly $\chi_{ioir}(T(K_{1,n})) \ge n+1$. Let we assign the color c_i to e_i $(1 \le i \le n)$ and assign the color c_{n+1} to v. Since e_i and v are the external private neighbors of v_i with respect to V_i and V_{n+1} , we need one more color to v_i . Hence $\chi_{ioir}(T(K_{1,n})) \ge n+2$. Assign ioir-coloring as follows: For $1 \le i \le n$, assign the color c_i for e_i and assign the color c_{n+1} to v. Finally we assign the color c_{n+2} to each v_i . Hence $\chi_{ioir}(T(K_{1,n})) \le n+2$.

(iv) Since
$$L(K_{1,n}) \cong K_n$$
, $\chi_{ioir}(L(K_{1,n})) = n$.

Proposition 3.2 For any double star graph $K_{1,n,n}$, we have

$$\chi_{ioir}(M(K_{1,n,n})) = \begin{cases} n+1 & \forall n \ge 3\\ 4 & n = 2 \end{cases}$$

Proof Clearly we observe that $\chi_{ioir}(M(K_{1,2,2})) = 4$. By the definition of middle graph, each edge vv_i and v_iu_i $(1 \le i \le n)$ in $K_{1,n,n}$ are subdivided by the vertices e_i and s_i in $M(K_{1,n,n})$ and the vertices v, e_1, e_2, \dots, e_n induce a clique of order n+1 (say K_{n+1}) in $M(K_{1,n,n})$. i.e $V(M(K_{1,n,n})) = \{v\} \cup \{v_i : 1 \le i \le n\} \cup \{u_i : 1 \le i \le n\} \cup \{e_i : 1 \le i \le n\} \cup \{s_i : 1 \le i \le n\}$. Clearly $\chi_{ioir}(M(K_{1,n,n})) \ge n+1$. Assign ioir-coloring as follows: For $1 \le i \le n$, assign the color c_i for e_i and assign the color c_{n+1} to v. For $1 \le i \le n$, assign two distinct colors c_i and c_m other than c_{n+1} and c_i to the vertices v_i and s_i . Finally, assign the color c_{n+1} to each $u_i(1 \le i \le n)$. Let V_i be the set of vertices which are colored with c_i , i = 1 to n + 1. Note that v is the external private neighbor of all the vertices e_i with respect to V_i , $1 \le i \le n$ and e_i 's are the external private neighbors of v with respect to V_{n+1} . For $1 \le i \le n$, s_i is the external private neighbor of s_i with respect to V_{n+1} . For $1 \le i \le n$, s_i is the external private neighbor of s_i with respect to V_m . Hence $\chi_{ioir}(M(K_{1,n,n})) \le n + 1$.

Proposition 3.3 For any double star graph $K_{1,n,n}$, we have $\chi_{ioir}(C(K_{1,n,n})) = n + 2$.

Proof By the definition of central graph, each edge vv_i and v_iu_i $(1 \le i \le n)$ in $K_{1,n,n}$ are subdivided by the vertices e_i and s_i in $C(K_{1,n,n})$. The vertices v, u_1, u_2, \cdots, u_n induce a clique of order n+1 (say K_{n+1}) and the vertices $v_i (1 \le i \le n)$ induce a clique of order n in $C(K_{1,n,n})$. i.e $V(C(K_{1,n,n})) = \{v\} \cup \{v_i : 1 \le i \le n\} \cup \{u_i : 1 \le i \le n\} \cup \{e_i : 1 \le i \le n\} \cup \{s_i : 1 \le i \le n\}.$ Clearly $\chi_{ioir}(C(K_{1,n,n})) \geq n+1$. We now prove that $\chi_{ioir}(C(K_{1,n,n})) \geq n+2$. Suppose $\chi_{ioir}(C(K_{1,n,n})) = n+1$. Since $v, u_i \ (1 \le i \le n)$ induce a clique of order n+1, let us assign the color c_{n+1} to v and assign the color c_i to $u_i (1 \le i \le n)$. Since e_i has degree 2 and v is adjacent to the vertex of color $c_i \, \forall i, \, v_i$ is the only external private neighbour of e_i . But v_i is adjacent to the vertex of color c_j , $\forall j \neq i$. Therefore e_i must be colored only with c_i and v_i must be colored only with c_{n+1} . Since v_i $(1 \le i \le n)$ induce a clique of order n, v_l , it leads to a contradiction. Hence $\chi_{ioir}(C(K_{1,n,n})) \geq n+2$. Consider the colors $c_1, c_2, \cdots, c_{n+2}$. Assign ioir-coloring as follows: Assign the colour c_{n+1} to v and assign the color c_i to u_i , where $1 \leq i \leq n$. Assign the color c_{n+1} to all the vertices s_1, s_2, \dots, s_n and assign the color c_{n+2} to all the vertices e_1, e_2, \cdots, e_n . Finally, we assign the color c_i to v_i for $1 \leq i \leq n$. Let V_i be the set of vertices which are colored with c_i , i = 1 to n + 2. For $1 \le i \le n$, e_i is the external private neighbor of v with respect to V_{n+1} and v_i is the external private neighbor of e_i with respect to V_{n+2} . For $1 \leq i \leq n$, e_i is the external private neighbor of v_i with respect to V_i and v_i is the external private neighbor of s_i with respect to V_{n+1} . Finally, v is the external private neighbor of all the vertices u_i with respect to V_i . Hence $\chi_{ioir}(C(K_{1,n,n})) \leq n+2$.

