On Odd Sum Graphs

S.Arockiaraj

Department of Mathematics

Mepco Schlenk Engineering College, Sivakasi - 626 005, Tamilnadu, India

P.Mahalakshmi

Department of Mathematics

Kamaraj College of Engineering and Technology, Virudhunagar - 626 001, Tamilnadu, India

E-mail: psarockiaraj@gmail.com, mahajai1979@gmail.com

Abstract: An injective function $f: V(G) \to \{0, 1, 2, \dots, q\}$ is an odd sum labeling if the induced edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$, for all $uv \in E(G)$, is bijective and $f^*(E(G)) = \{1, 3, 5, \dots, 2q-1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper, we have studied the odd sum property for the graphs paths P_p , cycles C_p , $C_p \odot K_1$, the ladder $P_2 \times P_p$, $P_m \odot nK_1$, the balloon graph $P_n(C_p)$, quadrilateral snake Q_n , $[P_m; C_n]$, $(P_m; Q_3)$, $T_p^{(n)}$, $H_n \odot mK_1$, bistar graph and cyclic ladder $P_2 \times C_p$.

 $\mathbf{Key}\ \mathbf{Words} \mathbf{:}\ \mathrm{Labeling},\ \mathrm{odd}\ \mathrm{sum}\ \mathrm{labeling},\ \mathrm{odd}\ \mathrm{sum}\ \mathrm{graph}.$

AMS(2010): 05C78

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected simple graph. Let G(V, E) be a graph with p vertices and q edges. For notations and terminology we follow [1].

Path on p vertices is denoted by P_p and a cycle on p vertices is denoted by C_p whose length is p. If m number of pendant vertices are attached at each vertex of G, then the resultant graph obtained from G is the graph $G \odot mK_1$. When $m=1, G \odot K_1$ is the corona of G. The bistar graph $B_{m,n}$ is the graph obtained from K_2 by identifying the central vertices of $K_{1,m}$ and $K_{1,n}$ at the end vertices of K_2 respectively. The graph $P_2 \times P_p$ is the ladder and $P_2 \times C_p$ is the cyclic ladder. The balloon of a graph G, $P_n(G)$ is the graph obtained from G by identifying an end vertex of P_n at a vertex of P_n . Let P_n be a fixed vertex of P_n . The graph P_n : P_n : P

¹Received September 16, 2013, Accepted November 26, 2013.

identifying each edge of the path with an edge of the cycle C_4 . The graph $T_p^{(n)}$ is a tree formed from n copies of path on p vertices by joining an edge uu' between every pair of consecutive paths where u is a vertex in i^{th} copy of the path and u' is the corresponding vertex in the $(i+1)^{th}$ copy of the path.

In [2], an odd edge labeling of a graph is defined as follows: A labeling $f:V(G)\to\{0,1,2,\ldots,p-1\}$ is called an odd edge labeling of G if for the edge labeling f^+ on E(G) defined by $f^+(uv)=f(u)+f(v)$ for any edge $uv\in E(G)$, for a connected graph G, the edge labeling is not necessarily injective. In [5], the concept of pair sum labeling was introduced. An injective function $f:V(G)\to\{\pm 1,\pm 2,\ldots,\pm p\}$ is said to be a pair sum labeling if the induced edge function $f_e:E(G)\to\mathbb{Z}-\{0\}$ defined by $f_e(uv)=f(u)+f(v)$ is one-one and $f_e(E(G))$ is either of the form $\{\pm k_1,\pm k_2,\ldots,\pm \frac{k_q}{2}\}$ or $\{\pm k_1,\pm k_2,\ldots,\pm k_{\frac{q-1}{2}}\}\cup\{\frac{k_{q+1}}{2}\}$ according as q is even or odd. A graph with a pair sum labeling defined on it is called a pair sum graph. In [6], the concept of mean labeling was introduced. An injective function $f:V(G)\to\{0,1,2,\ldots,q\}$ is said to be a mean labeling if the induced edge labeling f^* defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even,} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

is injective and $f^*(E(G)) = \{1, 2, ..., q\}$. A graph G is said to be odd mean if there exists an injective function f from V(G) to $\{0, 1, 2, 3, ..., 2q - 1\}$ such that the induced map f^* from $E(G) \to \{1, 3, 5, ..., 2q - 1\}$ defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even,} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

is a bijection [6].

Motivated by these, we introduce a new concept called odd sum labeling. An injective function $f: V(G) \to \{0, 1, 2, ..., q\}$ is an odd sum labeling if the induced edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$, for all $uv \in E(G)$, is bijective and $f^*(E(G)) = \{1, 3, 5, ..., 2q-1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper, we have studied the odd sum property for the graphs paths P_p , cycles C_p , $C_p \odot K_1$, the ladder $P_2 \times P_p$, $P_m \odot nK_1$, the balloon graph $P_n(C_p)$, quadrilateral snake Q_n , $[P_m; C_n]$, $(P_m; Q_3)$, $T_p^{(n)}$, $H_n \odot mK_1$, bistar graph and cyclic ladder $P_2 \times C_p$.

§2. Main Results

Observation 2.1 Every graph having an odd cycle is not an odd sum graph.

Proof If a graph has a cycle of odd length, then at least one edge uv on the cycle such that f(u) and f(v) are of same suit and hence its induced edge label $f^*(uv)$ is even.

Proposition 2.2 Every path $P_p, p \geq 2$ is an odd sum graph.

Proof Let v_1, v_2, \ldots, v_p be the vertices of the path P_p . The labeling $f: V(G) \to \{0, 1, 2, \ldots, q\}$ is defined as $f(v_i) = i - 1$ for $1 \le i \le p$ and the induced edge label is $f^*(v_i v_{i+1}) = 2i - 1$, for $1 \le i \le p - 1$. Then f is an odd sum labeling and hence P_p is an odd sum graph. \square

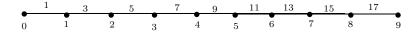


Figure 1: An odd sum labeling of P_{10} .

