Smarandache Lattice and Pseudo Complement

N.Kannappa

(Mathematics Department, TBML College, Porayar, Tamil Nadu, India)

K.Suresh

(Department of Mathematics, Mailam Engineering College, Vilupuram, Tamil Nadu, India)

E-mail: Porayar.sivaguru91@yahoo.com, Mailam.suya24su02@gmail.com

Abstract: In this paper, we introduce Smarandache - 2-algebraic structure of lattice S, namely Smarandache lattices. A Smarandache 2-algebraic structure on a set N means a weak algebraic structure A_0 on N such that there exists a proper subset M of N which is embedded with a stronger algebraic structure A_1 , where a stronger algebraic structure means such a structure which satisfies more axioms, by proper subset one can understands a subset different from the empty set, by the unit element if any, and from the whole set. We obtain some of its characterization through pseudo complemented.

Key Words: Lattice, Boolean algebra, Smarandache lattice and Pseudo complemented lattice.

AMS(2010): 53C78

§1. Introduction

New notions are introduced in algebra to study more about the congruence in number theory by Florentin Smarandache [1]. By <proper subset> of a set A, we consider a set P included in A, different from A, also different from the empty set and from the unit element in A - if any they rank the algebraic structures using an order relationship.

The algebraic structures $S_1 \ll S_2$ if both of them are defined on the same set; all S_1 laws are also S_2 laws; all axioms of S_1 law are accomplished by the corresponding S_2 law; S_2 law strictly accomplishes more axioms than S_1 laws, or in other words S_2 laws has more laws than S_1 . For example, a semi-group \ll monoid \ll group \ll ring \ll field, or a semi-group \ll commutative semi-group, ring \ll unitary ring, \cdots etc. They define a general special structure to be a structure SM on a set A, different from a structure SN, such that a proper subset of A is an SN structure, where SM \ll SN.

§2. Preliminaries

Definition 2.1 Let P be a lattice with 0 and $x \in P$. We say x* is a pseudo complemented of

¹Received September 1, 2014, Accepted December 10, 2014.

 $x \text{ iff } x* \in P \text{ and } x \wedge x* = 0, \text{ and for every } y \in P, \text{ if } x \wedge y = 0 \text{ then } y \leq x*.$

Definition 2.2 Let P be a pseudo complemented lattice. $N_P = \{ x* : x \in P \}$ is the set of complements in P. $N_P = \{ N_P, \leq N, \neg N, 0_N, 1_N, \land N, \lor N \}$, where

- (1) \leq_N is defined by: for every $x, y \in N_P$, $x \leq_N y$ iff $x \leq_P b$;
- (2) $\neg N$ is defined by: for every $x \in N_P$, $\neg N(x) = x*$;
- (3) \wedge_N is defined by: for every $x, y \in N_P$, $x \wedge_N y = x \wedge_P y$;
- (4) \vee_N is defined by: for every $x, y \in N_P$, $x \vee_N y = (x * \wedge_P y *) *$;
- (5) $1_N = 0_P *, 0_N = 0_P.$

Definition 2.3 Let P be a lattice with 0. Define I_P to be the set of all ideals in P, i.e., $I_P = \langle I_P, \leq_I, \wedge_I, \vee_I, 0_I, 1_I \rangle$, where

$$\leq = \subseteq$$
, $i \wedge_I j = I \cap J$, $i \vee_I j = (I \cup J]$, $0_I = 0_A$, $1_I = A$.

Definition 2.4 If P is a distributive lattice with 0, I_P is a complete pseudo complemented lattice, let P be a lattice with 0 and NI_P , the set of normal ideals in P, is given by $NI_P = \{I * \in I_P : I \in I_P\}$. Alternatively, $NI_P = \{I \in I_P : I = I * *\}$. Thus $NI_P = \{NI_P, \subseteq, \cap, \cup, \wedge_{NI}, \vee_{NI}\}$, which is the set of pseudo complements in I_P .

Definition 2.5 A Pseudo complemented distributive lattice P is called a stone lattice if, for all $a \in P$, it satisfies the property $a * \forall a * * = 1$.

Definition 2.6 Let P be a pseudo complemented distributive lattice. Then for any filter F of P, define the set $\delta(F)$ by $\delta(F) = \{ a* \in P/a* \in F \}$.

Definition 2.7 Let P be a pseudo complemented distributive lattice. An ideal I of P is called a δ -ideal if $I = \delta(F)$ for some filter F of P.

