An Equation

Related to θ -Centralizers in Semiprime Gamma Rings

M.F.Hoque and H.O.Roshid

Department of Mathematics, Pabna Science and Technology University, Pabna-6600, Bangladesh

A.C.Paul

Department of Mathematics, Rajshahi University, Rajshahi-6205,Bangladesh

E-mail: fazlul_math@yahoo.co.in, acpaulrubd_math@yahoo.com

Abstract: Let M be a 2-torsion free semiprime Γ -ring satisfying a certain assumption and θ be an endomorphism on M. Let $T: M \to M$ be an additive mapping such that

$$2T(a\alpha b\beta a) = T(a)\alpha\theta(b)\beta\theta(a) + \theta(a)\alpha\theta(b)\beta T(a)$$
 (1)

holds for all pairs $a, b \in M$, and $\alpha, \beta \in \Gamma$. Then we prove that T is a θ -centralizer.

Key Words: Semiprime Γ-ring, left centralizer, centralizer, Jordan centralizer, left θ -centralizer, θ -centralizer, Jordan θ -centralizer.

AMS(2010): 16N60,16W25,16U80

§1. Introduction

Let M and Γ be additive Abelian groups. If there exists a mapping $(x, \alpha, y) \to x\alpha y$ of $M \times \Gamma \times M \to M$, which satisfies the conditions

- (i) $x\alpha y \in M$;
- (ii) $(x+y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha+\beta)z = x\alpha z + x\beta z$, $x\alpha(y+z) = x\alpha y + x\alpha z$;
- (iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$,

then M is called a Γ -ring.

Every ring M is a Γ -ring with $M=\Gamma$. However a Γ -ring need not be a ring. Gamma rings, more general than rings, were introduced by Nobusawa[13]. Bernes[1] weakened slightly the conditions in the definition of Γ -ring in the sense of Nobusawa.

Let M be a Γ -ring. Then an additive subgroup U of M is called a left (right) ideal of M if $M\Gamma U \subset U(U\Gamma M \subset U)$. If U is both a left and a right ideal, then we say U is an ideal of M. Suppose again that M is a Γ -ring. Then M is said to be a 2-torsion free if 2x=0 implies x=0 for all $x \in M$. An ideal P_1 of a Γ -ring M is said to be prime if for any ideals A and B of M,

¹Received October 16, 2012. Accepted November 28, 2012.

 $A\Gamma B \subseteq P_1$ implies $A \subseteq P_1$ or $B \subseteq P_1$. An ideal P_2 of a Γ -ring M is said to be semiprime if for any ideal U of M, $U\Gamma U \subseteq P_2$ implies $U \subseteq P_2$. A Γ -ring M is said to be prime if $a\Gamma M\Gamma b=(0)$ with $a,b\in M$, implies a=0 or b=0 and semiprime if $a\Gamma M\Gamma a=(0)$ with $a\in M$ implies a=0. Furthermore, M is said to be commutative Γ -ring if $x\alpha y=y\alpha x$ for all $x,y\in M$ and $\alpha\in\Gamma$. Moreover,the set $Z(M)=\{x\in M: x\alpha y=y\alpha x \text{ for all } \alpha\in\Gamma, y\in M\}$ is called the centre of the Γ -ring M.

If M is a Γ -ring, then $[x,y]_{\alpha}=x\alpha y-y\alpha x$ is known as the commutator of x and y with respect to α , where $x,y\in M$ and $\alpha\in\Gamma$. We make the basic commutator identities:

$$[x\alpha y, z]_{\beta} = [x, z]_{\beta} \alpha y + x[\alpha, \beta]_{z} y + x\alpha[y, z]_{\beta}$$
$$[x, y\alpha z]_{\beta} = [x, y]_{\beta} \alpha z + y[\alpha, \beta]_{x} z + y\alpha[x, z]_{\beta}$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. We consider the following assumption:

(A)
$$x\alpha y\beta z = x\beta y\alpha z$$
, for all $x, y, z \in M$, and $\alpha, \beta \in \Gamma$.