Proposition 2.3 Cycle C_p is an odd sum graph only when $p \equiv 0 \pmod{4}$.

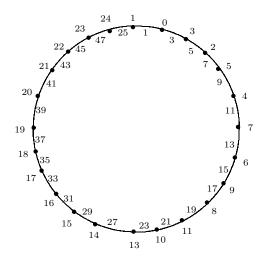


Figure 2: An odd sum labeling of C_{24} .

Proof By Observation 2.1, C_p is not an odd sum graph when p is odd. Suppose $p=2m, m\geq 2$ and C_p admits an odd sum labeling. Then $\sum\limits_{uv\in E(G)}f^*(uv)=\sum\limits_{uv\in E(G)}(f(u)+f(v)).$ This implies that $1+3+\cdots+(4m-1)=2(0+1+2+\cdots+2m)-2i$ where i is not a vertex label of C_p . From this we have, i=m. If m is odd, then the number of even values is in excess of 2 that of the number of odd values and they are to be assigned as vertex labels in C_p . Thus if C_p admits an odd sum labeling, then m should be even and hence p is a multiple of 4.

Suppose $p=4m, m\geq 1$. Let v_1,v_2,\ldots,v_p be the vertices of the cycle C_p . The labeling $f:V(G)\to\{0,1,2,\ldots,4m\}$ is defined as follows.

$$f(v_i) = \begin{cases} i, & 1 \le i \le 2m - 1 \text{ and } i \text{ is odd,} \\ i - 2, & 1 \le i \le 2m \text{ and } i \text{ is even,} \\ i, & 2m + 1 \le i \le 4m. \end{cases}$$

The induced edge labels are obtained as follows:

$$f^*(v_i v_{i+1}) = \begin{cases} 2i - 1, & 1 \le i \le 2m, \\ 2i + 1, & 2m + 1 \le i \le 4m - 1 \text{ and} \end{cases}$$
$$f^*(v_{4m} v_1) = 4m + 1.$$

Hence f is an odd sum labeling of C_p only when $p \equiv 0 \pmod{4}$.

Proposition 2.4 For each even integer $p \ge 4$, $C_p \odot K_1$ is an odd sum graph.

Proof In $C_p \odot K_1$, let v_1, v_2, \ldots, v_p be the vertices on the cycle and let u_i be the pendant vertex of v_i at each $i, 1 \le i \le p$.

Case 1 p = 4m, for $m \ge 1$.

The labeling $f: V(C_p \odot K_1) \to \{0, 1, 2, \dots, 8m\}$ is defined as follows.

$$f(v_i) = \begin{cases} 2i - 2, & 1 \le i \le 2m - 1 \text{ and } i \text{ is odd,} \\ 2i, & 2m + 1 \le i \le 4m - 1 \text{ and } i \text{ is odd,} \\ 2i - 1, & 2 \le i \le 4m \text{ and } i \text{ is even and} \end{cases}$$

$$f(u_i) = \begin{cases} 2i - 1, & 1 \le i \le 4m - 1 \text{ and } i \text{ is odd,} \\ 2i - 2, & 2 \le i \le 2m \text{ and } i \text{ is even,} \\ 2i, & 2m + 2 \le i \le 4m \text{ and } i \text{ is even.} \end{cases}$$

The induced edge labels are obtained as follows.

$$f^*(v_i v_{i+1}) = \begin{cases} 4i - 1, & 1 \le i \le 2m - 1, \\ 4i + 1, & 2m \le i \le 4m - 1, \end{cases}$$
$$f^*(v_{4m} v_1) = 8m - 1 \text{ and}$$
$$f^*(u_i v_i) = \begin{cases} 4i - 3, & 1 \le i \le 2m, \\ 4i - 1, & 2m + 1 \le i \le 4m. \end{cases}$$

Thus f is an odd sum labeling of $C_p \odot K_1$. Hence $C_p \odot K_1$ is an odd sum graph when p = 4m.

Case 2 p = 4m + 2, for m > 1.

The labeling $f: V(C_p \odot K_1) \to \{0, 1, 2, \dots, 8m+4\}$ is defined as follows.

$$f(v_i) = \begin{cases} 2i - 2, & 1 \le i \le 2m + 1 \text{ and } i \text{ is odd,} \\ 2i, & 2m + 3 \le i \le 4m + 1 \text{ and } i \text{ is odd,} \\ 2i - 1, & 2 \le i \le 2m \text{ and } i \text{ is even,} \\ 2i + 1, & i = 2m + 2, \\ 2i - 1, & 2m + 4 \le i \le 4m + 2 \text{ and } i \text{ is even and} \end{cases}$$

$$f(u_i) = \begin{cases} 2i - 1, & 1 \le i \le 2m + 1 \text{ and } i \text{ is odd,} \\ 2i - 3, & i = 2m + 3, \\ 2i - 1, & 2m + 5 \le i \le 4m + 1 \text{ and } i \text{ is odd,} \\ 2i - 2, & 2 \le i \le 2m + 2 \text{ and } i \text{ is even,} \\ 2i, & 2m + 4 \le i \le 4m + 2 \text{ and } i \text{ is even.} \end{cases}$$

$$f^*(v_i v_{i+1}) = \begin{cases} 4i - 1, & 1 \le i \le 2m, \\ 4i + 1, & i = 2m + 1, \\ 4i + 3, & i = 2m + 2, \\ 4i + 1, & 2m + 3 \le i \le 4m + 1, \end{cases}$$

$$f^*(v_{4m+2}v_1) = 8m + 3 \text{ and}$$

$$f^*(u_i v_i) = \begin{cases} 4i - 3, & 1 \le i \le 2m + 1, \\ 4i - 1, & i = 2m + 2, \\ 4i - 3, & i = 2m + 3, \\ 4i - 1, & 2m + 4 \le i \le 4m + 2. \end{cases}$$

Thus f is an odd sum labeling of $C_p \odot K_1$. Hence $C_p \odot K_1$ is an odd sum graph.