Now we have introduced a definition by [4]:

Definition 2.8 A lattice S is said to be a Smarandache lattice if there exist a proper subset L of S, which is a Boolean algebra with respect to the same induced operations of S.

§3. Characterizations

Theorem 3.1 Let S be a lattice. If there exist a proper subset N_P of S defined in Definition 2.2, then S is a Smarandache lattice.

Proof By hypothesis, let S be a lattice and whose proper subset $N_P = \{x^* : x \in P\}$ is the set of all pseudo complements in P. By definition, if P is a pseudo complement lattice, then $N_P = \{x^* : x \in P\}$ is the set of complements in P, i.e., $N_P = \{N_P, \leq_N, \neg_N, 0_N, 1_N, \land_N, \lor_N\}$, where

- (1) \leq_N is defined for every $x, y \in N_P$, $x \leq_N y$ iff $x \leq_P b$;
- (2) $\neg N$ is defined for every $x \in N_P$, $\neg N(x) = x*$;
- (3) \wedge_N is defined for every $x, y \in N_P$, $x \wedge_N y = x \wedge_P y$;
- (4) \vee_N is defined for every $x, y \in N_P, x \vee_N y = (x * \wedge_P y *) *$;
- (5) $1_N = 0_P *, 0_N = 0_P$.

It is enough to prove that N_P is a Boolean algebra.

(1) For every $x, y \in N_P$, $x \wedge_N y \in N_P$ and \wedge_N is meet under \leq_N . If $x, y \in N_P$, then x = x ** and y = y **.

Since $x \wedge_P y \leq_P x$, by result if $x \leq_N y$ then $y* \leq_N x*$, $x* \leq_P (x \wedge_P y)*$, and with by result if $x \leq_N y$ then $y* \leq_N x*$, $(x \wedge_P y)** \leq_P x$. Similarly, $(x \wedge_P y)** \leq_P y$. Hence $(x \wedge_P y)** \leq_P (x \wedge_P y)**$.

By result, $x \leq_N x * *, (x \wedge_P y) \leq_P (x \wedge_P y) * *$. Hence $(x \wedge_P y) \in N_P$, $(x \wedge_N y) \in N_P$. If $a \in N_P$ and $a \leq_N x$ and $a \leq_N y$, then $a \leq_P x$ and $a \leq_P y$, $a \leq_P (x \wedge_P y)$. Hence $a \leq_N (x \wedge_N y)$. So, indeed \wedge_N is meet in \leq_N .

(2) For every $x, y \in N_P$, $x \vee_N y \in N_P$ and \vee_N is join under \leq_N . Let $x, y \in N_P$. Then $x*, y* \in N_P$. By (1), $(x* \wedge_P y*) \in N_P$. Hence $(x* \wedge_P y*)* \in N_P$, and hence $(x \vee_N y) \in N_P$, $(x* \wedge_P y*) \leq_P x*$. By result $x \leq_N x**, x** \leq_P (x* \wedge_P y*)*$ and $N_P = \{x \in P; x = x**\}$, $x \leq_P (x* \wedge_P y*)*$.

Similarly, $y \leq_P (x * \wedge_P y *) *$. If $a \in N_P$ and $x \leq_N a$ and $y \leq_N a$, then $x \leq_P a$ and $y \leq_P a$, then by result if $x \leq_N y$, then $y * \leq_N x *$, $a * \leq_P x *$ and $a * \leq_P y *$. Hence $a * \leq_P (x * \wedge_P y *)$. By result if $x \leq_N y$ then $y * \leq_N x *$, $(x * \wedge_P y *) * \leq_P a * *$. Thus, by result $N_P = \{ x \in P : x = x * * \}$, $(x * \wedge_P y *) * \leq_P x$ and $x \vee_N y \leq_N a$. So, indeed \vee_N is join in \leq_N .

- (3) 0_N , $1_N \in N_P$ and 0_N , 1_N are the bounds of N_P . Obviously $1_N \in N_P$ since $1_N = 0_P *$ and for every $a \in N_P$, $a \wedge_P 0_P = 0_P$. For every $a \in N_P$, $a \leq_P 0_P *$. Hence $a \leq_N 1_N$, $0*_P$, $0_P * * \in N_P$ and $0_P * \wedge_P 0_P * * \in N_P$. But of course, $0*_P \wedge_P$, $0_P * * = 0_P$. Thus, $0_P \in N_P$, $0_N \in N_P$. Obviously, for every $a \in N_P$, $0_P \leq_P a$. Hence for every $a \in N_P$, $0_N \leq_N a$. So N_P is bounded lattice.
- (4) For every $a \in N_P$, $\neg N(a) \in N_P$ and for every $a \in N_P$, $a \wedge_N \neg N(a) = 0_N$, and for every $a \in N_P$, $a \vee_N \neg N(a) = 1_N$.