According to the assumption (A), the above two identities reduce to

$$[x\alpha y, z]_{\beta} = [x, z]_{\beta} \alpha y + x\alpha [y, z]_{\beta}$$
$$[x, y\alpha z]_{\beta} = [x, y]_{\beta} \alpha z + y\alpha [x, z]_{\beta},$$

which we extensively used. An additive mapping $T: M \to M$ is a left(right) centralizer if

$$T(x\alpha y) = T(x)\alpha y(T(x\alpha y) = x\alpha T(y))$$

holds for all $x, y \in M$ and $\alpha \in \Gamma$. A centralizer is an additive mapping which is both a left and a right centralizer. For any fixed $a \in M$ and $\alpha \in \Gamma$, the mapping $T(x) = a\alpha x$ is a left centralizer and $T(x) = x\alpha a$ is a right centralizer. We shall restrict our attention on left centralizer, since all results of right centralizers are the same as left centralizers. An additive mapping $D: M \to M$ is called a derivation if $D(x\alpha y) = D(x)\alpha y + x\alpha D(y)$ holds for all $x, y \in M$, and $\alpha \in \Gamma$ and is called a Jordan derivation if $D(x\alpha x) = D(x)\alpha x + x\alpha D(x)$ for all $x \in M$ and $\alpha \in \Gamma$. An additive mapping $T: M \to M$ is Jordan left(right) centralizer if

$$T(x\alpha x) = T(x)\alpha x(T(x\alpha x) = x\alpha T(x))$$

for all $x \in M$, and $\alpha \in \Gamma$.

Every left centralizer is a Jordan left centralizer but the converse is not ingeneral true.

An additive mappings $T: M \to M$ is called a Jordan centralizer if $T(x\alpha y + y\alpha x) = T(x)\alpha y + y\alpha T(x)$, for all $x, y \in M$ and $\alpha \in \Gamma$. Every centralizer is a Jordan centralizer but Jordan centralizer is not in general a centralizer.

Bernes[1], Luh [8] and Kyuno[7] studied the structure of Γ -rings and obtained various generalizations of corresponding parts in ring theory. Borut Zalar [15] worked on centralizers of semiprime rings and proved that Jordan centralizers and centralizers of this rings coincide. Joso Vukman[12, 13, 14] developed some remarkable results using centralizers on prime and semiprime rings. Vukman and Irena [11] proved that if R is a 2-tortion free semiprime ring and $T: R \to R$ is an additive mapping such that 2T(xyx) = T(x)yx + xyx holds for all $x, y \in R$,

then T is a centralizer. Y.Ceven [2] worked on Jordan left derivations on completely prime Γ -rings. He investigated the existence of a nonzero Jordan left derivation on a completely prime Γ -ring that makes the Γ -ring commutative with an assumption. With the same assumption, he showed that every Jordan left derivation on a completely prime Γ -ring is a left derivation on it.

In [3], M.F. Hoque and A.C Paul have proved that every Jordan centralizer of a 2-torsion free semiprime Γ -ring is a centralizer. There they also gave an example of a Jordan centralizer which is not a centralizer.

In [4], M.F. Hoque and A.C Paul have proved that if M is a 2-torsion free semiprime Γ -ring satisfying the assumption (A) and if $T: M \to M$ is an additive mapping such that

$$T(x\alpha y\beta x) = x\alpha T(y)\beta x$$

for all $x, y \in M$ and $\alpha, \beta \in \Gamma$, then T is a centralizer. Also, they have proved that T is a centralizer if M contains a multiplicative identity 1.

In [5], M.F. Hoque and A.C Paul have proved that if M be a 2-torsion free semiprime Γ -ring satisfying the assumption (A) and let $T: M \to M$ be an additive mapping such that

$$2T(a\alpha b\beta a) = T(a)\alpha b\beta a + a\alpha b\beta T(a)$$

holds for all pairs $a, b \in M$, and $\alpha, \beta \in \Gamma$. Then T is a centralizer.

