Further Results on

Global Connected Domination Number of Graphs

G.Mahadevan¹, A.Selvam Avadayappan² and Twinkle Johns³

- 1. Department of Mathematics, Anna University of Technology Tirunelveli, Tirunelveli-627007, India
- 2. Department of Mathematics, V.H.N.S.N.College, Virdhunagar-626204, India
- 3. Department of Mathematics, V.P.M.M.Engineering College for Women, Krishnankoil-626190, India

E-mail: gmaha2003@yahoo.co.in, selvamavadayappan@yahoo.co.in, twinkle.johns@gmail.com

Abstract: A subset S of vertices in a graph G = (V, E) is a dominating set if every vertex in V - S is adjacent to some vertex in S. A dominating set S of a connected graph S is called a connected dominating set if the induced subgraph S is connected. A set S is called a global dominating set of S is a dominating set of both S and S and S are S of vertices of a graph S is called a global connected dominating set if S is both a global dominating and a connected dominating set. The global connected domination number is the minimum cardinality of a global connected dominating set of S and is denoted by S and S is paper we obtained the upper bound for the sum of global connected domination number and chromatic number and characterize the corresponding extremal graphs.

Key Words: Global domination number, chromatic number.

AMS(2010): 05C69

§1. Introduction

Graphs discussed in this paper are simple, finite and undirected graphs. A subset S of vertices in a graph G = (V, E) is a dominating set if every vertex in V - S is adjacent to some vertex in S. A dominating set S of a connected graph G is called a connected dominating set if the induced subgraph $\langle S \rangle$ is connected. A set S is called a global dominating set of G if S is a dominating set of both G and \overline{G} . A subset S of vertices of a graph G is called a global connected dominating set if S is both a global dominating and a connected dominating set. The global connected domination number is the minimum cardinality of a global connected dominating set of G and is denoted by $\gamma_{gc}(G)$. Note that any global connected domination set of a graph G has to be connected in G (but not necessarily in \overline{G}). Here global connected domination number γ_{gc} is well defined for any connected graph. For a cycle C_n of order $n \geq 6$, $\gamma_g(C_n) = \lceil n/3 \rceil$ while $\gamma_{gc}(C_n) = n - 2$ and $\gamma_g(K_n) = 1$, while $\gamma_{gc}(K_n) = n$. The chromatic number $\chi(G)$ is defined as the minimum number of colors required to color all the vertices such that adjacent vertices do not receive the same color.

¹Received May 28, 2011. Accepted December 8, 2012.

Notation 1.1 $K_n(P_k)$ is the graph obtained from K_n by attaching the end vertex of P_k to any one vertices of K_n . $K_n(mP_k)$ is the graph obtained from K_n by attaching the end vertices of m copies of P_k to any one vertices of K_n .

Some preliminary results on global connected domination number of graphs are listed in the following.

Theorem 1.2([1]) Let G be a graph of order $n \geq 2$. Then

- (1) $2 \leq \gamma_{gc}(G) \leq n$,
- (2) $\gamma_{qc}(G) = n$ if and only if $G \cong K_n$.

Corollary 1.3([1]) For all positive integers p and $q \gamma_{qc}(K_{p,q}) = 2$.

Theorem 1.4([1], Brooke's Theorem) If G is a connected simple graph and is neither a complete graph nor an odd cycle then $\chi(G) \leq \Delta(G)$.

Theorem 1.5([1]) For any graph G of order $n \geq 3$, $\gamma_{gc}(G) = n - 1$ if and only if $G \cong K_n - e$, where e is an edge of K_n .

Corollary 1.6([1]) For all $n \ge 4 \gamma_{qc}(C_n) = n - 2$.

§2. Main Result

Theorem 2.1 For any connected graph G, $\gamma_{gc}(G) + \chi(G) < 2n - 1$.

Proof By Theorem 1.2, for any graph G of order $n \geq 2$, $\gamma_{gc}(G) \leq n$.

By Theorem 1.4, $\chi(G) \leq \Delta(G)$. Therefore, $\gamma_{gc}(G) + \chi(G) \leq n + \Delta = n + (n-1) = 2n - 1$. Hence $\gamma_{gc}(G) + \chi(G) \leq 2n - 1$. Let $\gamma_{gc}(G) + \chi(G) = 2n - 1$. It is possible only if $\gamma_{gc}(G) = n$ and $\chi(G) = n - 1$ (or) $\gamma_{gc}(G) = n - 1$ and $\chi(G) = n$.