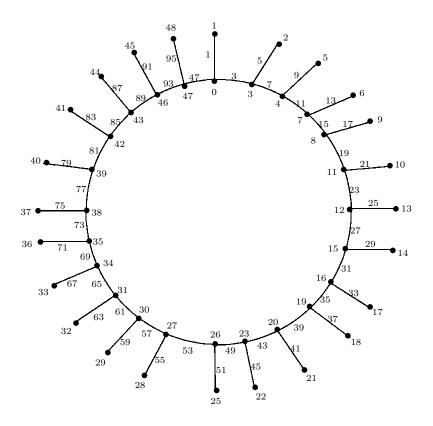


Figure 3: An odd sum labeling of $C_{24} \odot K_1$.

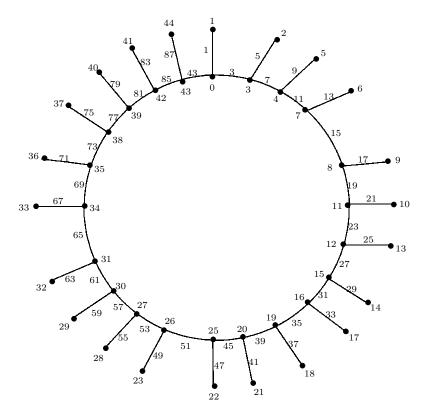


Figure 4: An odd sum labeling of $C_{22} \odot K_1$.

Proposition 2.5 For every positive integer $p \geq 2$, the ladder $P_2 \times P_p$ is an odd sum graph.

Proof Let u_1, u_2, \ldots, u_p and v_1, v_2, \ldots, v_p be the vertices of the two copies of P_p . The labeling $f: V(P_2 \times P_p) \to \{0, 1, 2, \ldots, 3p-2\}$ is defined as follows.

$$f(u_i) = 3i - 3$$
, for $1 \le i \le p$ and $f(v_i) = 3i - 2$, for $1 \le i \le p$.

The induced edge labels are obtained as follows.

$$f^*(u_i u_{i+1}) = 6i - 3, \text{ for } 1 \le i \le p - 1,$$

$$f^*(v_i v_{i+1}) = 6i - 1, \text{ for } 1 \le i \le p - 1 \text{ and}$$

$$f^*(u_i v_i) = 6i - 5, \text{ for } 1 \le i \le p.$$

Thus f is an odd sum labeling of $P_2 \times P_p$. Hence $P_2 \times P_p$ is an odd sum graph.

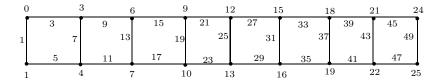


Figure 5: An odd sum labeling of $P_2 \times P_9$.

Proposition 2.6 The graph $P_m \odot nK_1$ is an odd sum graph if either m is an even positive integer and n is any positive integer or m is an odd positive integer and n = 1, 2.

Proof In $P_m \odot nK_1$, let u_1, u_2, \ldots, u_m be the vertices on the path and $\{u_{i,j} : 1 \le j \le n\}$ be the pendant vertices attached at $u_i, 1 \le i \le m$.

Case 1 m is even.

The labeling $f: V(P_m \odot nK_1) \to \{0, 1, 2, \dots, m(n+1) - 1\}$ is defined as follows. For $1 \le i \le m$,

$$f(u_i) = \begin{cases} (n+1)(i-1), & i \text{ is odd,} \\ (n+1)i-1, & i \text{ is even.} \end{cases}$$

For $1 \le i \le m$ and $1 \le j \le n$,

$$f(u_{i,j}) = \begin{cases} (n+1)(i-1) + 2j - 1, & i \text{ is odd,} \\ (n+1)(i-2) + 2j, & i \text{ is even.} \end{cases}$$

The induced edge labels are obtained as follows.

$$f^*(u_i u_{i,j}) = 2(n+1)(i-1) + 2j - 1$$
, for $1 \le i \le m$ and $1 \le j \le n$ and $f^*(u_i u_{i+1}) = 2(n+1)i - 1$, for $1 \le i \le m - 1$.

Thus f is an odd sum labeling of $P_m \odot nK_1$.

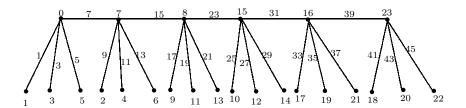


Figure 6: An odd sum labeling of $P_6 \odot 3K_1$.

Case 2 m is odd.

If $P_m \odot nK_1$ has an odd sum labeling f when m is odd, then f is a bijection from $V(P_m \odot nK_1)$ to the set $\{0, 1, 2, \ldots, m(n+1) - 1\}$. Since the number of even integers in this set is either equal to or one excess to the number of odd integers in this set, n should be less than or equal to 2.

In case of m is odd and n=1,2, the labeling $f:V(P_m\odot nK_1)\to \{0,1,2,\ldots,m(n+1)-1\}$ is defined as follows.

For $1 \leq i \leq m$,

$$f(u_i) = \begin{cases} (n+1)(i-1) + 1, & i \text{ is odd,} \\ (n+1)i - 2, & i \text{ is even.} \end{cases}$$

For $1 \le i \le m$ and $1 \le j \le n$,

$$f(u_{i,j}) = \begin{cases} (n+1)(i-1) + 2(j-1), & i \text{ is odd,} \\ (n+1)(i-2) + 2j + 1, & i \text{ is even.} \end{cases}$$

The induced edge labels are obtained as follows.

For $1 \le i \le m$ and $1 \le j \le n$,

$$f^*(u_i u_{i,j}) = 2(n+1)(i-1) + 2j - 1.$$

For $1 \le i \le m-1$,

$$f^*(u_i u_{i+1}) = 2(n+1)i - 1.$$

Thus f is an odd sum labeling of $P_m \odot nK_1$.