In [10], Z.Ullah and M.A.Chaudhary have proved that every Jordan θ -centralizer of a 2-torsion free semiprime Γ -ring is a θ -centralizer.

In [6] M.F. Hoque and A.C Paul have given an example of a Jordan θ -centralizer which is not a θ -centralizer and another two examples which was ensure that θ -centralizer and a Jordan θ -centralizer exist in Γ -ring. There they also have proved that if M be a 2-torsion free semiprime Γ -ring satisfying a certain assumption and θ be an endomorphism of M. Let $T: M \to M$ be an additive mapping such that

$$T(x\alpha y\beta x) = \theta(x)\alpha T(y)\beta\theta(x)$$

holds for all $x, y \in M$, and $\alpha, \beta \in \Gamma$. Then T is a θ -centralizer.

In this paper we study certain results using the concept of θ -centralizer on semiprime gamma ring.

§2. The θ -Centralizers of Semiprime Gamma Rings

In this section we have given the following definitions:

Let M be a 2-torsion free semiprime Γ -ring and let θ be an endomorphism of M. An additive mapping $T: M \to M$ is a left(right) θ -centralizer if $T(x\alpha y) = T(x)\alpha\theta(y)(T(x\alpha y) = \theta(x)\alpha T(y))$ holds for all $x, y \in M$ and $\alpha \in \Gamma$. If T is a left and a right θ -centralizer, then it is natural to call T a θ -centralizer.

Let M be a Γ -ring and let $a \in M$ and $\alpha \in \Gamma$ be fixed element. Let $\theta : M \to M$ be an endomorphism. Define a mapping $T : M \to M$ by $T(x)a\alpha\theta(x)$. Then it is clear that T is a left θ -centralizer. If $T(x) = \theta(x)\alpha a$ is defined, then T is a right θ -centralizer.

An additive mapping $T: M \to M$ is Jordan left(right) θ -centralizer if

$$T(x\alpha x) = T(x)\alpha\theta(x)(T(x\alpha x) = \theta(x)\alpha T(x))$$

holds for all $x \in M$ and $\alpha \in \Gamma$. It is obvious that every left θ -centralizer is a Jordan left θ -centralizer but in general Jordan left θ -centralizer is not a left θ -centralizer.

Let M be a Γ -ring and let θ be an endomorphism on M. An additive mapping $T: M \to M$ is called a Jordan θ -centralizer if $T(x\alpha y + y\alpha x) = T(x)\alpha\theta(y) + \theta(y)\alpha T(x)$, for all $x, y \in M$ and $\alpha \in \Gamma$. It is clear that every θ -centralizer is a Jordan θ -centralizer but the converse is not in general a θ - centralizer.

An additive mapping $D: M \to M$ is called a (θ, θ) -derivation if $D(x\alpha y) = D(x)\alpha\theta(y) + \theta(x)\alpha D(y)$ holds for all $x, y \in M$ and $\alpha \in \Gamma$ and is called a Jordan (θ, θ) -derivation if $D(x, x) = D(x)\alpha\theta(x) + \theta(x)\alpha D(x)$ holds for all $x \in M$ and $\alpha \in \Gamma$.

For proving our main results, we need the following Lemmas:

Lemma 2.1([4]) Suppose M is a semiprime Γ -ring satisfying the assumption (A). Suppose that the relation $x\alpha a\beta y + y\alpha a\beta z = 0$ holds for all $a \in M$, some $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Then $(x + z)\alpha a\beta y = 0$ is satisfied for all $a \in M$ and $\alpha, \beta \in \Gamma$.

Lemma 2.2 Let M be a 2-torsion free semiprime Γ -ring satisfying the assumption (A) and θ be an endomorphism of M. Suppose that $T: M \to M$ is an additive mapping such that

$$2T(a\alpha b\beta a) = T(a)\alpha\theta(b)\beta\theta(a) + \theta(a)\alpha\theta(b)\beta T(a)$$

holds for all pairs $a, b \in M$ and $\alpha, \beta \in \Gamma$. Then $2T(a\gamma a) = T(a)\gamma\theta(a) + \theta(a)\gamma T(a)$.