Let $a \in N_P$. Obviously, $\neg_N(a) \in N_P$, $a \vee_N \neg N(a) = a \vee_N a* = ((a* \wedge_P b**))* = (a* \wedge_P a)* = 0_P * = 1_N$, $a \wedge_N \neg N(a) = a \wedge_P a* = 0_P = 0_N$. So N_P is a bounded complemented lattice.

(5) Since $x \leq_N (x \vee_N (y \wedge_N z))$, $(x \wedge_N z) \leq_N x \vee_N (y \wedge_N z)$. Also $(y \wedge_N z) \leq_N x \vee_N (y \wedge_N z)$. Obviously, if $a \leq_N b$, then $a \wedge_N b *= 0_N$. Since $b \wedge b *= 0_N$, so $(x \wedge_N z) \wedge_N (x \vee_N (y \wedge_N z)) *= 0_N$ and $(y \wedge_N z) \wedge_N (x \vee_N (y \wedge_N z)) *= 0_N$, $(x \vee_N (y \wedge_N z)) *= 0_N$, $(x \vee_N (y \wedge_N z)) *= 0_N$.

By definition of pseudo complement: $z \wedge_N (x \vee_N (y \wedge_N z)) * \leq_N x *, z \wedge_N (x \vee_N (y \wedge_N z)) * \leq_N y *$, Hence, $z \wedge_N (x \vee_N (y \wedge_N z)) * \leq_N x * \wedge_N y *$. Once again, If $a \leq_N b$, then $a \wedge_N b * = 0_N$. Thus, $z \wedge_N (x \vee_N (y \wedge_N z)) * \wedge (x * \wedge_N y *) * = 0_N$, $z \wedge_N (x * \wedge_N y *) * \leq_N (x \vee_N (y \wedge_N z)) * *$. Now, by definition of $\wedge_N : z \wedge_N (x * \vee_N y *) * = z \wedge_N (x \vee_N y)$ and by $N_P = \{ x \in P : x = x * * \} : (x \vee_N (y \wedge_N z)) * * = x \vee_N (y \wedge_N z)$. Hence, $z \wedge_N (x \vee_N y) \leq_N x \vee_N (y \wedge_N z)$.

Hence, indeed N_P is a Boolean Algebra. Therefore by definition, S is a Smarandache lattice.

For example, a distributive lattice D_3 is shown in Fig.1,

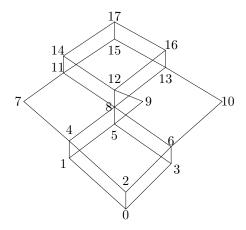


Fig.1

where D_3 is pseudo coplemented because

$$0* = 17,$$
 $8* = 11* = 12* = 13* = 14* = 15* = 16* = 17* = 0,$
 $1* = 10, 6* = 10* = 1,$
 $2* = 9, 5* = 9* = 2,$
 $3* = 7, 4* = 7* = 3$

and its correspondent Smarandache lattice is shown in Fig.2.

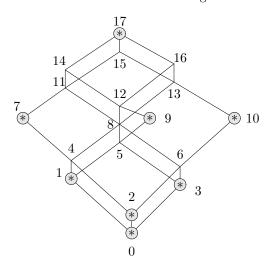


Fig.2

Theorem 3.2 Let S be a distributive lattice with 0. If there exist a proper subset NI_P of S, defined Definition 2.4. Then S is a Smarandache lattice.

Proof By hypothesis, let S be a distributive lattice with 0 and whose proper subset $NI_P = \{I* \in I_P, I \in I_P\}$ is the set of normal ideals in P. We claim that NI_P is Boolean algebra since $NI_P = \{I* \in I_P: I \in I_P\}$ is the set of normal ideals in P.

