Nonsplit Roman Domination in Graphs

C.Sivagnanam

(Department of General Requirements, College of Applied Sciences - Sur, Sultanate of Oman)

E-mail: choshi71@gmail.com

Abstract: A roman dominating function on a graph G is a function $f:V(G)\longrightarrow\{0,1,2\}$ satisfying the condition that every vertex $v\in V(G)$ for which f(v)=0, is adjacent to at least one vertex u with f(u)=2. The weight of a roman dominating function f is the value $w(f)=\sum_{v\in V}f(v)$. The minimum weight of a roman dominating function is called the roman domination number of G and is denoted by $\gamma_R(G)$. A roman dominating function f is called a nonsplit roman dominating function if the subgraph induced by the set $\{v:f(v)=0\}$ is connected. The minimum weight of a nonsplit roman dominating function is called the nonsplit roman domination number and is denoted by $\gamma_{nsr}(G)$. In this paper, we initiate a study of this parameter.

Key Words: Domination number, roman domination number and nonsplit roman domination number.

AMS(2010): 05C69.

§1. Introduction

The graph G = (V, E) we mean a finite, undirected, connected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. The degree of a vertex u in G is the number of edges incident with u and is denoted by $d_G(u)$, simply d(u). The minimum and maximum degree of a graph G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [3, 4]. Let $v \in V$. The open neighborhood and closed neighborhood of v are denoted by N(v) and $N[v] = N(v) \cup \{v\}$. If $S \subseteq V$ then $N(S) = \bigcup N(v)$ for all $v \in S$ and $N[S] = N(S) \cup S$.

and $N[v] = N(v) \cup \{v\}$. If $S \subseteq V$ then $N(S) = \bigcup_{v \in S} N(v)$ for all $v \in S$ and $N[S] = N(S) \cup S$. If $S \subseteq V$ and $u \in S$ then the private neighbor set of u with respect to S is defined by $pn[u,S] = \{v:N[v] \cap S = \{u\}\}$. For any set $S \subseteq V$, the subgraph induced by S is the maximal subgraph of S with vertex set S and is denoted by S. The vertex has degree one is called a pendant vertex. A support is a vertex which is adjacent to a pendant vertex. A weak support is a vertex which is adjacent to at least two pendant vertices. An unicyclic graph is a graph with exactly one cycle. A graph without cycle is called acyclic graph and a connected acyclic graph is called a tree. $H(m_1, m_2, \cdots, m_n)$ denotes the graph obtained from the graph S by attaching S and S by attaching S and S by attaching S and S by attaching S by a subject of S by a subject S by a subject S and S by a subject S by a s

¹Received January 31, 2016, Accepted August 23, 2016.

pendant edges to the vertex $v_i \in V(H), 1 \leq i \leq n$. The graph $K_2(m_1, m_2)$ is called bistar and it is also denoted by $B(m_1, m_2)$. $H(P_{m_1}, P_{m_2}, \dots, P_{m_n})$ is the graph obtained from the graph H by attaching an end vertex of P_{m_i} to the vertex v_i in $H, 1 \leq i \leq n$. The clique number $\omega(G)$ is the maximum order of the complete subgraph of the graph G.

A subset S of V is called a dominating set of G if every vertex in V-S is adjacent to at least one vertex in S. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$. V.R.Kulli and B.Janakiram [5] introduced the concept of nonsplit domination in graphs. Also T. Tamizh Chelvam and B. Jayaparsad [6] studied the same concept in the name of the complementary connected domination in graphs. A dominating set S is called a nonsplit dominating set of a graph G if the induced subgraph $\langle V-S\rangle$ is connected. The minimum cardinality of a nonsplit dominating set of G is called the nonsplit domination number of G and is denoted by $\gamma_{ns}(G)$. A dominating set(nonsplit dominating set) of minimum cardinality is called γ -set (γ_{ns} -set) of G. E.J.Cockayne et.al [2] studied the concept of roman domination first. A roman dominating function on a graph G is a function $f:V(G)\longrightarrow \{0,1,2\}$ satisfying the condition that every vertex $v\in V$ for which f(v)=0 is adjacent to at least one vertex $u \in V$ with f(v) = 2. The weight of a roman dominating function is the value $w(f) = \sum_{v \in V} f(v)$. The minimum weight of a roman dominating function is called the roman dominating number of G and is denoted by $\gamma_R(G)$. P.Roushini Leely Pushpam and S.Padmapriea [6] introduced the concept of restrained roman domination in graphs. A roman dominating function f is called a restrained roman dominating function if the subgraph induced by the set $\{v: f(v) = 0\}$ contains no isolated vertex. The minimum weight of a restrained roman dominating function is called the restrained roman domination number of G and is denoted by $\gamma_{rR}(G)$. In this paper we introduce the concept of nonspilt roman domination and initiate a study of the corresponding parameter.