Case 1 Let $\gamma_{gc}(G) = n$ and $\chi(G) = n - 1$. Since $\chi(G) = n - 1$, G contains a clique K on n - 1 vertices or does not contain a clique K on n - 1 vertices. Suppose G contains a clique K on n - 1 vertices. Let v be the vertex not in K_{n-1} . Since G is connected, the vertex v_1 is adjacent to some vertex u_i of K_{n-1} . Then $\{v_1, u_i\}$ forms a global connected dominating set in G. Hence $\gamma_{gc}(G) = 2$, therefore $K \cong K_1$ which is a contradiction. Hence no graph exist. If G does not contain the clique K on n - 1 vertices, then it can be verified that no graph exists.

Case 2 Let $\gamma_{gc}(G) = n - 1$ and $\chi(G) = n$. Since $\gamma_{gc}(G) = n - 1$ by Theorem 1.5, $G \cong K_n - e$ But for $K_n - e$, $\chi(G) = n - 1$ which is a contradiction. Hence no graph exists. Hence, $\gamma_{gc}(G) + \chi(G) < 2n - 1$.

Theorem 2.2 For any connected graph G, for $n \geq 3$ $\gamma_{gc}(G) + \chi(G) = 2n - 2$ if and only if $G \cong K_n - e$, where e is an any edge of K_n .

Proof Assume that $\gamma_{gc}(G) + \chi(G) = 2n - 2$. This is possible only if $\gamma_{gc}(G) = n$ and $\chi(G) = n - 2$ (or) $\gamma_{gc}(G) = n - 1$ and $\chi(G) = n - 1$ (or) $\gamma_{gc}(G) = n - 2$ and $\chi(G) = n$.

Case 1 Let $\gamma_{gc}(G) = n$ and $\chi(G) = n-2$. Since $\chi(G) = n-2$, G contains a clique K on n-2 vertices or does not contain a clique K on n-2 vertices. Suppose G contains a clique K on n-2 vertices. Let $S = \{v_1, v_2\} \subset V - K$. Then the induced sub graph $\langle S \rangle$ has the following possible cases, $\langle S \rangle = K_2$ and $\overline{K_2}$.

Subcase 1.1 Let $\langle S \rangle = K_2$. Since G is connected there exist a vertex u_i of K_{n-2} which is adjacent to anyone of v_1, v_2 . Without loss of generality let v_1 be adjacent to u_i . Then $\{v_1, u_i\}$ forms a global connected dominating set in G. So that $\gamma_{gc}(G) = 2$ which is a contradiction.

Subcase 1.2 Let $\langle S \rangle = \overline{K_2}$. Since G is connected, let both the vertices of $\overline{K_2}$ be adjacent to vertex u_i for some i in K_n-2 . Let $\{v_1,v_2\}$ be the vertices of $\overline{K_2}$. Then anyone of the vertices of $\overline{K_2}$ and u_i forms a global connected dominating set in G. Then, $\{v_1,u_i\}$ forms a global connected dominating set in G. Hence $\gamma_{gc}(G)=2$, which is a contradiction. If both the vertices of $\overline{K_2}$ are adjacent two distinct vertices of K_{n-2} say u_i and u_j for $i \neq j$ in K_{n-2} . Then $\{u_i,u_j\}$ forms a global connected dominating set. Hence $\gamma_{gc}(G)=2$, Which is a contradiction. If G does not contain the clique K on n-2 vertices, then it can be verified that no graph exists.

Case 2 Let $\gamma_{gc}(G) = n - 1$ and $\chi(G) = n - 1$. Since $\gamma_{gc}(G) = n - 1$, by Theorem 1.5, $G \cong K_n - e$. But for $K_n - e$, $\chi(G) = n - 1$. Hence $G \cong K_n - e$ for $n \geq 3$. If G does not contain the clique K on n - 1 vertices, then it can be verified that no graph exists.

Case 3 Let $\gamma_{gc}(G) = n - 3$ and $\chi(G) = n$. Since $\chi(G) = n$. Then $G \cong K_n$. But for K_n , $\gamma_{gc}(G) = n$, which is a contradiction.

Conversely if G is anyone of the graph $K_n - e$, for $n \geq 3$ then it can be verified that $\gamma_{gc}(G) + \chi(G) = 2n - 2$.