Proof Putting a + c for a in (1)(linearization), we have

$$2T(a\alpha b\beta c + c\alpha b\beta a) = T(a)\alpha\theta(b)\beta\theta(c) + T(c)\alpha\theta(b)\beta\theta(a) + \theta(c)\alpha\theta(b)\beta T(a) + \theta(a)\alpha\theta(b)\beta T(c)$$
(2)

Putting $c = a\gamma a$ in (2), we have

$$2T(a\alpha b\beta a\gamma a + a\gamma a\alpha b\beta a) = T(a)\alpha\theta(b)\beta\theta(a)\gamma\theta(a) + T(a\gamma a)\alpha\theta(b)\beta\theta(a) + \theta(a)\gamma\theta(a)\alpha\theta(b)\beta T(a) + \theta(a)\alpha\theta(b)\beta T(a\gamma a)$$
(3)

Replacing b by $a\gamma b + b\gamma a$ in (1), we have

$$2T(a\alpha a\gamma b\beta a + a\alpha b\gamma a\beta a) = T(a)\alpha\theta(a)\gamma\theta(b)\beta\theta(a) + T(a)\alpha\theta(b)\gamma\theta(a)\beta\theta(a) + \theta(a)\alpha\theta(a)\gamma\theta(b)\beta T(a) + \theta(a)\alpha\theta(b)\gamma\theta(a)\beta T(a)$$
(4)

Subtracting (4) from (3), using assumption (A), gives

$$(T(a\gamma a) - T(a)\gamma\theta(a))\alpha\theta(b)\beta\theta(a) + \theta(a)\alpha(b)\beta(T(a\gamma a) - \theta(a)\gamma T(a)) = 0.$$

Taking $\theta(x) = T(a\gamma a) - T(a)\gamma\theta(a)$, y = a, c = b and $\theta(z) = T(a\gamma a) - \theta(a)\gamma T(a)$. Then the above relation becomes $\theta(x)\alpha\theta(c)\beta\theta(y) + \theta(y)\alpha\theta(c)\beta\theta(z) = 0$. Thus using Lemma 2.1, we get $(\theta(x) + \theta(z))\alpha\theta(c)\beta\theta(y) = 0$. Hence

$$(2T(a\gamma a) - T(a)\gamma\theta(a) - \theta(a)\gamma T(a))\alpha\theta(b)\beta\theta(a) = 0.$$

If we take

$$A(a) = 2T(a\gamma a) - T(a)\gamma\theta(a) - \theta(a)\gamma T(a),$$

then the above relation becomes

$$A(a)\alpha\theta(b)\beta\theta(a) = 0$$

Using the assumption (A), we obtain

$$A(a)\beta\theta(b)\alpha\theta(a) = 0 \tag{5}$$

Replacing b by $a\alpha b\gamma A(a)$ in (5), we have

$$A(a)\beta\theta(a)\alpha\theta(b)\gamma A(a)\alpha\theta(a) = 0$$

Again using the assumption (A), we have

$$A(a)\alpha\theta(a)\beta\theta(b)\gamma A(a)\alpha\theta(a) = 0$$

By the semiprimeness of M, we have

$$A(a)\alpha\theta(a) = 0\tag{6}$$

Similarly, if we multiplying (5) from the left by $\theta(a)\alpha$ and from the right side by $\gamma A(a)$, we obtain

$$\theta(a)\alpha A(a)\beta\theta(b)\alpha\theta(a)\gamma A(a) = 0$$

Using the assumption (A),

$$\theta(a)\alpha A(a)\beta\theta(b)\gamma\theta(a)\alpha A(a) = 0$$

and by the semiprimeness, we obtain

$$\theta(a)\alpha A(a) = 0 \tag{7}$$

Replacing a by a + b in (6)(linearization), we have

$$A(a)\alpha\theta(b) + A(b)\alpha\theta(a) + B(\theta(a), \theta(b))\alpha\theta(a) + B(\theta(a), \theta(b))\alpha\theta(b) = 0,$$

where

$$B(\theta(a), \theta(b)) = 2T(a\gamma b + b\gamma a) - T(a)\gamma\theta(b) - T(b)\gamma\theta(a) - \theta(a)\gamma T(b) - \theta(b)\gamma T(a)$$