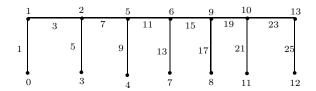


Figure 7: An odd sum labeling of $P_7 \odot K_1$.

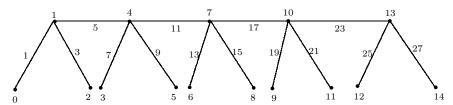


Figure 8: An odd sum labeling of $P_5 \odot 2K_1$.

Proposition 2.7 The graph $P_n(C_p)$ is an odd sum graph if either $p \equiv 0 \pmod{4}$ or $p \equiv 2 \pmod{4}$ and $n \not\equiv 1 \pmod{3}$.

Proof Let u_1, u_2, \ldots, u_p be the vertices of C_p and v_1, v_2, \ldots, v_n be the vertices of the path P_n and u_p be identified with v_1 in $P_n(C_p)$.

Case 1 $p \equiv 0 \pmod{4}$.

Let $p=4m, m\geq 1$. The labeling $f:V(P_n(C_p))\to \{0,1,2,\ldots,4m+n-1\}$ is defined as follows.

$$f(u_i) = \begin{cases} i, & 1 \le i \le 4m \text{ and } i \text{ is odd,} \\ i - 2, & 1 \le i \le 2m \text{ and } i \text{ is even,} \\ i, & 2m + 1 \le i \le 4m \text{ and } i \text{ is even,} \end{cases}$$

$$f(v_i) = 4m + i - 1, 2 \le i \le n.$$

$$f^*(u_i u_{i+1}) = \begin{cases} 2i - 1, & 1 \le i \le 2m, \\ 2i + 1, & 2m + 1 \le i \le 4m - 1. \end{cases}$$
$$f^*(u_1 u_{4m}) = 4m + 1 \text{ and }$$
$$f^*(v_i v_{i+1}) = 8m + 2i - 1, \quad 1 \le i \le n - 1.$$

Thus f is an odd sum labeling of $P_n(C_p)$.

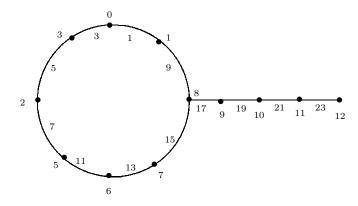


Figure 9: An odd sum labeling of $P_5(C_8)$.

Case 2 $p \equiv 2 \pmod{4}$.

Let
$$p = 4m + 2, m > 1$$
.

Subcase 2.1 $n \equiv 0 \pmod{3}$.

The labeling $f: V(P_n(C_p)) \to \{0, 1, 2, \dots, 4m + n + 1\}$ is defined as follows.

$$f(u_i) = 4m + 3,$$

$$f(u_i) = \begin{cases} i - 2, & 1 \le i \le 2m + 3, \\ i, & 2m + 4 \le i \le 4m + 2 \text{ and } i \text{ is even,} \\ i - 2, & 2m + 4 \le i \le 4m + 2 \text{ and } i \text{ is odd and} \end{cases}$$

$$f(v_i) = \begin{cases} 4m+i+1, & 1 \le i \le n-3 \text{ and } i \equiv 1 \pmod{3}, \\ 4m+i-1, & 1 \le i \le n-1 \text{ and } i \equiv 2 \pmod{3}, \\ 4m+i+3, & 1 \le i \le n-1 \text{ and } i \equiv 0 \pmod{3}, \\ 4m+n+1, & i = n-2, \\ 4m+n-1, & i = n. \end{cases}$$

$$f^*(u_i u_{i+1}) = \begin{cases} 4m+3, & i=1, \\ 2i-3, & 2 \le i \le 2m+2, \\ 2i-1, & 2m+3 \le i \le 4m+1. \end{cases}$$

$$f^*(u_{4m+2}u_1) = 8m+5 \text{ and}$$

$$f^*(v_i v_{i+1}) = \begin{cases} 8m+2i+3, & 2 \le i \le n-4 \text{ and } i \equiv 2 \pmod{3}, \\ 8m+2i+5, & 2 \le i \le n-4 \text{ and } i \equiv 0 \pmod{3}, \\ 8m+2i+1, & 2 \le i \le n-4 \text{ and } i \equiv 1 \pmod{3}, \\ 8m+4n-2i-5, & n-3 \le i \le n-1. \end{cases}$$

Thus f is an odd sum labeling of $P_n(C_p)$.

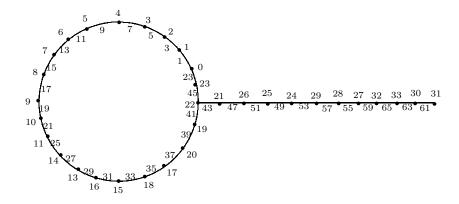


Figure 10: An odd sum labeling of $P_{12}(C_{22})$.

Subcase 2.2 $n \equiv 2 \pmod{3}$.

The labeling $f: V(P_n(C_p)) \to \{0, 1, 2, \dots, 4m + n + 1\}$ is defined as follows.

$$f(u_i) = 4m + 3,$$

$$f(u_i) = \begin{cases} i - 2, & 1 \le i \le 2m + 3, \\ i, & 2m + 4 \le i \le 4m + 2 \text{ and } i \text{ is even,} \\ i - 2, & 2m + 4 \le i \le 4m + 2 \text{ and } i \text{ is odd,} \end{cases}$$

$$and \ f(v_i) = \begin{cases} 4m + i + 1, & 1 \le i \le n \text{ and } i \equiv 1 \pmod{3}, \\ 4m + i - 1, & 1 \le i \le n \text{ and } i \equiv 2 \pmod{3}, \\ 4m + i + 3, & 1 \le i \le n \text{ and } i \equiv 0 \pmod{3}. \end{cases}$$

$$f^*(u_i u_{i+1}) = \begin{cases} 4m+3, & i = 1, \\ 2i-3, & 2 \le i \le 2m+2, \\ 2i-1, & 2m+3 \le i \le 4m+1, \end{cases}$$

$$f^*(u_{4m+2}u_1) = 8m+5 \text{ and}$$

$$f^*(v_i v_{i+1}) = \begin{cases} 8m+2i+1, & 1 \le i \le n \text{ and } i \equiv 1 \pmod{3}, \\ 8m+2i+3, & 1 \le i \le n \text{ and } i \equiv 2 \pmod{3}, \\ 8m+2i+5, & 1 \le i \le n \text{ and } i \equiv 0 \pmod{3}. \end{cases}$$

Thus f is an odd sum labeling of $P_n(C_p)$. Hence $P_n(C_p)$ is an odd sum graph.