Theorem 2.3 For any connected graph G, $\gamma_{gc}(G) + \chi(G) = 2n - 3$ if and only if $G \cong K_3(P_2)$, $K_n - \{e_1, e_2\}$, where e_1, e_2 are edges in the cycle of graph, $n \geq 5$.

Proof Assume that $\gamma_{gc}(G) + \chi(G) = 2n - 3$. This is possible only if $\gamma_{gc}(G) = n$ and $\chi(G) = n - 3$ (or) $\gamma_{gc}(G) = n - 1$ and $\chi(G) = n - 2$ (or) $\gamma_{gc}(G) = n - 2$ and $\chi(G) = n - 1$ (or) $\gamma_{gc}(G) = n - 3$ and $\chi(G) = n$.

Case 1 Let $\gamma_{gc}(G) = n$ and $\chi(G) = n - 3$. Since $\gamma_{gc}(G) = n - 3$, G contains a clique K on n - 3 vertices or does not contain a clique K on n - 3 vertices. Suppose G contains a clique K on n - 3 vertices. Let $S = \{v_1, v_2, v_3\} \subset V - K$. Then the induced sub graph $\langle S \rangle$ has the following possible cases $\langle S \rangle = K_3$, $\overline{K_3}$, $K_2 \cup K_1$, P_3 .

Subcase 1.1 Let $\langle S \rangle = K_3$. Since G is connected, these exist a vertex u_i of K_{n-3} which is adjacent to anyone $\{v_1, v_2, v_3\}$. Without loss of generality let v_1 be adjacent to u_i . Then $\{v_1, u_i\}$ is a global connected dominating set. Hence $\gamma_{gc}(G) = 2$ which is a contradiction.

Subcase 1.2 Let $\langle S \rangle = \overline{K_3}$. Since G is connected, there exist a vertex u_i of K_{n-3} which is adjacent to all the vertices of $\overline{K_3}$. Let v_1, v_2, v_3 be the vertices of $\overline{K_3}$. Then anyone of the vertices of $\overline{K_3}$ and u_i forms a global connected dominating set in G. Without loss of generality $\{v_1, u_i\}$

forms a global connected dominating set in G. Then $\gamma_{gc}(G)=2$, which is a contradiction. If two vertices of $\overline{K_3}$ are adjacent to u_i and third vertex adjacent to u_j for some $i \neq j$. Then $\{v_1, u_i, u_j\}$ forms a global connected dominating set in G. Then $\gamma_{gc}(G)=3$, which is a contradiction. If three vertices of $\overline{K_3}$ are adjacent to three distinct vertices of K_{n-3} say u_i , u_j , u_k for some $i \neq j \neq k$. Then $\{v_1, u_i, u_j, u_k\}$ forms a global connected dominating set in G. Hence $\gamma_{gc}(G)=4$ which is a contradiction.

Subcase 1.3 Let $\langle S \rangle = K_2 \cup K_1$. Since G is connected, there exist a vertex u_i of K_{n-3} which is adjacent to anyone of $\{v_1, v_2\}$ and v_3 . Then $\{v_1, u_i\}$ is a global connected dominating set in G. Hence $\gamma_{gc}(G) = 2$, which is a contradiction. Let there exist a vertex u_i of K_{n-3} be adjacent to anyone of $\{v_1, v_2\}$ and u_j for some $i \neq j$ in K_{n-3} adjacent to v_3 . Without loss of generality, let v_1 be adjacent to u_i . Then $\{v_1, u_i, u_j\}$ forms a global connected dominating set in G. Hence $\gamma_{gc}(G) = 3$ which is a contradiction.

Subcase 1.4 Let $\langle S \rangle = P_3$. Let $\{v_1, v_2, v_3\}$ be the vertices of P_3 . Since G is connected there exist a vertex u_i of K_{n-3} which is adjacent to anyone of the pendant vertices v_1 or v_3 . Without loss of generality let v_1 be adjacent to u_i . Then $\{v_1, v_2, u_i\}$ forms a global connected dominating set in G. Hence $\gamma_{gc}(G) = 3$ which is a contradiction. On increasing the degree of u_i , which is a contradiction. If G does not contain the clique K on n-3 vertices, then it can be verified that no graph exists.