Replacing a by -a in the above relation and comparing these relation, and by using the 2-torsion freeness of M, we arrive at

$$A(a)\alpha\theta(b) + B(\theta(a), \theta(b))\alpha\theta(a) = 0$$
(8)

Right multiplication of the above relation by $\beta A(a)$ along with (7) gives

$$A(a)\alpha\theta(b)\beta A(a) + B(\theta(a), \theta(b))\alpha\theta(a)\beta A(a) = 0$$

Since $\theta(a)\beta A(a) = 0$, for all $\beta \in \Gamma$, we have

$$B(\theta(a), \theta(b))\alpha\theta(a)\beta A(a) = 0$$

This implies that

$$A(a)\alpha\theta(b)\beta A(a) = 0$$

By semiprimeness, we have

$$A(a) = 0$$

Thus we have

$$2T(a\gamma a) = T(a)\gamma\theta(a) + \theta(a)\gamma T(a).$$

Lemma 2.3 Let M be a 2-torsion free semiprime Γ -ring satisfying the assumption (A) and θ be an endomorphism of M. Let $T: M \to M$ be an additive mapping such that

$$2T(a\alpha b\beta a) = T(a)\alpha\theta(b)\beta\theta(a) + \theta(a)\alpha\theta(b)\beta T(a)$$

holds for all pairs $a, b \in M$ and $\alpha, \beta \in \Gamma$. Then

$$[T(a), \theta(a)]_{\alpha} = 0 \tag{9}$$

Proof Replacing a by a + b in relation (9)(linearization) gives

$$2T(a\gamma b + b\gamma a) = T(a)\gamma\theta(b) + T(b)\gamma\theta(a) + \theta(a)\gamma T(b) + \theta(b)\gamma T(a)$$
(10)

Replacing b with $2a\alpha b\beta a$ in (11) and use (1), we obtain

$$\begin{split} 4T(a\gamma a\alpha b\beta a + a\alpha b\beta a\gamma a) &= 2T(a)\gamma\theta(a)\alpha\theta(b)\beta\theta(a) + 2T(a\alpha b\beta a)\gamma\theta(a) \\ &+ 2\theta(a)\gamma T(a\alpha b\beta a) + 2\theta(a)\alpha\theta(b)\beta\theta(a)\gamma T(a) \\ &= 2T(a)\gamma\theta(a)\alpha\theta(b)\beta\theta(a) + T(a)\alpha\theta(b)\beta\theta(a)\gamma\theta(a) \\ &+ \theta(a)\alpha\theta(b)\beta T(a)\gamma\theta(a) + \theta(a)\gamma T(a)\alpha\theta(b)\beta\theta(a) \\ &+ \theta(a)\gamma\theta(a)\alpha\theta(b)\beta T(a) + 2\theta(a)\alpha\theta(b)\beta\theta(a)\gamma T(a) \end{split}$$

$$4T(a\gamma a\alpha b\beta a + a\alpha b\beta a\gamma a) = 2T(a)\gamma\theta(a)\alpha\theta(b)\beta\theta(a) + T(a)\alpha\theta(b)\beta\theta(a)\gamma\theta(a) + \theta(a)\alpha\theta(b)\beta T(a)\gamma\theta(a) + \theta(a)\gamma T(a)\alpha\theta(b)\beta\theta(a) + \theta(a)\gamma\theta(a)\alpha\theta(b)\beta T(a) + 2\theta(a)\alpha\theta(b)\beta\theta(a)\gamma T(a)$$

$$(11)$$

Comparing (4) and (12), we arrive at

$$T(a)\alpha\theta(b)\beta\theta(a)\gamma\theta(a) + \theta(a)\gamma\theta(a)\alpha\theta(b)\beta T(a)$$

$$- \theta(a)\alpha\theta(b)\beta T(a)\gamma\theta(a) - \theta(a)\gamma T(a)\alpha\theta(b)\beta\theta(a) = 0$$
(12)