Theorem 1.1 ([7]) Let G be a graph. Then $\gamma_{ns}(G) = n - 1$ if and only if G is a star.

§2. Nonsplit Roman Domination Number

Definition 2.1 A roman dominating function f is called a nonsplit roman dominating function if the subgraph induced by the set $\{v: f(v) = 0\}$ is connected. The minimum weight of a nonsplit roman dominating function is called the nonsplit roman domination number of G and is denoted by $\gamma_{nsr}(G)$.

Remark 2.2 For a graph G, let $f: V \longrightarrow \{0,1,2\}$ and let (V_0,V_1,V_2) be the ordered partion of V induced by f, where $V_i = \{v \in V : f(v) = i\}$. Note that there exists an one to one correspondence between the function $f: V \longrightarrow \{0,1,2\}$ and the ordered partition (V_0,V_1,V_2) of V. Thus we will write $f = (V_0,V_1,V_2)$.

A function $f = (V_0, V_1, V_2)$ is a nonsplit roman dominating function if $V_0 \subseteq N(V_2)$ and the induced subgraph $\langle V_0 \rangle$ is connected. The minimum weight of a nonsplit roman dominating function of G is called the nonsplit roman domination number of G and is denoted by $\gamma_{nsr}(G)$. We say that a function $f = (V_0, V_1, V_2)$ is a γ_{nsr} -function if it is an nonsplit roman dominating

function and $w(f) = \gamma_{nsr}(G)$. Also $w(f) = |V_1| + 2|V_2|$.

A few nonsplit roman domination number of some standard graphs are listed in the following.

- (1) Any nontrivial path P_n , $\gamma_{nsr}(P_n) = n$;
- (2) If $n \geq 4$ then $\gamma_{nsr}(C_n) = n$;
- (3) If $n \geq 2$ then $\gamma_{nsr}(K_n) = 2$;
- (4) $\gamma_{nsr}(W_n) = 2;$
- (5) $\gamma_{nsr}(K_{1,n-1}) = n;$
- (6) $\gamma_{nsr}(K_{r,s}) = 4 \text{ where } r, s \ge 2.$

Theorem 2.3 For a graph G, $\gamma_{ns}(G) \leq \gamma_{nsr}(G) \leq 2\gamma_{ns}(G)$.

Proof Let $f = (V_0, V_1, V_2)$ be a γ_{nsr} -function. Then $V_1 \cup V_2$ is a nonsplit dominating set of G. Hence $\gamma_{ns} \leq |V_1 \cup V_2| = |V_1| + |V_2| \leq |V_1| + 2|V_2| = \gamma_{nsr}$. Also, let S be any γ_{ns} -set of G. Then $f = (V - S, \phi, S)$ is a nonsplit roman dominating function of G. Hence $\gamma_{nsr}(G) \leq 2|S| = 2\gamma_{ns}(G)$.

Observation 2.4 For a nontrivial graph G,

- (i) $\gamma(G) \leq \gamma_{ns}(G) \leq \gamma_{nsr}(G)$;
- (ii) $2 \le \gamma_{nsr}(G) \le n$.

Remark 2.5 (i) For any connected graph G, $\gamma_{nsr}(G) = 2$ if and only if there exists a non cut vertex v such that $d_G(v) = n - 1$. Thus $\gamma_{nsr}(G) = 2$ if and only if $G = H + K_1$ for some connected graph H.

(ii) For any connected spanning subgraph H of G, $\gamma_{nsr}(G) \leq \gamma_{nsr}(H)$.

Theorem 2.6 If G contains a triangle then $\gamma_{nsr}(G) \leq n-1$.

