Spacelike Curves of Constant Breadth According to Bishop Frame in E_1^3

Süha Yılmaz¹, Ümit Ziya Savcı² and Yasin Ünlütürk³

- 1. Dokuz Eylül University, Buca Educational Faculty, 35150, Buca-Izmir, Turkey
- 2. Celal Bayar University, Department of Mathematics Education, 45900, Manisa-Turkey
- 3. Kırklareli University, Department of Mathematics, 39060 Kırklareli, Turkey

E-mail: suha.yilmaz@deu.edu.tr, ziyasavci@hotmail.com, yasinunluturk@klu.edu.tr

Abstract: In this paper, we study a special case of Smarandache breadth curves, and give some characterizations of the space-like curves of constant breadth according to Bishop frame in Minkowski 3-space.

Key Words: Minkowski 3-space, Smarandache breadth curves, curves of constant breadth, Bishop frame.

AMS(2010): 53A05, 53B25, 53B30

§1. Introduction

Curves of constant breadth were introduced by Euler in [3]. Fujivara presented a problem to determine whether there exist space curves of constant breadth or not, and defined the concept of breadth for space curves and also obtained these curves on a surface of constant breadth in [5]. Some geometric properties of curves of constant breadth were given in a plane by [8]. The similar properties were obtained in Euclidean 3-space E^3 in [9]. These kind curves were studied in four dimensional Euclidean space E^4 in [1].

In this paper, we study a special case of Smarandache breadth curves in Minkowski 3-space E_1^3 . A Smarandache curve is a regular curve with 2 breadths or more than 2 breadths in Minkowski 3-space E_1^3 . Also we investigate position vectors of simple closed space-like curves and give some characterizations of curves of constant breadth according to Bishop frame of type-1 in E_1^3 . Thus, we extend this classical topic to the space E_1^3 , which is related to the time-like curves of constant breadth in E_1^3 , see [10] for details. We also use a method which is similar to one in [9].

§2. Preliminaries

The Minkowski 3-space E_1^3 is an Euclidean 3-space E^3 provided with the standard flat metric

¹Received July 3, 2014, Accepted November 26, 2014.

given by

$$<,>=-dx_1^2+dx_2^2+dx_3^2$$

where (x_1, x_2, x_3) is a rectangular coordinate system of E_1^3 . Since <, > is an indefinite metric recall that a vector $v \in E_1^3$ can be one of three Lorentzian characters; it can be space-like if < v, v >> 0 or v = 0, time-like if < v, v >< 0 and null if < v, v >= 0 and $v \neq 0$. Similarly, an arbitrary curve $\varphi = \varphi(s)$ in E_1^3 can locally be space-like, time-like or null (light-like) if all of its velocity vector φ' is respectively space-like, time-like or null (light-like) for every $s \in J \in \mathbb{R}$. The pseudo-norm of an arbitrary vector $a \in E_1^3$ is given by $||a|| = \sqrt{|< a, a>|}$. The curve φ is called a unit speed curve if its velocity vector φ' satisfies $||\varphi'|| = \mp 1$. For any vectors $u, w \in E_1^3$, they are said to be orthogonal if and only if < u, w >= 0.

Denote by $\{T, N, B\}$ the moving Frenet frame along curve φ in the space E_1^3 . Let φ be a space-like curve with a space-like binormal in the space E_1^3 , as similar to in [11], the Frenet formulae are given as

$$\begin{bmatrix} T' \\ N' \\ B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ \kappa & 0 & \tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}$$
 (2.1)

where κ and τ are the first and second curvatures with

$$< T, T> = < B, B> = 1, < N, N> = -1,$$

 $< T, N> = < T, B> = < N, B> = 0.$

The construction of the Bishop frame is due to L.R.Bishop in [4]. This frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even the space-like curve with a space-like binormal has vanishing second derivative [2]. He used tangent vector and any convenient arbitrary basis for the remainder of the frame. Then, as similar to in [2], the Bishop frame is expressed as

$$\begin{bmatrix} T^{\scriptscriptstyle |} \\ N_1^{\scriptscriptstyle |} \\ N_2^{\scriptscriptstyle |} \end{bmatrix} = \begin{bmatrix} 0 & k_1 & -k_2 \\ k_1 & 0 & 0 \\ k_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} T \\ N_1 \\ N_2 \end{bmatrix}$$
 (2.2)

and

$$\kappa(s) = \sqrt{|k_1^2 - k_2^2|}, \quad \tau(s) = \frac{d\theta}{ds}, \quad \theta(s) = \tanh^{-1} \frac{k_2}{k_1}$$
(2.3)

where k_1 and k_2 are Bishop curvatures.