Putting $b\gamma a$ for b in the above relation, we have

$$T(a)\alpha\theta(b)\gamma\theta(a)\beta\theta(a)\gamma\theta(a) + \theta(a)\gamma\theta(a)\alpha\theta(b)\gamma\theta(a)\beta T(a)$$
$$-\theta(a)\alpha\theta(b)\gamma\theta(a)\beta T(a)\gamma\theta(a) - \theta(a)\gamma T(a)\alpha\theta(b)\gamma\theta(a)\beta\theta(a) = 0$$
(13)

Right multiplication of (13) by $\gamma\theta(a)$ gives

$$T(a)\alpha\theta(b)\beta\theta(a)\gamma\theta(a)\gamma\theta(a) + \theta(a)\gamma\theta(a)\alpha\theta(b)\beta T(a)\gamma\theta(a)$$
$$-\theta(a)\alpha\theta(b)\beta T(a)\gamma\theta(a)\gamma\theta(a) - \theta(a)\gamma T(a)\alpha\theta(b)\beta\theta(a)\gamma\theta(a) = 0$$
(14)

Subtracting (14) from (15) and using assumption (A), we get

$$\theta(a)\gamma\theta(a)\gamma\theta(b)\beta[T(a),\theta(a)]_{\alpha} - \theta(a)\gamma\theta(b)\beta[T(a),\theta(a)]_{\alpha}\gamma\theta(a) = 0$$
 (15)

The substitution $T(a)\alpha b$ for b in (16), we have

$$\theta(a)\gamma\theta(a)\gamma T(a)\alpha\theta(b)\beta[T(a),\theta(a)]_{\alpha} - \theta(a)\gamma T(a)\alpha\theta(b)\beta[T(a),\theta(a)]_{\alpha}\gamma\theta(a) = 0 \quad (16)$$

Left multiplication of (16) by $T(a)\alpha$ gives

$$T(a)\alpha\theta(a)\gamma\theta(a)\gamma\theta(b)\beta[T(a),\theta(a)]_{\alpha} - T(a)\alpha\theta(a)\gamma\theta(b)\beta[T(a),\theta(a)]_{\alpha}\gamma\theta(a) = 0$$
 (17)

Subtracting (17) from (18), we arrive at

$$[T(a), \theta(a)\gamma\theta(a)]_{\alpha}\gamma\theta(b)\beta[T(a), \theta(a)]_{\alpha} - [T(a), \theta(a)]_{\alpha}\gamma\theta(b)\beta[T(a), \theta(a)]_{\alpha}\gamma\theta(a) = 0$$

In the above relation let

$$\theta(x) = [T(a), \theta(a)\gamma\theta(a)]_{\alpha}, \ \theta(y) = [T(a), \theta(a)]_{\alpha}, \ \theta(z) = -[T(a), \theta(a)]_{\alpha}\gamma\theta(a)$$

and c = b. Then we have

$$\theta(x)\gamma\theta(c)\beta\theta(y) + \theta(y)\gamma\theta(c)\beta\theta(z) = 0$$

Thus from Lemma 2.1, we have

$$\begin{split} &(\theta(x) + \theta(z))\gamma\theta(c)\beta\theta(y) = 0 \\ &\Rightarrow ([T(a), \theta(a)\gamma\theta(a)]_{\alpha} - [T(a), \theta(a)]_{\alpha}\gamma\theta(a))\gamma\theta(b)\beta[T(a), \theta(a)]_{\alpha} = 0 \end{split}$$

This implies that

$$([T(a), \theta(a)]_{\alpha} \gamma \theta(a) + \theta(a) \gamma [T(a), \theta(a)]_{\alpha} - [T(a), \theta(a)]_{\alpha} \gamma \theta(a)) \gamma \theta(b) \beta [T(a), \theta(a)]_{\alpha} = 0$$

$$\Rightarrow \theta(a) \gamma [T(a), \theta(a)]_{\alpha} \gamma \theta(b) \beta [T(a), \theta(a)]_{\alpha} = 0$$

