p*-Graceful Graphs

Teena Liza John and Mathew Varkey T.K.

(Department of Mathematics, T.K.M College of Engineering, Kollam-5, Kerala, India)

E-mail: teenavinu@gmail.com, mathewvarkeytk@gmail.com

Abstract: A labeling or numbering of a graph is an assignment of labels to the vertices of G that induces a number to each edge. In this paper we define p^* -graceful graphs and investigate some graphs based on this definition.

Key Words: Pentagonal numbers, p^* -graceful graphs, Comb graph, Twig graph, Banana trees.

AMS(2010): 05C78

§1. Introduction

Throughout this paper, by a graph we mean a simple finite graph without isolated vertices. For all the terminology and notations in Graph Theory, we follow [2] and for all terminology regarding labeling we follow [4].

Graceful labeling has been suggested by Bermond in [1]. A graph G=(V,E) is numbered if each vertex v is assigned a non-negative integer f(v) and each edge uv is attributed the absolute value of the difference of numbers of its end points, that is, |f(u) - f(v)|. The numbering is called graceful if further more, we have the following three conditions: (1) all the vertices are labeled with distinct integers; (2) the largest value of the vertex labels is equal to the number of edges, i.e $f(v) \in \{0, 1, \dots, q\}$ for all $v \in V(G)$ and (3) the edges of G are distinctly labeled with integers from 1 to g.

In this paper we suggest a labeling called p^* -graceful labeling which is an analogue to graceful labeling and investigate the p^* -graceful nature of some graphs.

§2. P^* Graceful Labeling Graphs

Definition 2.1 A labeling f of a graph G is one-one mapping from the vertex set of G into the set of integers. Let G be a graph with q edges. Let $f_p:V(G)\to\{0,1,\cdots,\omega^p(q)\}$ be an injective function. Define the function $f_p^*:E(G)\to\{\omega^p(1),\omega^p(2),\cdots,\omega^p(q)\}$ such that $f_p^*(u,v)=|f_p(u)-f_p(v)|$. So f_p is said to be pentagonal graceful labeling of G and G is called a p^* -graceful graph. Here $\omega^p(q)=\frac{q(3q-1)}{2}$ is the q^{th} pentagonal number.

¹Received August 28, 2012. Accepted December 16, 2012.

Theorem 2.1 All paths are p^* graceful graphs.

Proof Let $\{v_1, v_2, \dots, v_n\}$ be the vertices of P_n , the path on n vertices. Define $f_p: V(P_n) \to \{0, 1, \dots, \omega^p(n-1)\}$ such that

$$f_p(v_1) = 0;$$

$$f_p(v_{2i}) = f_p(v_{2i-1}) + \omega^p(q - (2i - 2)) \quad \text{where } i = 1, 2, \dots, \left\lfloor \frac{q}{2} \right\rfloor;$$

$$f_p(v_{2i+1}) = f_p(v_{2i}) - \omega^p(q - (2i - 1)) \quad \text{where } i = 1, 2, \dots, \left\lfloor \frac{q}{2} \right\rfloor.$$

Obviously, f_p is nothing but a pentagonal graceful labeling on P_n with $f_p^*(P_n) = \{\omega^p(1), \omega^p(2), \cdots, \omega^p(n-1)\}$.

Theorem 2.2 The graph nK_2 is p^* -graceful.

Proof Let each K_2 be labeled with u_i, v_i where $1 \leq i \leq n$. Define $f_p: V(G) \rightarrow \{0, 1, \dots, \omega^p(q)\}$ such that

$$f_p(u_i) = i - 1 \quad \text{if } 1 \leqslant i \leqslant n;$$

$$f_p(v_i) = w^p(n - (i - 1)) + f_p(u_i) \quad \text{if } 1 \leqslant i \leqslant n.$$

Then $f_p(u_i) \neq f_p(u_j)$ for $i \neq j$. Otherwise, if $f_p(u_i) = f_p(u_j)$ then i - 1 = j - 1. Thus i = j, a contradiction.

Again, if $i \neq j$, $f_p(v_i) \neq f_p(v_j)$. Otherwise if $f_p(v_i) = f_p(v_j)$ then $\omega^p(q - (i - 1)) + f_p(u_i) = \omega^p(q - (j - 1)) + f_p(u_j)$, i.e, $\omega^p(q - (i - 1)) - \omega^p(q - (j - 1)) = f_p(u_j) - f_p(u_i) \neq 0$. Thus $\omega^p(q - (i - 1)) \neq \omega^p(q - (j - 1))$. Consequently, $f_p(v_i) \neq f_p(v_j)$. Hence f_p is one-one. Also

$$|f_p(u_i) - f_p(v_i)| = |f_p(u_i) - \omega^p(q - (i - 1)) - f_p(u_i)|$$

= $\omega^p(q - (i - 1))$ for $i = 1, 2, \dots, n$.