Proof Let v_1, v_2, v_3 form a triangle in G. Then $f = (\{v_1, v_2\}, V - \{v_1, v_2, v_3\}, \{v_3\})$ is a nonsplit roman dominating function of G and hence $\gamma_{nsr}(G) \leq n-1$.

Theorem 2.7 Let $v \in V(G)$ such that $d_G(v) = \Delta$ and $\langle N(v) \rangle$ be connected. Then $\gamma_{nsr}(G) \leq n - \Delta + 1$.

Proof Let us take $f = (N(v), V - N[v], \{v\})$. Then it is clear that f is a nonsplit roman dominating function. Hence $\gamma_{nsr}(G) \leq |V - N[v]| + 2 = n - (\Delta + 1) + 2 = n - \Delta + 1$.

Definition 2.8 Let $f = (V_0, V_1, V_2)$ be a nonsplit roman dominating function and let $u \in V_i, 0 \le i \le 2$. The function f_u is defined as follows:

Let V_j and V_k be the two sets in the ordered partition (V_0, V_1, V_2) other than V_i .

$$V'_{l} = \begin{cases} V_{i} - \{u\}, & \text{if } l = i \\ V_{j} \cup \{u\}, & \text{if } l = j \\ V_{k}, & \text{if } l = k, 0 \le l \le 2. \end{cases}$$

Then the function $f_u = (V_0', V_1', V_2')$.

It is clear that for every $u \in V_i$ there are two functions f_u .

Definition 2.9 A nonsplit roman dominating function $f = (V_0, V_1, V_2)$ is said to be a minimal nonsplit roman dominating function if for every $u \in V_i, 0 \le i \le 2$ either $w(f_u) > w(f)$ or f_u is not a nonsplit roman dominating function.

We now proceed to obtain a characterization of minimal nonsplit roman dominating function.

Theorem 2.10 A nonsplit roman dominating function $f = (V_0, V_1, V_2)$ is minimal if and only if for each $u \in V_1$ and $v \in V_2$ the following conditions are true.

- (i) $N(u) \cap V_0 = \phi \text{ or } N(u) \cap V_2 = \phi$;
- (ii) There exists a vertex $w \in V_0$ such that $N(w) \cap V_2 = \{v\}$.

Proof Let $f = (V_0, V_1, V_2)$ be a minimal nonsplit roman dominating function and let $u \in V_1, v \in V_2$. Suppose $N(u) \cap V_0 \neq \phi$ and $N(u) \cap V_2 \neq \phi$. Then $f_u = (V_0 \cup \{u\}, V_1 - \{u\}, V_2)$ is a nonsplit roman dominating function with $w(f_u) = |V_1| - 1 + 2|V_2| \leq w(f)$ which is a contradiction. Hence either $N(u) \cap V_0 = \phi$ or $N(u) \cap V_2 = \phi$.

Suppose there is no vertex $w \in V_0$ such that $N(w) \cap V_2 = \{v\}$. Then $f_v = (V_0, V_1 \cup \{v\}, V_2 - \{v\})$ is a nonsplit roman dominating function with $w(f_v) = |V_1| + 1 + 2(|V_2| - 1) = |V_1| + 2|V_2| - 1 \le w(f)$ which is a contradiction. Hence for every $v \in V_2$ there exists a vertex $w \in V_0$ such that $N(w) \cap V_2 = \{v\}$. The converse is straightforward.

Theorem 2.11 For a nontrivial graph G, $\gamma_{nsr}(G) + \omega(G) \leq n + 2$ where $\omega(G)$ is the clique number of G.

Proof Let S be a set of vertices of G such that $\langle S \rangle$ is complete with $|S| = \omega(G)$. Then $f = (S - \{u\}, V - S, \{u\})$ is a nonsplit roman dominating function of G. Hence $\gamma_{nsr}(G) \leq |V - S| + 2 = n - \omega(G) + 2$. Thus $\gamma_{nsr}(G) + \omega(G) \leq n + 2$.

Theorem 2.12 For a graph G, $\gamma_{nsr}(G) \geq 2n - m - 1$.

Proof Let $f = (V_0, V_1, V_2)$ be a γ_{nsr} -function. Since $\langle V_0 \rangle$ is connected and every vertex in V_0 is adjacent to at least one vertex in V_2 , $\langle V_0 \cup V_2 \rangle$ contains at least $2|V_0| - 1$ edges.