Alternatively, $NI_P = \{ I \in I_P : I = I * * \}$. Let $I \in I_P$. Take $I * = \{ y \in P : \text{ for every } i \in I : y \land i = 0 \}$, $I * \in I_P$. Namely, if $a \in I *$ then for every $i \in I : a \land i = 0$. Let $b \le a$. Then, obviously, for every $i \in I, b \land i = 0$. Thus $b \in I *$. If $a, b \in I *$, then for every $i \in I, a \land i = 0$, and for every $i \in I, b \land i = 0$.

Hence for every $i \in I$, $(a \wedge i) \vee (b \wedge i) = 0$. By distributive, for every $i \in I$, $i \wedge (a \vee b) = 0$, i.e., $a \vee b \in I*$. Thus $I* \in I_P$, $I \cap I* = I \cap \{ y \in P, \text{for every } i \in I, y \wedge i = 0 \} = \{ 0 \}$.

Let $I \cap J = \{0\}$ and $j \in J$. Suppose that for some $i \in I, i \land j \neq 0$. Then $i \land j \in I \cap J$. Because I and j are ideals, so $I \cap J \neq \{0\}$. Hence, for every $i \in I, j \land i = 0$, and $j \subseteq I^*$.

Consequently, I* is a pseudo complement of I and I_P is a pseudo complemented. Therefore I_P is a Boolean algebra. Thus NI_P is the set of all pseudo complements lattice in I_P .

Notice that we have proved that pseudo complemented form a Boolean algebra in Theorem 3.1. Whence, NI_P is a Boolean algebra. By definition, S is a Smarandache lattice.

Theorem 3.3 Let S be a lattice. If there exist a pseudo complemented distributive lattice P, X * (P) is a sub-lattice of the lattice $I^{\delta}(P)$ of all δ -ideals of P, which is the proper subset of S. Then S is a Smarandache lattice.

Proof By hypothesis, let S be a lattice and there exist a pseudo complemented distributive lattice P, X * (P) is a sub-lattice of the lattice $I^{\delta}(P)$ of all δ -ideals of P, which is the proper subset of S.

Let $(a*], (b*] \in X*(P)$ for some $a, b \in P$. Clearly, $(a*] \cap (b*] \in X*(P)$. Again, $(a*] \cup (b*] = \delta([a)) \cup \delta([b)) = \delta([a) \cup ([b)) = \delta([a \cap b)) = ((a \cap b)*] \in X*(P)$. Hence X*(P) is a sub-lattice of $I^{\delta}(P)$ and it is a distributive lattice. Clearly (0**] and (0*] are the least and greatest elements of X*(P).

Now for any $a \in P$, $(a*] \cap (a**] = (0]$ and $(a*] \cup (b**] = \delta([a)) \cup \delta([a*)) = \delta([a)) \cup ([a*)) = \delta([a \cap a*)) = \delta([0)) = \delta(P) = P$. Hence $(a^{**}]$ is the complement of $(a^{*}]$ in $X^{*}(P)$.

Therefore $\{X^*(P), \cup, \cap\}$ is a bounded distributive lattice in which every element is complemented.

Thus X * (P) is also a Boolean algebra, which implies that S is a Smarandache lattice. \Box

Theorem 3.4 Let S be a lattice and P is a pseudo complemented distributive lattice. If S is a Smarandache lattice. Then the following conditions are equivalent:

- (1) P is a Boolean algebra;
- (2) every element of P is closed;
- (3) every principal ideal is a δ -ideal;
- (4) for any ideal I, $a \in I$ implies $a * * \in I$;

- (5) for any proper ideal $I, I \cap D(P) = \phi;$
- (6) for any prime ideal $A, A \cap D(P) = \phi;$
- (7) every prime ideal is a minimal prime ideal;
- (8) every prime ideal is a δ -ideal;
- (9) for any $a, b \in P$, a* = b* implies <math>a = b;
- (10) D(P) is a singleton set.

Proof Since S is a Smarandache lattice. By definition and previous theorem, we observe that there exists a proper subset P of S such that which is a Boolean algebra. Therefore, P is a Boolean algebra.