We will have $\omega^p(n), \omega^p(n-1), \cdots, \omega^p(1)$ as the edge labels. Hence the result.

Definition 2.2 Let T be a tree. Denote the tree obtained from T by considering two copies of T and adding an edge by $T_{(2)}$ and in general the graph obtained from $T_{(n-1)}$ and T by adding an edge between them is denoted by $T_{(n)}$. Now $T_{(1)}$ is just T.

Corollary 2.1 $T_{(n)}$ is a p^* -graceful graph.

Let P_{2n+1} be a path on 2n+1 vertices. Take $2m+1=\alpha$ is isomorphic copies of P_{2n+1} . Let w be a vertex which is adjacent to one end vertex of each copy. The newly obtained graph is a star with 2m+1 spokes in which each spoke is a path of length 2n+1 and is denoted by $S_{2n+1,2m+1}$. The degree of w is 2n+1 and all the other vertices are of degree either 2 or 1. So this is a trivalent tree. In [5] Mathew Varkey proved that $S_{2k+1,2m+1}$ is a prime graph for all k and m. Now we prove the following.

Theorem 2.3 The star $S_{2n+1,2m+1}$ is p^* -graceful for all $n, m \ge 1$.

Proof Let P_{2n+1} be a path of length 2n. Consider $\alpha = 2m+1$ isomorphic copies of P_{2n+1} . Adjoin a new vertex w to one end vertex of each copy of P_{2n+1} . Let $v_{i1}: i=1,2,\cdots,2m+1$ be the vertices in the first level and $v_{ij}: i=1,2,\cdots,2m+1$ and $j=2,3,\cdots,2n+1$ be the remaining vertices of $S_{2n+1,2m+1}$. Define a function f_p from the vertex set of $S_{2n+1,2m+1}$ to the set of all non-negative integers less than or equal to number of edges of $S_{2n+1,2m+1}$ such that

$$f_p(w) = 0, f_p(v_{i1}) = \omega^p(q - i + 1); \ i = 1, 2, \dots, 2m + 1 \text{ and}$$

 $f_p(v_{ij}) = f_p(v_{i,j-1}) + (-1)^{j-1}\omega^p(q - (2m+1)(j-1) - (i-1)) \text{ for } i = 1, 2, \dots, 2m + 1; j = 2, \dots, 2n.$

Clearly f is injective. Hence $S_{2n+1,2m+1}$ is p^* -graceful.

Corollary 2.2 The star $S_{2n+1,2n+1}$ is p^* -graceful for all n.

Corollary 2.3 The star $S_{2n,2n}$ is p^* -graceful for all $n \ge 1$.

Definition 2.3 A caterpillar is a tree with the property that the removal of its end points leaves a path.

Theorem 2.4 A caterpillar $S(n_1, n_2, \dots, n_m)$ is p^* -graceful.

Definition 2.4 The eccentricity e(v) of a vertex v in a tree T is defined as $\max\{d(v,u): u \in V(T)\}$ and the radius of T is the minimum eccentricity of the vertices.

Definition 2.5 A centre of a tree is a vertex of minimum eccentricity.

Definition 2.6 The neighborhood of vertex u is the set N(u) consisting of all the vertices v which are adjacent with u. The closed neighborhood is defined as N[u] and is given by $N[u] = N(u) \cup \{u\}$.

A result by Jordan states that every tree has centre consisting of one point or two adjacent points. In this section we consider trees with exactly one centre.

Let $\{\alpha_1K_{1,n_i}; \alpha_2K_{1,n_2}; \cdots \alpha_pK_{1,n_p}\}$ be a family of stars where α_iK_{1,n_i} denotes α_i disjoint isomorphic copies of K_{1,n_i} for $i=1,2,\cdots,p$ and $\alpha_i\geqslant 1$. Let H_{ij} be the j^{th} isomorphic copy of K_{1,n_i} and u_{ij} and v_{ijk} for $k=1,2,\cdots,n_i$ be the central and end vertices respectively of H_{ij} . Let w be a new vertex adjacent to u_{ij} for $j=1,2,\cdots,\alpha_i; i=1,2,\cdots,p$. We thus obtain a new tree of radius 2 with unique centre which we shall denote by $H_w^{(\alpha_1+\alpha_2+\cdots+\alpha_p)}$. [see 5]. Now we prove the following theorem.

Theorem 2.5 $H_w^{(\alpha_1+\alpha_2+\cdots+\alpha_p)}$ is p^* -graceful.