Case 1. $\langle V_1 \rangle$ is connected.

Then $\langle V_1 \rangle$ contains at least $|V_1| - 1$ edges. Since G is connected there should be an edge between a vertex of V_1 and a vertex of $V_0 \cup V_2$. Hence there are at least $|V_1|$ edges other than the edges in $\langle V_0 \cup V_2 \rangle$.

Case 2. $\langle V_1 \rangle$ is disconnected.

Let G_1, G_2, \dots, G_k be the components of $\langle V_1 \rangle$. Since each G_i contains at least $|V(G_i)| - 1$ edges and since G is connected there exists an edge between a vertex of G_i and a vertex of

 $V_0 \cup V_2$. Hence there are at least $\Sigma(|V(G_i)|-1)+k$ (= $|V_1|$) edges.

Hence
$$m \ge 2|V_0| - 1 + |V_1| = 2(n - |V_2| - |V_1|) - 1 + |V_1| = 2n - (2|V_2| + |V_1|) - 1 = 2n - \gamma_{nsr}(G) - 1$$
. Hence $\gamma_{nsr}(G) \ge 2n - m - 1$.

Corollary 2.13 For a tree T, $\gamma_{nsr}(T) = n$.

Proof
$$n \ge \gamma_{nsr}(T) \ge 2n - (n-1) - 1 = n$$
. Hence $\gamma_{nsr}(T) = n$.

Corollary 2.14 For an unicyclic graph G, $n-1 \le \gamma_{nsr}(G) \le n$.

Theorem 2.15 Let G be an unicyclic graph with cycle $C = (v_1, v_2, \dots, v_k, v_1)$. Then $\gamma_{nsr}(G) = n-1$ if and only if one of the following is true.

- (i) $C = C_3$;
- (ii) $d_G(v) \geq 3$ for all $v \in V(H)$ where H is a connected subgraph of C of order at least k-3.

Proof Let G be an unicyclic graph with cycle $C = (v_1, v_2, \dots, v_k, v_1)$. Let $C = C_3$. Then G contains a triangle and hence by Theorem 2.6, $\gamma_{nsr}(G) \leq n-1$ which gives $\gamma_{nsr}(G) = n-1$.

Suppose C contains a connected subgraph H such that $|V(H)| \ge k-3$ and $d_G(v) \ge 3$ for all $v \in V(H)$. It is clear that H is either C or a path. Let P be a path in H of order k-3. Let $P = (v_1, v_2, \cdots, v_{k-3})$ and let $u_i \in N(v_i) - V(C), v_i \in V(P)$. Let $X = \{u_1, u_2, \cdots, u_{k-3}\}, V_0 = V(P) \cup \{v_k, v_{k-2}\}, V_1 = V(G) - (V(C) \cup X), V_2 = X \cup \{v_{k-1}\}$. Then $f = (V_0, V_1, V_2)$ is a nonsplit roman dominating function of G. Thus $\gamma_{nsr}(G) \le n - (k + k - 3) + 2(k - 3 + 1) = n - 1$ and hence $\gamma_{nsr}(G) = n - 1$.

Conversely, let us assume $\gamma_{nsr}(G) = n - 1$. Let $f = (V_0, V_1, V_2)$ be a γ_{nsr} -function of G. Suppose conditions (i) and (ii) given in the statement of the theorem are not true.

Let $P = (v_1, v_2, \dots, v_{k-3})$ be a path in C such that $d_G(v_i) = 2$ for some $i, 1 \le i \le k-3$ and $d_G(v_i) = 2, k-2 \le j \le k$.

Case 1. $i \neq 1$ and $i \neq k-3$

Then at least one vertex v in the subpath (v_{i-1}, v_i, v_{i+1}) with $f(v) \neq 0$ and at least two vertices u and w in the subpath $(v_{k-3}, v_{k-2}, v_{k-1}, v_k, v_1)$ with $f(u) \neq 0$ and $f(w) \neq 0$ and hence either $\langle V_0 \rangle$ is the union of two distinct paths or $V_0 = \phi$. Thus either $\langle V_0 \rangle$ is disconnected or $|V_0| = |V_2| = 0$. Hence f is not a nonsplit roman dominating function or $\gamma_{nsr} = n$ which is a contradiction.