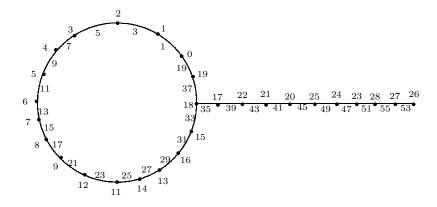


Figure 11: An odd sum labeling of $P_{11}(C_{18})$.

Proposition 2.8 $[P_m; C_n]$ is an odd sum graph for $n \equiv 0 \pmod{4}$ and any $m \geq 2$.

Proof In $[P_m; C_n]$, let v_1, v_2, \ldots, v_m be the vertices on the path $P_m, v_{i,1}, v_{i,2}, \ldots, v_{i,n}$ be the vertices of the i^{th} cycle C_n , for $1 \leq i \leq m$ and each vertex $v_{i,1}$ of the i^{th} cycle C_n is identified with the vertex v_i of the path P_m , $1 \leq i \leq m$.

Suppose $n=4t, t\geq 1$. The labeling $f:V([P_m;C_n])\to \{0,1,2,3,\ldots,m(n+1)-1\}$ is defined as follows.

For $1 \leq i \leq m$,

$$f(v_{i,j}) = \begin{cases} (n+1)(i-1) + j - 1, & 1 \leq j \leq 2t, i \text{ and } j \text{ are odd,} \\ (n+1)(i-1) + j + 1, & 2t+1 \leq j \leq 4t, i \text{ and } j \text{ are odd,} \\ (n+1)(i-1) + j - 1, & 1 \leq j \leq 4t, i \text{ is odd and } j \text{ are even,} \\ (n+1)i - j, & 1 \leq j \leq 2t, i \text{ is even and } j \text{ is odd,} \\ (n+1)i - j - 2, & 2t + 1 \leq j \leq 4t, i \text{ is even and } j \text{ is odd,} \\ (n+1)i - j, & 1 \leq j \leq 4t, i \text{ is even and } j \text{ is odd,} \\ (n+1)i - j, & 1 \leq j \leq 4t, i \text{ is even and } j \text{ is even.} \end{cases}$$

For $1 \le i \le m$, the induced edge label is obtained as follows.

$$f^*(v_{i,j}v_{i,j+1}) = \begin{cases} 2(n+1)(i-1) + 2j - 1, & 1 \le j \le 2t - 1 \text{ and } i \text{ is odd,} \\ 2(n+1)(i-1) + 2j + 1, & 2t \le j \le 4t - 1 \text{ and } i \text{ is odd,} \\ 2(n+1)(i-1) + 9, & j = 1 \text{ and } i \text{ is even,} \\ 2(n+1)(i-1) + 2j - 3, & 2 \le j \le 2t + 1 \text{ and } i \text{ is even,} \\ 2(n+1)(i-1) + 2j - 1, & 2t + 2 \le j \le 4t - 1 \text{ and } i \text{ is even,} \end{cases}$$

$$and \ f^*(v_{i,4t}v_{i,1}) = \begin{cases} 2(n+1)(i-1) + 4t - 1, & i \text{ is odd,} \\ 2(n+1)(i-1) + 8t - 1, & i \text{ is even.} \end{cases}$$

Thus f is an odd sum labeling of $[P_m; C_n]$. Hence $[P_m; C_n]$ is an odd sum graph.

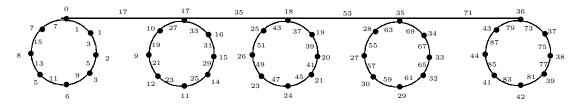


Figure 12: An odd sum labeling of $[P_5; C_8]$.

Proposition 2.9 Quadrilateral snake Q_n is an odd sum graph for $n \ge 1$.

Proof The vertex set and edge set of the Quadrilateral snake Q_n are $V(Q_n)=\{u_i,v_j,w_j:1\leq i\leq n+1,1\leq j\leq n\}$ and $E(Q_n)=\{u_iv_i,v_iw_i,u_iu_{i+1},u_{i+1}w_i:1\leq i\leq n\}$ respectively. The labeling $f:V(Q_n)\to\{0,1,2,\ldots,4n\}$ is defined as follows.

$$f(u_i) = \begin{cases} 4i - 4, & 1 \le i \le n + 1 \text{ and } i \text{ is odd,} \\ 4i - 5, & 1 \le i \le n \text{ and } i \text{ is even,} \end{cases}$$

$$f(v_i) = \begin{cases} 4i - 3, & 1 \le i \le n \text{ and } i \text{ is odd,} \\ 4i - 2, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$and f(w_i) = \begin{cases} 4i, & 1 \le i \le n \text{ and } i \text{ is odd,} \\ 4i - 1, & 1 \le i \le n \text{ and } i \text{ is even.} \end{cases}$$

The induced edge labels are obtained as follows

$$f^*(u_i u_{i+1}) = 8i - 5, \quad 1 \le i \le n,$$

$$f^*(u_i v_i) = 8i - 7, \quad 1 \le i \le n,$$

$$f^*(v_i w_i) = 8i - 3, \quad 1 \le i \le n,$$

$$f^*(w_i u_{i+1}) = 8i - 1, \quad 1 \le i \le n.$$

Thus f is an odd sum labeling of Q_n . Hence the Quadrilateral snake Q_n is an odd sum graph for $n \ge 1$.