Proof Consider the family of stars $\alpha_i K_{1,n_i}$ for $i=1,2,\cdots,p$. Let H_{ij} be the j^{th} isomorphic copy of K_{1,n_i} and u_{ij} and v_{ijk} for $k=1,2,\cdots,n_i$ be the central and end vertices respectively of H_{ij} . Let w be a new vertex adjacent to u_{ij} for $i=1,2,\cdots,p; j=1,2,\cdots,\alpha_i$ of each star.

Consider the mapping $f_p: V \to \{0, 1, \cdots, \omega^p(q)\}$ (where V is the vertex set and q is the

number of edges of $H_w^{(\alpha_1+\alpha_2+\cdots+\alpha_p)}$) defined as $f_p(w)=1, f_p(u_{11})=0$

$$f_p(u_{ij}) = 0$$
 for $i = j = 1$
= $\omega^p(j) + 1$ for $i = 1$ and $j = 2, 3, \dots, \alpha_1$
= $\omega^p(\alpha_1 + \alpha_2 + \dots + \alpha_{i-1} + j) + 1$ for $i = 2, 3, \dots, p; j = 1, 2, \dots \alpha_i$

$$f_p(v_{ijk}) = \omega^p(q - (k - 1)) \text{ for } i = j = 1; k = 1, 2, \dots, n_1$$

$$= \omega^p(q - (j - 1)n_1 - (k - 1)) + f_p(u_{1j}) \text{ for } i = 1; j = 2, 3, \dots, \alpha_1; k = 1, 2, \dots, n_1$$

$$= \omega^p\left(q - \sum_{l=1}^{i-1} \alpha_l n_l - (j - 1)n_i - (k - 1)\right) + f_p(u_{ij})$$
for $i = 2, 3, \dots, p; j = 1, 2, \dots, \alpha_p; k = 1, 2, \dots, n_p$

Thus f_p is a one-one mapping which induces the edge labels $\{\omega^p(1), \omega^p(2), \dots, \omega^p(q)\}$. Hence f_p is p^* - graceful labeling. Hence the theorem.

Consider the family of stars $\{\alpha_1K_{1,n_1}; \alpha_2K_{1,n_2}; \cdots \alpha_pK_{1,n_p}\}$ where α_iK_{1,n_i} denotes α_i disjoint isomorphic copies of K_{1,n_i} for $i=1,2,\cdots,p$ and $\alpha_i\geqslant 1$. Let H_{ij} be the j^{th} isomorphic copy of K_{1,n_i} and u_{ij} and v_{ijk} for $k=1,2,\cdots,n_i$ be the central and end vertices respectively of H_{ij} . Adjoin a new vertex w to one end vertex of each star. The tree thus obtained is a tree with unique centre and radius 3 and is denoted by $H_w^{*(\alpha_1+\alpha_2+\cdots+\alpha_p)}$. Trees of this kind are referred to as banana trees, by some authors.

Corollary 2.4 $H_w^{*(\alpha_1+\alpha_2+\cdots+\alpha_p)}$ is p^* -graceful.

Definition 2.7 The comb graph is a graph obtained from a path P_n by attaching a pendant vertex to each vertex of P_n .

Theorem 2.6 The comb graph $G = P_n \Theta K_1$ is p^* -graceful.

Proof Let u_1, u_2, \dots, u_n be the vertices of P_n and v_1, v_2, \dots, v_n be the pendant vertices attached to $u_i : i = 1, 2, \dots, n$. Then the graph $G = P_n \Theta K_1$ has 2n vertices and q = 2n - 1 edges.

Define
$$f_p: V(G) \to \{0, 1, \cdots, \omega^p(2n-1)\}$$
 such that

$$f_p(u_i) = \omega^p(q - (i - 1) + f_p(u_{i-1})$$
 when i is even
 $= f_p(u_{i-1}) - \omega^p(q - (i - 1))$ when $i \neq 1$ is odd
 $= 0$ when $i = 1$

$$f_p(v_i) = f_p(u_i) - \omega^p(q - (n + i - 2))$$
 when i is even
 $= f_p(u_i) + \omega^p(q - (n + i - 2))$ when $i \neq 1$ is odd
 $= \omega^p(q)$ when $i = 1$

Thus $f_p^* = \{\omega^p(1), \dots, \omega^p(q)\}$. Hence G is p^* -graceful.

p*-Graceful Graphs 101

Definition 2.8 A twig is a graph obtained from a path by attaching exactly two pendant vertices to each internal vertex of the path.

Theorem 2.7 The twig graphs are p^* -graceful.