Putting $b = b\alpha a$ in the above relation, we have

$$\theta(a)\gamma[T(a),\theta(a)]_{\alpha}\gamma\theta(b)\alpha\theta(a)\beta[T(a),\theta(a)]_{\alpha} = 0$$

$$\Rightarrow \theta(a)\gamma[T(a),\theta(a)]_{\alpha}\alpha\theta(b)\beta\theta(a)\gamma[T(a),\theta(a)]_{\alpha} = 0$$

using the assumption (A). By the semiprimeness of M, we obtain

$$\theta(a)\gamma[T(a),\theta(a)]_{\alpha} = 0 \tag{18}$$

Putting $a\gamma b$ for b in the relation (13), we obtain

$$T(a)\alpha\theta(a)\gamma\theta(b)\beta\theta(a)\gamma\theta(a) + \theta(a)\gamma\theta(a)\alpha\theta(a)\gamma\theta(b)\beta T(a)$$
$$-\theta(a)\alpha\theta(a)\gamma\theta(b)\beta T(a)\gamma\theta(a) - \theta(a)\gamma T(a)\alpha\theta(a)\gamma\theta(b)\beta\theta(a) = 0$$
(19)

Left multiplication of (13) by $\theta(a)\gamma$, we have

$$\theta(a)\gamma T(a)\alpha\theta(b)\beta\theta(a)\gamma\theta(a) + \theta(a)\gamma\theta(a)\gamma\theta(a)\alpha\theta(b)\beta T(a) -\theta(a)\gamma\theta(a)\alpha\theta(b)\beta T(a)\gamma\theta(a) - \theta(a)\gamma\theta(a)\gamma T(a)\alpha\theta(b)\beta\theta(a) = 0$$
 (20)

Subtracting (21) from (20), and using assumption (A), we have

$$[T(a), \theta(a)]_{\alpha} \gamma \theta(b) \beta \theta(a) \gamma \theta(a) - \theta(a) \gamma [T(a), \theta(a)]_{\alpha} \gamma \theta(b) \beta \theta(a) = 0$$

Using (19) in the above relation, we obtain

$$[T(a), \theta(a)]_{\alpha} \gamma \theta(b) \beta \theta(a) \gamma \theta(a) = 0$$
(21)

Putting $b\alpha T(a)$ for b in (22), we have

$$[T(a), \theta(a)]_{\alpha} \gamma \theta(b) \alpha T(a) \beta \theta(a) \gamma \theta(a) = 0$$
(22)

Right multiplication of (22) by $\alpha T(a)$ gives

$$[T(a), \theta(a)]_{\alpha} \gamma \theta(b) \beta \theta(a) \gamma \theta(a) \alpha T(a) = 0$$
(23)

Subtracting (24) from (23) and using assumption (A), we have

$$[T(a), \theta(a)]_{\alpha} \gamma \theta(b) \beta [T(a), \theta(a) \gamma \theta(a)]_{\alpha} = 0$$

The above relation can be rewritten and using (19), we have

$$[T(a), \theta(a)]_{\alpha} \gamma \theta(b) \beta [T(a), \theta(a)]_{\alpha} \gamma \theta(a) = 0$$

Putting $a\alpha b$ for b in the above relation, we obtain

$$[T(a), \theta(a)]_{\alpha} \gamma \theta(a) \alpha \theta(b) \beta [T(a), \theta(a)]_{\alpha} \gamma \theta(a) = 0$$

By semiprimeness of M, we have

$$[T(a), \theta(a)]_{\alpha} \gamma \theta(a) = 0 \tag{24}$$

Replacing a by a + b in (19) and then using (19) gives

$$\theta(a)\gamma[T(a),\theta(b)]_{\alpha} + \theta(a)\gamma[T(b),\theta(a)]_{\alpha} + \theta(a)\gamma[T(b),\theta(b)]_{\alpha} + \theta(b)\gamma[T(a),\theta(a)]_{\alpha} + \theta(b)\gamma[T(a),\theta(b)]_{\alpha} + \theta(b)\gamma[T(b),\theta(a)]_{\alpha} = 0$$