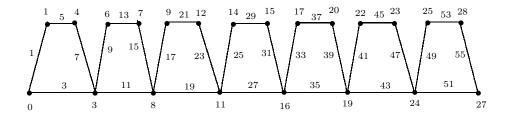


Figure 13: An odd sum labeling of Q_7 .

Proposition 2.10 $(P_m; Q_3)$ is an odd sum graph for any positive integer $m \ge 1$.

Proof Let $v_{i,j},\ 1 \leq j \leq 8$ be the vertices in the i^{th} copy of $Q_3,\ 1 \leq i \leq m$ and u_1,u_2,\ldots,u_m be the vertices on the path $P_m.\ \{u_iu_{i+1}:1\leq i\leq m-1\}\cup\{u_iv_{i,1}:1\leq i\leq m\}\cup\{v_{i,1}v_{i,2},v_{i,1}v_{i,4},v_{i,1}v_{i,6},v_{i,2}v_{i,3},v_{i,4},v_{i,2}v_{i,3},v_{i,4},v_{i,3}v_{i,4},v_{i,3}v_{i,4},v_{i,3}v_{i,5},v_{i,5}v_{i,6},v_{i,5}v_{i,6},v_{i,5}v_{i,6},v_{i,7},v_{i,7}v_{i,8}:1\leq i\leq m\}$ be the edge set of $(P_m;Q_3)$.

The labeling $f: V[(P_m; Q_3)] \to \{0, 1, 2, \dots, 14m - 1\}$ is defined as follows:

For $1 \leq i \leq m$,

$$f(u_i) = \begin{cases} 14(i-1), & i \text{ is odd,} \\ 14i-1, & i \text{ is even.} \end{cases}$$

For $1 \le i \le m$ and i is odd,

$$f(v_{i,j}) = \begin{cases} 14i - 13, & j = 1, \\ 14i - 12 + j, & 2 \le j \le 3, \\ 14i - 12, & j = 4, \\ 14i - 5, & j = 5, \\ 14i - 8 + j, & 6 \le j \le 7, \\ 14i - 4, & j = 8. \end{cases}$$

For $1 \le i \le m$ and i is even,

$$f(v_{i,j}) = \begin{cases} 14i - 2, & j = 1, \\ 14i - j - 3, & 2 \le j \le 3, \\ 14i - 3, & j = 4, \\ 14i - 10, & j = 5, \\ 14i - j - 7, & 6 \le j \le 7, \\ 14i - 11, & j = 8. \end{cases}$$

The induced edge label of $(P_m; Q_3)$ is obtained as follows:

For
$$1 \le i \le m-1$$
,
$$f^*(u_iu_{i+1}) = 28i-1.$$
 For $1 \le i \le m$,
$$f^*(u_iv_{i,1}) = \begin{cases} 28i-27, & i \text{ is odd,} \\ 28i-3, & i \text{ is even.} \end{cases}$$

For $1 \le i \le m$ and i is odd	For $1 \le i \le m$ and i is even
$f^*(v_{i,1}v_{i,2}) = 28i - 23$	$f^*(v_{i,1}v_{i,2}) = 28i - 7$
$f^*(v_{i,1}v_{i,4}) = 28i - 25,$	$f^*(v_{i,1}v_{i,4}) = 28i - 5$
$f^*(v_{i,1}v_{i,6}) = 28i - 15$	$f^*(v_{i,1}v_{i,6}) = 28i - 15$
$f^*(v_{i,2}v_{i,3}) = 28i - 19$	$f^*(v_{i,2}v_{i,3}) = 28i - 11$
$f^*(v_{i,2}v_{i,7}) = 28i - 11$	$f^*(v_{i,2}v_{i,7}) = 28i - 19$
$f^*(v_{i,3}v_{i,4}) = 28i - 21$	$f^*(v_{i,3}v_{i,4}) = 28i - 9$
$f^*(v_{i,3}v_{i,8}) = 28i - 13$	$f^*(v_{i,3}v_{i,8}) = 28i - 17$
$f^*(v_{i,4}v_{i,5}) = 28i - 17$	$f^*(v_{i,4}v_{i,5}) = 28i - 13$
$f^*(v_{i,5}v_{i,6}) = 28i - 7$	$f^*(v_{i,5}v_{i,6}) = 28i - 23$
$f^*(v_{i,5}v_{i,8}) = 28i - 9$	$f^*(v_{i,5}v_{i,8}) = 28i - 21,$
$f^*(v_{i,6}v_{i,7}) = 28i - 3$	$f^*(v_{i,6}v_{i,7}) = 28i - 27$
$f^*(v_{i,7}v_{i,8}) = 28i - 5$	$f^*(v_{i,7}v_{i,8}) = 28i - 25$

Thus f is an odd sum labeling of $(P_m; Q_3)$. Hence $(P_m; Q_3)$ is an odd sum graph.

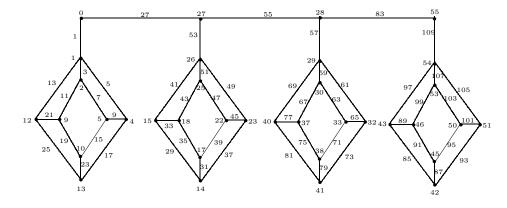


Figure 14: An odd sum labeling of $(P_4; Q_3)$.

Proposition 2.11 For all positive integers p and n, the graph $T_p^{(n)}$ is an odd sum graph.