Proof Let v_1, v_2, \dots, v_n be the *n* vertices of P_n and v_{ij} ; $i = 2, 3 \dots, n-1$; j = 1, 2 be the pendant vertices attached to each v_i . Then the graph has q = 3n - 5 edges.

Define
$$f_p: V(G) \to \{0, 1, \dots, \omega^p(q)\}$$

such that $f_p(v_1) = 0$

$$\begin{split} f_p(v_{2i}) &= f_p(v_{2i-1}) + \omega^p(q - (2i-2)) & i = 1, 2, \cdots, \left\lfloor \frac{n}{2} \right\rfloor; \\ f_p(v_{2i+1}) &= f_p(v_{2i}) - \omega^p(q - (2i-1)) & i = 1, 2, \cdots, \left\lfloor \frac{n-1}{2} \right\rfloor; \\ f_p(v_{ij}) &= f_p(v_i) + (-1)^{i-1} \omega^p(q - (n-1) - 2(i-2) - (j-1)) \text{ for } i = 2, \cdots, n-1; j = 1, 2. \end{split}$$
 Hence $f_p^* = \{\omega^p(1), \cdots, \omega^p(q)\}.$ Therefore G is p^* -graceful. \square

Definition 2.9 The graph $C_n \circ K_{1,n}$ is obtained from C_n and $K_{1,n}$ by identifying any vertex of C_n with the central vertex of $K_{1,n}$.

Theorem 2.8 $C_3 \circ K_{1,n}$ is p^* -graceful for $n \ge 5$.

Proof Let $C_3 \circ K_{1,n} = G$ and let v_1, v_2, v_3 be the vertices of $C_3, u_1, u_2, \cdots, u_n$ be the vertices of $K_{1,n}$. Let v_1 be the vertex to which $K_{1,n}$ is attached with. The mapping $f_p: V(G) \to \{0, 1, \cdots, \omega^p(q)\}$ where q = n + 3, defined by

$$f_p(u_i) = \omega^p(i) \text{ for } i = 1, 2, 3$$

= $\omega^p(i+1) \text{ for } i = 4, 5$
= $\omega^p(i+3) \text{ for } i = 6, 7, \dots, q$

and
$$f_p(v_1) = 0$$
, $f_p(v_2) = 22 = \omega^p(4)$, $f_p(v_3) = 92 = \omega^p(8)$ is p^* -graceful.

Further, the theorem is true only for $n \ge 5$. Since $C_3 \circ K_{1,n}$ to have a p^* -graceful labeling we should have the pentagonal numbers $\omega^p(4)$ and $\omega^p(8)$ for the vertices of C_3 which is possible only with $n \ge 5$.

§3. Graphs That Are Not p^* -Graceful.

Theorem 3.1 Wheels are not p^* -graceful.

Proof As the central vertex of a wheel is attached to all other vertices, 0 cannot be assigned to it, for if, 0 is the central label then the attaching vertices, that is, all the remaining vertices should have pentagonal numbers as their respective labels which in turn leads to non-pentagonal numbers as edge labels, contradicting the definition. Again if we assign 0 to any other vertex, then we will have to label its adjacent three vertices with pentagonal numbers which again generates non-pentagonal numbers as edge labels. Thus in no way wheels are p^* -graceful. \Box

Definition 3.1 The Helm H_n is the graph obtained from a wheel by attaching a pendant vertex at each vertex of the n-cycle.

Corollary 3.1 The Helm H_n is not p^* -graceful.

Definition 3.2 The Fan graph $P_n + K_1$ is a graph obtained by joining the path P_n with the complete graph K_1 .

Corollary 3.2 The Fan graph $P_n + K_1$ is not p^* -graceful.

Definition 3.3 Let W_n be a wheel with n+1 vertices. Attach a pendant edge to each rim vertex of W_n . Join each pendant vertex with the central vertex of the wheel. This graph is called the Flower graph denoted by F_n .

Corollary 3.3 The Flower graph F_n is not p^* -graceful.

Remark Further research on the topic is pursued.

References

- [1] Bermond J.C, Graceful graphs, Radio antennae and French windmills, *Graph Theory and Combinatorics*, Pitman, London (1979) 13-37.
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading M.A. 1969.
- [3] Golomb S.W, How to number a graph, *Graph Theory and Computing*, R.C.Read,ed., Academic Press 1972,23-37.
- [4] Joseph A. Gallian, A dynamic survey of Graph Labeling, *The Electronic Journal of Combinatorics*, 18(2011), 1-175.
- [5] Mathew Varkey T.K, Some Graph Theoretic Operations associated with Graph Labelings, Ph.D Thesis (2000), University of Kerala.
- [6] Rosa A, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966) Gordon and Breach N.Y and Dunod Paris (1967), 349-355.