Case 2. i = 1 or i = k - 3

Let $d_G(v_i) \geq 3, 1 \leq i \leq k-2$ and $d_G(v_j) = 2, k-3 \leq j \leq k$. Then at least two vertices x and y in $\{v_{k-3}, v_{k-2}, v_{k-1}, v_k\}, d_G(x) \neq 0$ and $d_G(y) \neq 0$. Hence for every vertex v with f(v) = 2 there exists exactly one vertex u with f(u) = 0. Thus $\gamma_{nsr}(G) = n$ which is a contradiction. This proves the result.

Now we characterize the lower bound in Theorem 2.3.

Theorem 2.16 Let G be a connected graph. Then $\gamma_{ns} = \gamma_{nsr}(G)$ if and only if G is a trivial

graph.

Proof Let $f = (V_0, V_1, V_2)$ be a γ_{nsr} -function of G. Then $\gamma_{ns}(G) \leq |V_1| + |V_2| \leq |V_1| + 2|V_2| = \gamma_{nsr}(G)$ which gives $|V_2| = 0$. Then $V_0 = \phi$ and hence $V_1 = V$. Then $\gamma_{ns}(G) = \gamma_{nsr}(G) = n$ which gives G is a trivial graph.

Theorem 2.17 Let G be a nontrivial graph of order n. Then $\gamma_{nsr}(G) = \gamma_{ns}(G) + 1$ if and only if there exists a vertex $v \in V(G)$ such that $\langle N(v) \rangle$ has a component of order $n - \gamma_{ns}(G)$.

Proof Let $v \in V(G)$ such that $\langle N(v) \rangle$ has a component of order $n - \gamma_{ns}(G)$. Let G_1 be the component of $\langle N(v) \rangle$ with $|V(G_1)| = n - \gamma_{ns}(G)$. Let $V_2 = \{v\}, V_1 = V - (V(G_1) \cup \{v\})$ and $V_0 = V - V_1 - V_2$. Then $V_1 \cup V_2$ is a γ_{ns} -set of G and $f = (V_0, V_1, V_2)$ is a nonsplit roman dominating function and hence $\gamma_{nsr}(G) \leq |V_1| + 2|V_2| = n - (n - \gamma_{ns}(G) + 1) + 2 = \gamma_{ns}(G) + 1$. Since G is nontrivial $\gamma_{ns}(G) + 1 \leq \gamma_{nsr}(G)$ and hence $\gamma_{nsr}(G) = \gamma_{ns}(G) + 1$.

Conversely, let us assume $\gamma_{nsr}(G) = \gamma_{ns}(G) + 1$ and let $f = (V_0, V_1, V_2)$ be a γ_{nsr} -function of G. Then $\gamma_{nsr}(G) = |V_1| + 2|V_2|$ which gives $\gamma_{ns}(G) + 1 = |V_1| + 2|V_2|$. Then $|V_1| = \gamma_{ns}(G) + 1 - 2|V_2|$.

Suppose $|V_2| \geq 2$. Since $V_1 \cup V_2$ is a nonsplit dominating set, $\gamma_{ns}(G) \leq |V_1| + |V_2| = \gamma_{ns}(G) + 1 - 2|V_2| + |V_2| = \gamma_{ns}(G) + 1 - |V_2| \leq \gamma_{ns}(G) - 1$ which is a contradiction. Hence $|V_2| \leq 1$.

If $|V_2| = 0$ then $|V_0| = 0$ and hence $|V_1| = V$. Thus $\gamma_{nsr}(G) = n$ and $\gamma_{ns}(G) = n - 1$. Then by theorem 1.1 G is a star. Let v be a pendant vertex of G and hence $\langle N(v) \rangle$ is a center vertex of star G. Thus $|N(v)| = 1 = n - (n - 1) = n - \gamma_{ns}(G)$.

Suppose $|V_2| = 1$. Let $V_2 = \{v\}$ and let $f = (V_0, V_1, V_2)$ be a γ_{nsr} -function of G. Thus $\gamma_{nsr} = |V_1| + 2$. Then $\gamma_{ns}(G) + 1 - 2 = |V_1|$ which gives $|V_1| = \gamma_{ns}(G) - 1$. Hence $|V_0| = n - |V_1| - |V_2| = n - (\gamma_{ns}(G) - 1) - 1 = n - \gamma_{ns}(G)$ then the result follows.