Proof Let $v_i^{(j)}, 1 \leq i \leq p$ be the vertices of the j^{th} copy of the path on p vertices, $1 \leq j \leq n$. The graph $T_p^{(n)}$ is formed by adding an edge $v_i^{(j)}v_i^{(j+1)}$ between j^{th} and $(j+1)^{th}$ copy of the path at some $i, 1 \leq i \leq p$. The labeling $f: V(G) \to \{0, 1, 2, \dots, np-1\}$ is defined as follows:

For $1 \le j \le n$ and $1 \le i \le p$,

$$f(v_i^{(j)}) = \begin{cases} p(j-1) + i - 1, & j \text{ is odd,} \\ pj - i, & j \text{ is even.} \end{cases}$$

The induced edge labeling is obtained as follows:

For $1 \le j \le n$ and $1 \le i \le p-1$,

$$\begin{split} f^*(v_i^{(j)}v_{i+1}^{(j)}) &= \left\{ \begin{array}{ll} 2p(j-1) + 2i - 1, & \quad j \text{ is odd,} \\ \\ 2pj - 2i - 1, & \quad j \text{ is even} \end{array} \right. \text{ and} \\ f^*(v_i^{(j)}v_i^{(j+1)}) &= 2pj - 1. \end{split}$$

Thus f is an odd sum labeling of the graph $T_p^{(n)}$. Hence $T_p^{(n)}$ is an odd sum graph.

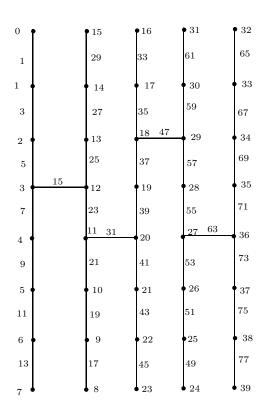


Figure 15: An odd sum labeling of $T_8^{(5)}$.

Proposition 2.12 The graph $H_n \odot mK_1$ is an odd sum graph for all positive integers m and n.

Proof Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be the vertices on the path of length n-1. Let $x_{i,k}$ and $y_{i,k}$, $1 \leq k \leq m$, be the pendant vertices at u_i and v_i respectively, for $1 \leq i \leq n$. Define $f: V(H_n \odot mK_1) \to \{0, 1, 2, \ldots, 2n(m+1) - 1\}$ as follows:

For $1 \le i \le n$,

$$f(u_i) = \begin{cases} i + m(i-1), & i \text{ is odd,} \\ i(m+1) - 2, & i \text{ is even} \quad \text{and} \end{cases}$$

$$f(v_i) = \begin{cases} f(u_i) + n(m+1) + m - 2, & i \text{ is odd and } n \text{ is odd,} \\ f(u_i) + n(m+1) - m + 2, & i \text{ is even and } n \text{ is odd,} \\ f(u_i) + n(m+1), & n \text{ is even.} \end{cases}$$

For $1 \le i \le n$ and $1 \le k \le m$,

$$f(x_{i,k}) = \begin{cases} (m+1)(i-1) + 2k - 2, & i \text{ is odd,} \\ (m+1)(i-2) + 2k + 1, & i \text{ is even} \quad \text{and} \end{cases}$$

$$f(y_{i,k}) = \begin{cases} f(x_{i,k}) + n(m+1) - m + 2, & i \text{ is odd and } n \text{ is odd,} \\ f(x_{i,k}) + n(m+1) + m - 2, & i \text{ is even and } n \text{ is odd,} \\ f(x_{i,k}) + n(m+1), & n \text{ is even.} \end{cases}$$

The induced edge labels are obtained as follows:

For $1 \le i \le n-1$,

$$f^*(u_i u_{i+1}) = 2i(m+1) - 1$$
 and
 $f^*(v_i v_{i+1}) = f^*(u_i u_{i+1}) + 2n(m+1).$

For $1 \le i \le n$ and $1 \le k \le m$,

$$f^*(u_i x_{i,k}) = 2(m+1)(i-1) + 2k - 1$$
 and $f^*(v_i y_{i,k}) = f^*(u_i x_{i,k}) + 2n(m+1)$.

When n is odd,

$$f^*\left(u_{\frac{n+1}{2}}v_{\frac{n+1}{2}}\right) = 2n(m+1) - 1.$$

When n is even,

$$f^* \left(u_{\frac{n}{2}+1} v_{\frac{n}{2}} \right) = 2n(m+1) - 1.$$

Thus f is an odd sum labeling of $H_n \odot mK_1$. Hence $H_n \odot mK_1$ is an odd sum graph for all positive integers m and n.

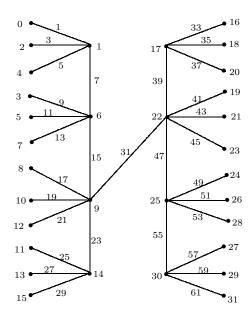


Figure 16: An odd sum labeling of $H_4 \odot 3K_1$.

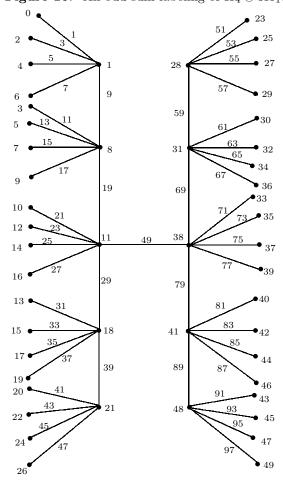


Figure 17: An odd sum labeling of $H_5 \odot 4K_1$.

Corollary 2.13 For any positive integer m, the bistar graph B(m,m) is an odd sum graph.

Proof By taking n = 1 in Proposition 2.12, the result follows.

Proposition 2.14 For any even integer $p \ge 4$, the cyclic ladder $P_2 \times C_p$ is an odd sum graph.

Proof Let u_1, u_2, \ldots, u_p and v_1, v_2, \ldots, v_p be the vertices of the inner and outer cycle which are joined by the edges $\{u_i v_i : 1 \le i \le p\}$.