Replacing a by -a in the above relation and comparing the relation so obtained with the above relation, we have

$$\theta(a)\gamma[T(a),\theta(b)]_{\alpha} + \theta(a)\gamma[T(b),\theta(a)]_{\alpha} + \theta(b)\gamma[T(a),\theta(a)]_{\alpha} = 0$$
(25)

Left multiplication of (26) by $[T(a), \theta(a)]_{\alpha}\beta$ and then use (25), we have

$$[T(a), \theta(a)]_{\alpha} \beta \theta(b) \gamma [T(a), \theta(a)]_{\alpha} = 0$$

By semiprimeness of M, we have

$$[T(a), \theta(a)]_{\alpha} = 0$$

Hence the relation (10) follows.

Theorem 2.1 Let M be a 2-torsion free semiprime Γ -ring satisfying the assumption (A) and and θ be an endomorphism of M. Let $T: M \to M$ be an additive mapping such that $2T(a\alpha b\beta a) = T(a)\alpha \theta(b)\beta \theta(a) + \theta(a)\alpha \theta(b)\beta T(a)$ holds for all pairs $a, b \in M$ and $\alpha, \beta \in \Gamma$. Then T is a θ -centralizer.

Proof The relation (9) in Lemma 2.2 and the relation (10) in Lemma 2.3 give

$$T(a\alpha a) = T(a)\alpha\theta(a)$$
 and $T(a\alpha a) = \theta(a)\alpha T(a)$

since M is a 2-torsion free. Hence T is a left and also a right Jordan θ -centralizers. By Theorem 2.1 in [3], it follows that T is a left and also a right θ -centralizer which completes the proof of the theorem.

References

- [1] W.E.Barnes, On the Γ -rings of Nobusawa, Pacific J.Math., 18(1966), 411-422.
- [2] Y.Ceven, Jordan left derivations on completely prime gamma rings, C.U.Fen-Edebiyat Fakultesi, Fen Bilimleri Dergisi (2002) Cilt 23 Sayi 2.
- [3] M.F.Hoque and A.C.Paul, On centralizers of semiprime gamma rings, *International Mathematical Forum*, Vol.6(2011), No.13,627-638.
- [4] M.F.Hoque and A.C.Paul, Centralizers on semiprime gamma rings, *Italian J. Of Pure and Applied Mathematics*(To appear).
- [5] M.F.Hoque and A.C.Paul, An equation related to centralizers in semiprime gamma rings, Annals of Pure and Applied Mathematics, Vol.1, No.1,84-90,2012.
- [6] M.F.Hoque and A.C.Paul, The θ -centralizers of semiprime gamma rings(communicated).

- [7] S.Kyuno, On prime gamma ring, Pacific J.Math., 75(1978), 185-190.
- [8] L.Luh, On the theory of simple gamma rings, Michigan Math. J., 16(1969), 65-75.
- [9] N.Nobusawa, On the generalization of the ring theory, Osaka J. Math., 1(1964), 81-89.
- [10] Z.Ullah and M.A.Chaudhary, On K-centralizers of semiprime gamma rings, Int. J. of Algebra, Vol.6, 2012, No.21, 1001-1010.
- [11] J.Vukman and I.Kosi-Ulbl, On centralizers of semiprime rings, Aequationes Math. 66, 3(2003), 277-283.
- [12] J.Vukman, Centralizers in prime and semiprime rings, Comment. Math. Univ. Carolinae, 38(1997), 231-240.
- [13] J.Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae, 40,3(1999), 447-456.
- [14] J.Vukman, Centralizers on semiprime rings, Comment. Math. Univ. Carolinae, 42,2(2001), 237-245.
- [15] B.Zalar, On centralizers of semiprime rings, Comment.Math. Univ. Carolinae, 32(1991),609-614.