Corollary 2.18 For any graph G, if $\gamma_{nsr}(G) = \gamma_{ns}(G) + 1$ then $diam(G) \leq 4$ and $rad(G) \leq 2$.

Proof Let $\gamma_{nsr}(G) = \gamma_{ns}(G) + 1$. Then there is a vertex $v \in V(G)$ such that $\langle N(v) \rangle$ has a component of order $n - \gamma_{ns}(G)$. Hence every vertex in V - N[v] is adjacent to a vertex in N(v). Thus $\operatorname{diam}(G) \leq 4$ and $\operatorname{rad}(G) \leq 2$.

Corollary 2.19 If T is a tree then $\gamma_{nsr}(T) = \gamma_{ns}(T) + 1$ if and only if T is a star.

Theorem 2.20 Let G be an unicyclic graph with the cycle $C = (v_1, v_2, \dots, v_k, v_1)$. Then $\gamma_{nsr}(G) = \gamma_{ns}(G) + 1$ if and only if G is isomorphic to $C_3(n_1, n_2, 0)$.

Proof Let us assume $\gamma_{nsr}(G) = \gamma_{ns}(G) + 1$. Then there is a vertex $v \in V(G)$ such that $\langle N(v) \rangle$ has a component of order $n - \gamma_{ns}(G)$. Let G_1 be a component of $\langle N(v) \rangle$ such that $|V(G_1)| = n - \gamma_{ns}(G)$. If $|V(G_1)| \ge 3$ then there is a path $P(u_1, u_2, u_3)$ in G_1 . Then the induced subgraph of the sets $\{v, u_1, u_2\}$ and $\{v, u_2, u_3\}$ are cycles which is a contradiction. Hence $|V(G_1)| = 2$ and hence $C = C_3$ so that $C = (v_1, v_2, v_3, v_1)$. If $d_G(v_i) \ge 3$ for all i then $V - \{v_1, v_2, v_3\}$ is a nonsplit dominating set of G and hence $\gamma_{ns}(G) \le n - 3$ then $\gamma_{nsr}(G) \le n - 2$ which is a contradiction. Hence $d_G(v_i) = 2$ for some i. Let $d_G(v_3) = 2$.

Suppose there is a vertex $x \in V(G) - V(C)$ such that $d_G(x) \geq 2$. Let $v_1 \in V(C)$ such that $d(C,x) = d(v_1,x)$. Let $(v_1,x_1,x_2,\cdots,x_r,x), r \geq 1$ be the shortest $v_1 - x$ path. Then $V(G) - \{v_1,v_2,x_1\}$ is a nonsplit dominating set of G and hence $\gamma_{ns}(G) \leq n-3$ which is a contradiction. Hence every vertex in V - V(C) is a pendant vertex which follows the result. \square

Theorem 2.21 Let G be a nontrivial graph of order n. Then $\gamma_{nsr}(G) = \gamma_{ns}(G) + 2$ if and only if

- (i) every vertex $v \in V(G)$ such that $\langle N(v) \rangle$ has no component of order $n \gamma_{ns}(G)$;
- (ii) G has a vertex v such that $\langle N(v) \rangle$ has a component of order $n \gamma_{ns}(G) 1$ or G has two vertices u and v such that $\langle N(u) \cup N(v) \rangle$ has a component of order $n \gamma_{ns}$.