Case 1 $p = 4m, m \ge 2$.

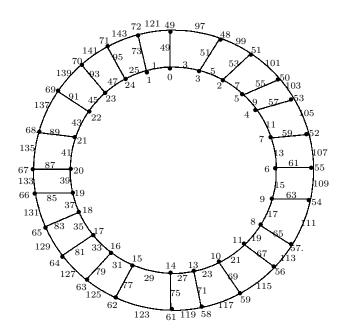


Figure 18: An odd sum labeling of $P_2 \times C_{24}$.

The labeling $f:V(P_2\times C_p)\to\{0,1,2,\ldots,12m\}$ is defined as follows:

$$f(u_i) = \begin{cases} i-1, & 1 \le i \le 2m-1 \text{ and } i \text{ is odd,} \\ i+1, & 2 \le i \le 4m-2 \text{ and } i \text{ is even,} \\ i+1, & 2m+1 \le i \le 4m-1 \text{ and } i \text{ is odd,} \end{cases}$$

$$f(u_{4m}) = 1 \text{ and}$$

$$f(v_i) = \begin{cases} 8k+i, & 1 \le i \le 4m-1 \text{ and } i \text{ is odd,} \\ 8k+i-2, & 2 \le i \le 2m \text{ and } i \text{ is even,} \\ 8k+i, & 2m+2 \le i \le 4m \text{ and } i \text{ is even.} \end{cases}$$

$$f^*(u_i u_{i+1}) = \begin{cases} 2i+1, & 1 \le i \le 2m-1, \\ 2i+3, & 2m \le i \le 4m-2, \\ i+2, & i = 4m-1, \end{cases}$$

$$f^*(u_1 u_{4m}) = 1,$$

$$f^*(v_i v_{i+1}) = \begin{cases} 16m+2i-1, & 1 \le i \le 2m \\ 16m+2i+1, & 2m+1 \le i \le 4m-1, \end{cases}$$

$$f^*(v_1 v_{4m}) = 20m+1,$$

$$f^*(v_1 v_{4m}) = \begin{cases} 8m+2i-1, & 1 \le i \le 2m, \\ 8m+2i+1, & 2m+1 \le i \le 4m-1 \text{ and } \end{cases}$$

$$f^*(u_4 w_{4m}) = 12m+1.$$

Thus f is an odd sum labeling of $P_2 \times C_p$. Hence $P_2 \times C_p$ is an odd sum graph when p = 4m.

Case 2 $p = 4m + 2, m \ge 1.$

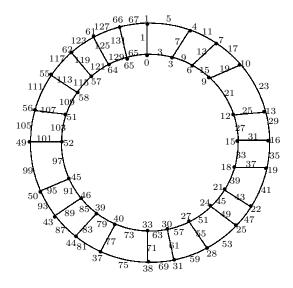


Figure 19: An odd sum labeling of $P_2 \times C_{22}$.

The labeling $f: V(P_2 \times C_p) \to \{0, 1, 2, \dots, 12m\}$ is defined as follows:

$$f(u_i) = \begin{cases} 3i - 3, & 1 \le i \le 2m + 2, \\ 3i + 1, & 2m + 3 \le i \le 4m + 1 \text{ and } i \text{ is odd,} \end{cases}$$

$$f(u_i) = \begin{cases} 3i - 3, & 2m + 4 \le i \le 4m \text{ and } i \text{ is even,} \\ 3i - 1, & i = 4m + 2 \text{ and} \end{cases}$$

$$f(v_i) = \begin{cases} 3i - 2, & 1 \le i \le 2m + 1, \\ 3i + 2, & 2m + 2 \le i \le 4m \text{ and } i \text{ is even,} \\ 3i - 2, & 2m + 3 \le i \le 4m + 1 \text{ and } i \text{ is odd,} \\ 3i, & i = 4m + 2. \end{cases}$$

The induced edge labels are given as

$$f^*(u_i u_{i+1}) = \begin{cases} 6i - 3, & 1 \le i \le 2m + 1, \\ 6i + 1, & 2m + 2 \le i \le 4m, \\ 6i + 3, & i = 4m + 1, \end{cases}$$

$$f^*(u_1 u_{4m+2}) = 12m + 5,$$

$$f^*(v_i v_{i+1}) = \begin{cases} 6i - 1, & 1 \le i \le 2m, \\ 6i + 3, & 2m + 1 \le i \le 4m, \\ 6i + 1, & i = 4m + 1, \end{cases}$$

$$f^*(v_1 v_{4m+2}) = 12m + 7 \text{ and}$$

$$f^*(u_i v_i) = \begin{cases} 6i - 5, & 1 \le i \le 2m + 1, \\ 6i - 1, & 2m + 2 \le i \le 4m + 2. \end{cases}$$

Thus f is an odd sum labeling of $P_2 \times C_p$. Whence $P_2 \times C_p$ is an odd sum graph if p = 4m + 2.

References

- [1] F.Buckley and F.Harary, Distance in Graphs, Addison-Wesley, Reading, 1990.
- [2] R.Balakrishnan, A.Selvam and V.Yegnanarayanan, On felicitous labelings of graphs, *Graph Theory and its Applications*, (1996), 47–61.
- [3] J.A.Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, **17** (2011), # DS6.
- [4] K.Manickam and M.Marudai, Odd mean labelings of graphs, Bulletin of Pure and Applied Sciences, 25E(1) (2006), 149–153.
- [5] R.Ponraj, J.Vijaya Xavier Parthipan and R.Kala, Some results on pair sum labeling of graphs, *International Journal of Mathematical Combinatorics*, 4 (2010), 53–61.
- [6] S.Somasundaram and R.Ponraj, Mean labelings of graphs, *National Academy Science Letter*, **26** (2003), 210–213.
- [7] Selvam Avadayappan and R. Vasuki, Some results on mean graphs, Ultra Scientist of Physical Sciences, 21(1)M (2009), 273–284.