Proposition 3.4 For any double star graph $K_{1,n,n}$, we have $\chi_{ioir}(T(K_{1,n,n})) = n + 1$.

Proof By the definition of total graph, we have $V(T(K_{1,n,n})) = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{v_i : 1 \leq i \leq n\}$

 $\{u_i: 1 \leq i \leq n\} \cup \{e_i: 1 \leq i \leq n\} \cup \{s_i: 1 \leq i \leq n\}$ in which the vertices v, e_1, e_2, \cdots, e_n induce a clique of order n+1. Clearly $\chi_{ioir}(T(K_{1,n,n})) \geq n+1$. Consider the colors $c_1, c_2, \cdots, c_{n+1}$. Assign ioir-coloring as follows: Assign the color c_{n+1} to v and assign the colour c_i to e_i , where $1 \leq i \leq n$. For $1 \leq i \leq n$, assign two distinct colors other than c_{n+1} and c_i to the vertices v_i and s_i . Finally, assign the color c_{n+1} to each $u_i(1 \leq i \leq n)$. Hence $\chi_{ioir}(T(K_{1,n,n})) \leq n+1$. \square

Proposition 3.5 For any double star graph $K_{1,n,n}$, we have $\chi_{ioir}(L(K_{1,n,n})) = n + 1$.

Proof By the definition of line graph, each edge of $K_{1,n,n}$ taken to be as vertex in $(L(K_{1,n,n}))$. The vertices e_1, e_2, \dots, e_n induce a clique of order n and the vertices s_1, s_2, \dots, s_n are all pendant in $(L(K_{1,n,n}))$. i.e $V(L(K_{1,n,n})) = \{e_i : 1 \le i \le n\} \cup \{s_i : 1 \le i \le n\}$. From Theorem 2.10, we have $\chi_{ioir}(L(K_{1,n,n})) \ge n+1$. Assign ioir-coloring as follows: Assign the color c_{n+1} to all the vertices s_i , where $1 \le i \le n$ and assign the color c_i to e_i , where $1 \le i \le n$. Hence $\chi_{ioir}(L(K_{1,n,n})) \le n+1$.

References

- [1] S. Arumugam, K. Raja Chandrasekar and S. Sudha, Irredundant and open irredundant colorings of graphs, *Bulletin of the ICA*, (61)(2011), 24-36.
- [2] G. Chartrand and L. Lesniak, Graphs and Digraphs (4th Edition), CRC, 2005.
- [3] E.J. Cockayne, Generalized irredundance in graphs: hereditary and Ramsey numbers, J. Combin. Math. Combin. Comput., 31(1999), 15-31.
- [4] E.J. Cockayne and S. Finbow, Generalized irredundance in graphs: Nordhaus-Gaddum bounds, *Discuss.Math.Graph Theory* (To appear).
- [5] S. Finbow, Generalization of Irredundance in Graphs, Ph.D thesis, University of Victoria, 2003.
- [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1998).
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs-Advanced Topics, Marcel Dekker, Inc., New York, (1998).
- [8] T.W. Haynes, S.T. Hedetniemi, S.M. Hedetniemi, A.A. McRae and P.J. Slater, Irredundant colorings of graphs, *Bulletin of the ICA*, 54(2008), 103-121.
- [9] S.T. Hedetniemi, Unsolved algorithmic problems on trees, AKCE J. Graphs. Combin.,3, No 2 (2006), 1-37.
- [10] M. Venkatachalam, J. Vernold Vivin and K. Kaliraj, Harmonious coloring on double star graph families, *Tamkang Journal of Mathematics*, 2(43)(2012), 153-158.
- [11] J. Vernold Vivin, K. Thilagavathi and B. Anitha, On harmonious coloring of line graph of central graphs of bipartite graphs, *Journal of Combinatorics, Information and System Sciences*, No.1-4(combined) 32(2007), 233-240.
- [12] J. Vernold Vivin and K. Thilagavathi, On harmonious coloring of line graph of central graph of paths, *Applied Mathematical Sciences*, no.5 3(2009), 205-214.
- [13] J. Vernold Vivin: Ph.D thesis, Harmonious Coloring of Total Graphs, n-leaf, Central graphs and Circumdetic Graphs, Bharathiar University, Coimbatore, 2007.