Case 2 Let $\gamma_{gc}(G) = n-1$ and $\chi(G) = n-2$. Since $\gamma_{gc}(G) = n-1$ by Theorem 1.5, $G \cong K_n - e$. But for $K_n - e$, $\chi(G) = n-1$, which is a contradiction. Hence no graph exists. If G does not contain the clique K on n-3 vertices, then it can be verified that no graph exists.

Case 3 Let $\gamma_{gc}(G) = n - 2$ and $\chi(G) = n - 1$. Since $\chi(G) = n - 1$, G contains a clique K on n - 1 vertices. Let v be the vertex not in K_{n-1} . Since G is connected, the vertex v is adjacent to vertex u_i of K_{n-1} . Then $\{v_1, u_i\}$ is a global connected dominating set in G. Hence $\gamma_{gc}(G) = 2$. Then $K \cong K_3$. Then $G \cong K_3(P_2)$. On increasing the degree of $v \in K_n - \{e_1, e_2\}$ for $n \geq 5$ and e_1, e_2 is an edge in outside the cycle of graph. If G does not contain the clique K on n-1 vertices, then it can be verified that no graph exists.

Case 4. Let $\gamma_{gc}(G) = n - 3$ and $\chi(G) = n$. Since $\chi(G) = n$ then $G \cong K_n$. But for K_n $\gamma_{gc}(G) = n$, then it is a contradiction.

Conversely if G is anyone of the graph $K_3(P_2)$, $K_n - \{e_1, e_2\}$ for $n \geq 5$, then it can be verified that $\gamma_{qc}(G) + \chi(G) = 2n - 3$.

Theorem 2.4 For any connected graph G $\gamma_{gc}(G) + \chi(G) = 2n - 4$ if and only if $G \cong P_4, C_4, K_2(2P_2), K_4(P_2), K_n - \{e_1, e_2, e_3\}$ where e_1, e_2, e_3 are edges in the cycle of graph of order $n \geq 6$

Proof Let $\gamma_{gc}(G) + \chi(G) = 2n - 4$. This is possible only if $\gamma_{gc}(G) = n$ and $\chi(G) = n - 4$ (or) $\gamma_{gc}(G) = n - 1$ and $\chi(G) = n - 3$ (or) $\gamma_{gc}(G) = n - 2$ and $\chi(G) = n - 2$ (or) $\gamma_{gc}(G) = n - 3$ and $\chi(G) = n - 1$ (or) $\gamma_{gc}(G) = n - 4$ and $\gamma(G) = n$.

Case 1 Let $\gamma_{gc}(G) = n$ and $\chi(G) = n - 4$. Since $\chi(G) = n - 4$, G contains a clique K on n - 4 vertices or does not contain a clique K on n - 4 vertices. Suppose G contains a clique K on

n-4 vertices. Let $S=\{v_1,v_2,v_3,v_4\}\subset V-K$. Then the induced subgraph < S> has the following possible cases. $< S>=K_4,\overline{K_4},K_3\cup K_1,K_4-e,K_2\cup K_2,K_2\cup \overline{K_2},K_3(P_2)$ it can be verified that all the above cases no graph exist.

If G does not contain the clique K on n-4 vertices, then it can be verified that no graph exists.

Case 2 Let $\gamma_{gc}(G) = n-1$ and $\chi(G) = n-3$. Since $\gamma_{gc}(G) = n-1$ by Theorem 1.5, $G \cong K_n - e$. But for $K_n - e$ $\chi(G) = n-1$ which is a contradiction.

If G does not contain the clique K on n-3 vertices, then it can be verified that no graph exists.

Case 3 Let $\gamma_{gc}(G) = n-2$ and $\chi(G) = n-2$. Since $\chi(G) = n-2$, then G contains a clique K on n-2 vertices or does not contain a clique K on n-2 vertices. Suppose G contains a clique K on n-2 vertices. Let $S = \{v_1, v_2\} \subset V - K$. Then the induced subgraph $\langle S \rangle$ has the following possible cases, $\langle S \rangle = K_2$ and $\overline{K_2}$.