Proof Let the graph G be satisfy the conditions (i) and (ii) in the statement of the theorem. By condition (i) and Theorem 2.17, $\gamma_{nsr}(G) \geq \gamma_{ns}(G) + 2$. Suppose $v \in V(G)$ such that $\langle N(v) \rangle$ has a component G_1 of order $n - \gamma_{ns}(G) - 1$. Then $(V(G_1), V - (V(G_1) \cup \{v\}, \{v\}))$ is a nonsplit roman dominating function of G and hence $\gamma_{nsr}(G) \leq n - (n - \gamma_{ns}(G) - 1 + 1) + 2 = \gamma_{ns}(G) + 2$. Hence $\gamma_{nsr}(G) = \gamma_{ns} + 2$. Suppose G has two vertices u and v such that $\langle N(u) \cup N(v) \rangle$ has a component of order $n - \gamma_{ns}(G)$. Let G_2 be the component of $\langle N(u) \cup N(v) \rangle$ with $|V(G_2)| = n - \gamma_{ns}(G)$. Let $V_2 = \{u, v\}, V_1 = V - (V(G_2) \cup \{u, v\})$ and $V_0 = V - V_1 - V_2 = V(G_2)$. Then $V_1 \cup V_2$ is a γ_{ns} -set of G and $f = (V_0, V_1, V_2)$ is a nonsplit roman dominating function and hence $\gamma_{nsr}(G) \leq |V_1| + 2|V_2| = n - (n - \gamma_{ns}(G) + 2) + 4 = \gamma_{ns}(G) + 2$ and hence $\gamma_{nsr}(G) = \gamma_{ns}(G) + 2$.

Conversely, let us assume $\gamma_{nsr}(G) = \gamma_{ns}(G) + 2$ and let $f = (V_0, V_1, V_2)$ be a γ_{nsr} -function of G. Then $\gamma_{nsr}(G) = |V_1| + 2|V_2|$ which gives $\gamma_{ns}(G) + 2 = |V_1| + 2|V_2|$. Then $|V_1| = \gamma_{ns}(G) + 2 - 2|V_2|$.

Suppose $|V_2| \geq 3$. Since $V_1 \cup V_2$ is a nonsplit dominating set, $\gamma_{ns}(G) \leq |V_1| + |V_2| = \gamma_{ns}(G) + 2 - 2|V_2| + |V_2| = \gamma_{ns}(G) + 2 - |V_2| \leq \gamma_{ns}(G) - 1$ which is a contradiction. Hence $|V_2| \leq 2$.

If $|V_2| = 0$ then $|V_0| = 0$ and hence $|V_1| = V$. Thus $\gamma_{nsr}(G) = n$ and $\gamma_{ns}(G) = n - 2$. Let S be a γ_{ns} -set of G. Then $\langle V - S \rangle = K_2 = xy$. Suppose |S| = 1. Then $G = C_3$ and hence $\gamma_{nsr}(G) = 2$ and $\gamma_{ns}(G) = 1$ which is a contradiction. Thus $|S| \geq 2$. Then S contains two vertices u and v which dominates x and y. Thus G contains two vertices u and v such that $\langle N(u) \cup N(v) \rangle$ contains a component of order $n - \gamma_{ns}(G)$.

Suppose $|V_2| = 1$. Let $V_2 = \{v\}$. Then $\gamma_{nsr} = |V_1| + 2$. Thus $\gamma_{ns}(G) + 2 - 2 = |V_1|$ which gives $|V_1| = \gamma_{ns}(G)$. Then V_0 contains $n - \gamma_{ns}(G) - 1$ vertices. Thus $\langle N(v) \rangle$ has a component a component of order $n - \gamma_{ns} - 1$.

Suppose $|V_2| = 2$. Let $V_2 = \{u, v\}$. Then $\gamma_{nsr} = |V_1| + 4$. Thus $\gamma_{ns}(G) + 2 - 4 = |V_1|$ which gives $|V_1| = \gamma_{ns}(G) - 2$. Hence $|V_0| = n - |V_1| - |V_2| = n - (\gamma_{ns}(G) - 2) - 2 = n - \gamma_{ns}(G)$ then the result follows.

Corollary 2.22 If T is a nontrivial tree then $\gamma_{nsr}(T) = \gamma_{ns}(T) + 2$ if and only if T has exactly two support vertices.

Proof Let T be a tree with $\gamma_{nsr}(T) = \gamma_{ns}(T) + 2$. Then $\gamma_{ns}(T) = n - 2$. Let u and v be the support vertices such that d(u, v) is maximum. Let $P(u = u_1, u_2, \dots, u_k = v)$ be the u - v

path. Let u_i be the vertex lie in both u-w and u-v paths such that i is maximum. Then $V-\{u_{i-1},u_i,u_{i+1}\}$ is a nonsplit dominating set which is a contradiction. Hence T contains exactly two support vertices. The converse is obvious.

Now we characterize the upper bound in Theorem 2.3.