§3. Spacelike Curves of Constant Breadth According to Bishop Frame in E_1^3

Let $\overrightarrow{\varphi} = \overrightarrow{\varphi}(s)$ and $\overrightarrow{\varphi}^* = \overrightarrow{\varphi}^*(s)$ be simple closed curves of constant breadth in Minkowski 3-space. These curves will be denoted by C and C^* . The normal plane at every point P on the curve meets the curve in the class Γ having parallel tangents $\overrightarrow{\mathbf{T}}$ and $\overrightarrow{\mathbf{T}}^*$ in opposite directions

at the opposite points φ and φ^* of the curve as in [5]. A simple closed curve of constant breadth having parallel tangents in opposite directions at opposite points can be represented with respect to Bishop frame by the equation

$$\varphi^*(s) = \varphi(s) + m_1 T + m_2 N_1 + m_3 N_2 \tag{3.1}$$

where $m_i(s)$, $1 \le i \le 3$ are arbitrary functions, also φ and φ^* are opposite points. Differentiating (3.1) and considering Bishop equations, we have

$$\frac{d\varphi^*}{ds} = \overrightarrow{T}^* \frac{ds^*}{ds} = \left(\frac{dm_1}{ds} + m_2 k_1 + m_3 k_2 + 1\right) T + \left(\frac{dm_2}{ds} + m_1 k_1\right) N_1 + \left(\frac{dm_3}{ds} - m_1 k_2\right) N_2.$$
(3.2)

Since $T^* = -T$, rewriting (3.2), we obtain the following equations

$$\begin{cases}
\frac{dm_1}{ds} = -m_2 k_1 - m_3 k_2 - 1 - \frac{ds^*}{ds} \\
\frac{dm_2}{ds} = -m_1 k_1 \\
\frac{dm_3}{ds} = m_1 k_2.
\end{cases}$$
(3.3)

If we call θ as the angle between the tangent of the curve (C) at point $\varphi(s)$ with a given direction and consider $\frac{d\theta}{ds} = \tau$, we can rewrite (3.3) as follow;

$$\begin{cases}
\frac{dm_1}{d\theta} = -m_2 \frac{k_1}{\tau} - m_3 \frac{k_2}{\tau} - f(\theta) \\
\frac{dm_2}{d\theta} = -m_1 \frac{k_1}{\tau} \\
\frac{dm_3}{d\theta} = m_1 \frac{k_2}{\tau}
\end{cases}$$
(3.4)

where

$$f(\theta) = \delta + \delta^* \quad \delta = \frac{1}{\tau}, \delta^* = \frac{1}{\tau^*}$$
 (3.5)

denote the radius of curvature at the points φ and φ^* , respectively. And using the system (3.4), we have the following differential equation with respect to m_1 as

$$\begin{split} \frac{d^3m_1}{d\theta^3} - (\frac{\kappa}{\tau})^2 \frac{dm_1}{d\theta} + \left[\frac{k_2}{\tau} \frac{d}{d\theta} (\frac{k_2}{\tau}) - \frac{d}{d\theta} (\frac{\kappa}{\tau})^2 - \frac{\kappa}{\tau} \frac{d}{d\theta} (\frac{k_2}{\tau}) \right] m_1 \\ + (\int_0^\theta m_1 \frac{k_2}{\tau} d\theta) \frac{d^2}{d\theta^2} (\frac{k_2}{\tau}) - (\int_0^\theta m_1 \frac{k_1}{\tau} d\theta) \frac{d^2}{d\theta^2} (\frac{k_1}{\tau}) + \frac{d^2 f}{d\theta^2} = 0. \end{split} \tag{3.6}$$

The equation (3.6) is characterization of the point φ^* . If the distance between opposite

points of (C) and (C^*) is constant, then we write that

$$\|\varphi^* - \varphi\| = -m_1^2 + m_2^2 + m_3^2 = l^2 \text{ is constant.}$$
 (3.7)

Hence, from (3.7) we obtain

$$-m_1 \frac{dm_1}{d\theta} + m_2 \frac{dm_2}{d\theta} + m_3 \frac{dm_3}{d\theta} = 0$$
 (3.8)

Considering system (3.4), we get

$$m_1 \left[2m_3 \frac{k_2}{\tau} + f(\theta) \right] = 0 \tag{3.9}$$

From (3.9), we study the following cases which are depended on the conditions $2m_3\frac{k_2}{\tau} + f(\theta) = 0$ or $m_1 = 0$.

Case 1. If $2m_3\frac{k_2}{\tau} + f(\theta) = 0$ then by using (3.4), we obtain

$$\frac{dm_1}{d\theta} - (\int_0^\theta m_1 \frac{k_1}{\tau} d\theta) \frac{k_1}{\tau} + \frac{f(\theta)}{\tau} = 0.$$
 (3.10)

Now let us to investigate solution of the equation (3.6) and suppose that m_2 , m_3 and $f(\theta)$ are constants, $m_1 \neq 0$, then using (3.4) in (3.6), we have the following differential equation

$$\frac{d^3m_1}{d\theta^3} - \left(\frac{\kappa}{\tau}\right)^2 \frac{dm_1}{d\theta} - \frac{d}{d\theta} \left(\frac{\kappa}{\tau}\right)^2 m_1 = 0. \tag{3.11}$$

The general solution of (3.11) depends on the character of the ratio $\frac{\kappa}{\tau}$. Suppose that φ is not constant breadth. For this reason, we distinguish the following sub-cases.