Subcase 3.1 Let $\langle S \rangle = K_2$. Since G is connected there exist a vertex u_i of K_{n-2} which is adjacent to anyone of $\{v_1, v_2\}$. Without loss of generality let v_1 be adjacent to u_i . Then $\{v_1, u_i\}$ is a global connected dominating set in G hence $\gamma_{gc}(G) = 2$. Then $K \cong K_2$. Let $\{v_1, v_2\}$ be the vertices of K_2 . If $d(v_1) = 1$, $d(v_2) = 2$ Then $G \cong P_4$. If $d(v_1) = 2$ $d(v_2) = 2$ then $G \cong C_4$.

Subcase 3.2 Let $\langle S \rangle = \overline{K_2}$. Since G is connected. Let both the vertices of $\overline{K_2}$ be adjacent to vertex u_i for some i in K_{n-2} . Let $\{v_1, v_2\}$ be the vertices of $\overline{K_2}$. Then anyone of the vertices of $\overline{K_2}$ and u_i forms a global connected dominating set in G. Without loss of generality v_1 and u_i forms a global connected dominating set in G. Hence $\gamma_{gc}(G) = 2$ so that $K \cong K_2$. Then $G \cong K_2(2P_2)$. If two vertices of $\overline{K_2}$ are adjacent two distinct vertices K_{n-2} say u_i and u_j for $i \neq j$. Then $\{v_1, u_i, u_j\}$ forms global connected dominating set in G. Hence $\gamma_{gc}(G) = 3$ so that $K \cong K_2$. Then $G \cong K_3(P_2, P_2, 0)$.

If G does not contain the clique K on n-2 vertices, then it can be verified that no graph exists.

Case 4 Let $\gamma_{gc}(G) = n-3$ and $\chi(G) = n-1$. Since $\chi(G) = n-1$, G contains a clique K on n-1 vertices. Let v be the vertex not in K_{n-1} . Since G is connected the vertex v is adjacent to vertex u_i of K_{n-1} . Then $\{v_1, u_i\}$ forms a global connected dominating set in G. Hence $\gamma_{gc}(G) = 2$ so that $K \cong K_4$. Then $G \cong K_4(P_2)$. On increasing the degree $G \cong K_n - \{e_1, e_2, e_3\}$ where e_1, e_2, e_3 are edges in the cycle of the graph of order $n \geq 6$. If G does not contain the clique K on n-1 vertices, then it can be verified that no graph exists.

Case 5 Let $\gamma_{gc}(G) = n - 4$ and $\chi(G) = n$. Since $\chi(G) = n$. Then $G \cong K_n$. But for K_n , $\gamma_{gc}(K_n) = n$, Which is a contradiction.

Conversely if G is anyone of the graph $P_4, C_4, K_2(2P_2), K_4(P_2), K_n - 3e$ for $n \ge 6$ then it can be verified that $\gamma_{qc}(G) + \chi(G) = 2n - 4$.

The authors obtained graphs for which $\gamma_{gc}(G) + \chi(G) = 2n - 5, 2n - 6, 2n - 7$, which will be reported later.

References

- [1] Dejan Delic and Changping Wang (print), The Global connected domination in Graphs.
- [2] E.Sampathkumar, Global domination number of a graph, J. Math. Phy. Sci., 23 (1989) 377-385
- [3] John Clark and Derek Allan Holton (1995), A First Look at Graph Theory, Allied Publishers Ltd.
- [4] F. Harary (1972), Graph Theory, Addison Wesley Reading Mass.
- [5] Paulraj Joseph J. and Arumugam S. (1992), Domination and connectivity in graphs, *International Journal of Management and Systems*, Vol.8, No.3, 233-236.
- [6] Paulraj Joseph J. and Arumugam S. (1997), Domination and colouring in graphs, *International Journal of Management and Systems*, Vol.8, No.1, 37-44.
- [7] Paulraj Joseph J. and Mahadevan G. (2002), Complementary connected domination number and chromatic number of a graph, *Mathematical and Computational Models*, Allied Publications, India 342-349.
- [8] Mahadevan G. (2005), On Domination Theory and Related Topics in Graphs, Ph.D, Thesis, Manomaniam Sundaranar University, Tirunelveli.
- [9] Paulraj Joseph J. and Mahadevan G and Selvam A (2006), On Complementary Perfect domination number of a graph, Acta Ciencia Indica, Vol XXXI M, No.2, 847, An International Journal of Physical Sicences.
- [10] Mahadevan G, Selvam A, Hajmeeral.M (2009), On efficient domination number and chromatic number of a graph I, International Journal of Physical Sciences, Vol 21(1)M, pp1-8.