- $(1)\Longrightarrow (2)$ Assume that P is a Boolean algebra. Then clearly, P has a unique dense element, precisely the greatest element. Let $a\in P$. Then $a*\wedge a=0=a*\wedge a**$. Also $a*\vee a, a*\vee a**\in D(P)$. Hence $a*\vee a=a*\vee a**$. By the cancellation property of P, we get a=a**. Therefore every element of P is closed.
- (2) \Longrightarrow (3) Let I be a principal ideal of P. Then I=(a] for some $a \in P$. By condition (2), a=a**. Now, $(a]=(a**]=\delta([a*))$. So (a)] is a δ -ideal.
- $(3) \Longrightarrow (4)$ Notice that I be a proper ideal of P. Let $a \in I$. Then there must be $(a] = \delta(F)$ for some filter F of P. Hence, we get that $a * * * = a * \in F$. Therefore $a * * \in \delta(F) = (a] \subseteq I$.
- $(4) \Longrightarrow (5)$ Let I be a proper ideal of P. Suppose $a \in I \cap D(P)$. Then $a * * \in P$ and a * = 0. Therefore $1 = 0 * = a * * \in P$, a contradiction.
- (5) \Longrightarrow (6) Let I be a proper ideal of P, $I \cap D(P) = \phi$. Then P is a prime ideal of P, $A \cap D(P) = \phi$.
- $(6) \Longrightarrow (7)$ Let A be a prime ideal of P such that $A \cap D(P) = \phi$ and $a \in A$. Clearly $a \wedge a* = 0$ and $a \vee a* \in D(P)$. So $a \vee a* \notin A$, i.e., $a* \notin A$. Therefore A is a minimal prime ideal of P.
- $(7)\Longrightarrow (8)$ Let A be a minimal prime ideal of P. It is clear that $P\setminus A$ is a filter of P. Let $a\in A$. Since A is minimal, there exists $b\notin A$ such that $a\wedge b=0$. Hence $a*\wedge b=b$ and $a*\notin A$. Whence, $a*\in (P\setminus A)$, which yields $a\in \delta(P\setminus A)$. Conversely, let $a\in \delta(P\setminus A)$. Then we get $a*\notin A$. Thus, we have $a\in A$ and $P=\delta(P\setminus A)$. Therefore A is δ -ideal of P.
- (8) \Longrightarrow (9) Assume that every prime ideal of P is a δ -ideal. Let $a, b \in P$ be chosen that a*=b*. Suppose $a \neq b$. Then there exists a prime ideal A of P such that $a \in A$ and $b \notin A$. By hypothesis, A is a δ ideal of P. Hence $A = \delta(F)$ for some filter F of P. Consequently, $a \in A = \delta(F)$, We get $b*=a*\in F$. Thus, $b \in \delta(F) = A$, a contradiction. Therefore a = b.
- $(9) \Longrightarrow (10)$ Suppose x, y be two elements of D(P). Then x* = 0 = y*, which implies that x = y. Therefore D(P) is a singleton set.
- $(10) \Longrightarrow (1)$ Assume that $D(P) = \{d\}$ is singleton set. Let $a \in P$. We always have $a \vee a* \in D(P)$. Whence, $a \wedge a* = 0$ and $a \vee a* = d$. This true for all $a \in P$. Also $0 \le a \le a \vee a* = d$.

Therefore P is a bounded distributive lattice, in which every element is complemented, Hence the above conditions are equivalent. \Box

References

- [1] Florentin Smarandache, *Special Algebraic Structures*, University of New Mexico,1991, SC: 06A99.
- [2] Gratzer G., General Lattice Theory, Academic Press, New York, San Francisco, 1978.
- [3] Monk, J.Donald, Bonnet and Robert eds(1989), Hand book of Boolean Algebras, Amsterdam, North Holland Publishing co.
- [4] Padilla, Raul, Smarandache algebraic structure, *International Conference on Semi-Groups*, Universidad do minho, Bra go, Portugal, 18-23 June 1999.
- [5] Padilla, Raul, Smarandache algebraic structure, Smarandache Notions journal, Vol.1, 36-38.
- [6] Padilla, Raul, Smarandache algebraic structures, Bulletin of Pure and Applied Science, Vol.17.E, NO.1(1998),119-121.
- [7] Samba Siva Rao, Ideals in pseudo complemented distributive Lattices, Archivum Mathematical(Brno), No.48(2012), 97-105.
- [8] Sabine Koppel Berg, General Theory Boolean Algebra, North Holland, Amsterdam, 1989.
- [9] T.Ramaraj and N.Kannappa, On finite Smarandache near rings, *Scienctia Magna*, Vol.1, 2(2005), 49-51.
- [10] N.Kannappa and K.Suresh, On some characterization Smarandache Lattice, Proceedings of the International Business Management, Organized by Stella Marie College, Vol.II, 2012, 154-155.