Subcase 1.1 Suppose that φ is an inclined curves then the solution of the differential equation (3.11) is

$$m_1 = c_1 + c_2 e^{-\frac{\kappa}{\tau}} + c_3 e^{\frac{\kappa}{\tau}}. \tag{3.12}$$

Therefore, we have m_2 and m_3 , respectively,

$$m_{2} = -\int_{0}^{\theta} (c_{1} + c_{2}e^{-\frac{\kappa}{\tau}\theta} + c_{3}e^{-\frac{\kappa}{\tau}\theta}) \frac{k_{1}}{\tau} d\theta$$

$$m_{3} = \int_{0}^{\theta} (c_{1} + c_{2}e^{-\frac{\kappa}{\tau}\theta} + c_{3}e^{\frac{\kappa}{\tau}\theta}) \frac{k_{2}}{\tau} d\theta$$
(3.13)

where c_1 , c_2 and c_3 are real numbers.

Subcase 1.2 Suppose that φ is a line. The solution is in the following form

$$m_1 = A_1 \frac{\theta^2}{2} + A_2 \theta + A_3. \tag{3.14}$$

Hence, we have m_2 and m_3 as follows

$$m_{2} = -\int_{0}^{\theta} \left(A_{1} \frac{\theta^{2}}{2} + A_{2}\theta + A_{3} \right) \frac{k_{1}}{\tau} d\theta$$

$$m_{3} = \int_{0}^{\theta} \left(A_{1} \frac{\theta^{2}}{2} + A_{2}\theta + A_{3} \right) \frac{k_{2}}{\tau} d\theta$$
(3.15)

where A_1 , A_2 and A_3 are real numbers.

Case 2. If $m_1 = 0$, then $m_2 = M_2$ and $m_3 = M_3$ are constants. Let us suppose that $m_2 = m_3 = c$ (constant). Thus, the equation (3.4) is obtained as

$$f(\theta) = \frac{-c(k_1 + k_2)}{\tau}.$$

This means that the curve is a circle. Moreover, the equation (3.6) has the form

$$\frac{d^2f}{d\theta^2} = 0. (3.16)$$

The solution of (3.16) is

$$f(\theta) = l_1 \theta + l_2 \tag{3.17}$$

where l_1 and l_2 are real numbers. Therefore, we write the position vector φ^* as follows

$$\varphi^* = \varphi + M_2 N_1 + M_3 N_2 \tag{3.18}$$

where M_2 and M_3 are real numbers.

Finally, the distance between the opposite points of the curves (C) and (C^*) is

$$\|\varphi^* - \varphi\| = M_2^2 + M_3^2 = \text{constant.}$$
 (3.19)

References

- [1] A.Mağden and Ö. Köse, On the curves of constant breadth, *Tr. J. of Mathematics*, pp. 227-284, 1997.
- [2] B.Bükçü and M.Karacan, The Bishop Darboux rotation axis of the space-like curves in Minkowski 3-space, *E.U.F.F.*, *JFS*, Vol 3, pp 1-5, 2007.
- [3] L.Euler, De Curvis Trangularibus, Acta Acad. Petropol, pp:3-30, 1870.
- [4] L.R.Bishop, There is more than one way to frame a curve, *Amer. Math. Monthly*, Vol 82, pp:246-251, 1975.
- [5] M.Fujivara, On space curves of constant breadth, Tohoku Math. J., Vol.5, pp. 179-184,

1914.

- [6] M.Petroviç-Torgasev and E.Nesoviç, Some characterizations of the space-like, the time-like and the null curves on the pseudo-hyperbolic space H_0^2 in E_1^3 , $Kragujevac\ J.\ Math.$, Vol 22, pp:71-82, 2000.
- [7] N.Ekmekçi, *The Inclined Curves on Lorentzian Manifolds*, (in Turkish) PhD dissertation, Ankara Universty, 1991.
- [8] Ö. Köse, Some properties of ovals and curves of constant width in a plane, *Doğa Turk Math. J.*, Vol.8, pp:119-126, 1984.
- [9] Ö. Köse, On space curves of constant breadth, *Doğa Turk Math. J.*, Vol:(10) 1, pp. 11-14, 1986.
- [10] S.Yılmaz and M. Turgut, On the time-like curves of constant breadth in Minkowski 3-space, International J. Math. Combin., Vol 3, pp:34-39, 2008.
- [11] A.Yücesan, A.C.Çöken, N. Ayyıldız, On the Darboux rotation axis of Lorentz space curve, *Appl. Math. Comp.*, Vol 155, pp:345-351, 2004.