Theorem 2.23 Let G be a graph. Then $\gamma_{nsr}(G) = 2\gamma_{ns}(G)$ if and only if G has a γ_{nsr} -function $f = (V_0, V_1, V_2)$ with $|V_1| = 0$.

Proof Let $f=(V_0,V_1,V_2)$ be a γ_{nsr} -function and $|V_1|=0$. Then V_2 is a nonsplit dominating set S of G such that $|S|<|V_2|$. Then $g=(V-S,\phi,S)$ is a nonsplit roman dominating function of G and hence $\gamma_{nsr}(G)\leq 2|S|<2|V_2|$ which is a contradiction. Hence V_2 is a γ_{ns} -set of G. Hence $\gamma_{nsr}(G)=2|V_2|=2\gamma_{ns}(G)$.

Conversely we assume that $\gamma_{nsr}(G) = 2\gamma_{ns}(G)$. Let S be γ_{ns} -set of G. Take $V_0 = V - S, V_1 = \phi, V_2 = S$. Then $f = (V_0, V_1, V_2)$ is a nonsplit roman donating function of G with $w(f) = 2|V_2| = 2|S| = 2\gamma_{ns}(G)$. Hence f is a γ_{nsr} -function of G with $|V_1| = 0$.

Theorem 2.24 Let T be a nontrivial tree. Then $\gamma_{nsr}(T) = 2\gamma_{ns}(T)$ if and only if T is isomorphic to $H \circ K_1$ for some tree H.

Proof Let T be a tree with $\gamma_{nsr}(T) = 2\gamma_{ns}(T)$. Then $\gamma_{ns}(T) = \frac{n}{2}$. Let S be a γ_{ns} -set of T. Then $|S| = \frac{n}{2}$, $\langle V - S \rangle$ is connected and $|V - S| = \frac{n}{2}$. It is clear that any vertex in S cannot adjacent to two or more vertices in V - S. If any two distinct vertices of S are adjacent to a vertex in V - S then at least a vertex in V - S is not dominated by S. Hence T is isomorphic to $H \circ K_1$ for some tree H. The converse is obvious.

Since the graphs P_4 and C_5 are self complementary, the following result is obvious. Hence we omit its proof.

Theorem 2.25 Let G be a graph such that both G and \overline{G} are connected. Then $\gamma_{nsr}(G) + \gamma_{nsr}(\overline{G}) \leq 2n$ and the bound is sharp.

Theorem 2.26 Let G be a graph such that G and \overline{G} are connected and $diam(G) \geq 5$. Then $\gamma_{nsr}(G) + \gamma_{nsr}(\overline{G}) \leq n + 4$.

Proof Let $S = \{u, v\}$, where d(u, v) = diam(G). Then $f = (V - S, \phi, S)$ is a nonsplit roman dominating function of \overline{G} so that $\gamma_{nsr}(\overline{G}) \leq 4$ and hence the result follows.

Remark 2.27 The bound given in Theorem 2.28 is sharp. The graph $G = P_6$ has diameter 5, $\gamma_{nsr}(G) = 6$ and $\gamma_{nsr}(\overline{G}) = 4$. Thus $\gamma_{nsr}(G) + \gamma_{nsr}(\overline{G}) = 10 = n + 4$.

Problem 2.28 Characterize graphs which attain the bounds given in Theorems 2.25 and 2.26.

References

[1] G.Chartrand and L.Lesniak, Graphs and Digraphs, CRC, (2005)

- [2] E.J.Cockayne, P.A.Dreyer Jr, S.M.Hedetniemi and S.T.Hedetniemi, Roman domination in graphs, *Discrete Mathematics*, 278(2004), 11-22.
- [3] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [4] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, *Domination in Graphs- Advanced Topics*, Marcel Dekker, Inc., New York, 1998.
- [5] V.R.Kulli and B.Janakiram, The nonsplit domination number of a graph, *Indian Journal of Pure and Applied Mathematics*, 31(5) (2000), 545-550.
- [6] P.Roushni Leely Pushpam and S.Padapriea, Restrained roman domination in graphs, *Transactions on combinatorics*, 4(1)(2015),1-17.
- [7] T.Tamizh Chelvam and B.Jaya Prasad, Complementary connected domination number, *International Journal of Management and Systems*, 18(2)(2002), 147-154.