Classification of Differentiable Graph

A. El-Abed

Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt.

Email: Amel4elabed@yahoo.com

Abstract: We will classify the differentiable graph representing the solution of differential equation. Present new types of graphs. Theorems govern these types are introduced. Finally the effect of step size h on the differentiable graph is discussed.

Key Words: Differentiable, graph, numerical methods.

AMS(2010): 08A10, 05C15

§1. Definitions and Background

Definition 1([2]) A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation that associates with each edge two vertices (not necessarily distinct) called its endpoints

Definition 2([1,2,4,7,8]) A loop is an edge whose endpoints are equal. Multiple edges are edges have the same pair of endpoints.

Definition 3([2,6]) A simple graph is a graph having no loops or multiple edges. We specify a simple graph by its vertex set and edge set, treating the edge set as a set of unordered pairs of vertices and writing e = uv (or e = vu) for an edge e with end points u and v.

Definition 4([2]) A directed graph or digraph G is a triple consisting of a vertex set V(G), an edge set E(G), and a function assigning each edge an ordered pair of vertices, the first vertex of the ordered pair is the tail of the edge, and the second is the head; together, they are the endpoints. We say that an edge is an edge from its tail to its head.

Definition 5([2]) A digraph is simple if each ordered pair is the head and tail of at most one edge. In a simple digraph, we write uv for an edge with tail u and head v. If there is an edge from u to v, then v is a successor of u, and u is a predecessor of v. We write $u \to v$ for "there is an edge from u to v".

Definition 6([7,8]) A null graph is a graph containing no edges.

Definition 7([2]) The order of a graph G, written n(G), is the number of vertices in G. An n-vertex graph is a graph of order n. The size of a graph G, written e(G), is the number of

¹Received June 2, 2010. Accepted December 10, 2010.

edges in G for $n \in \mathbb{N}$.

Definition 8 Let f(x,y) be areal valued function of two variable defined for $a \le x \le b$ and all real y, then

$$y' = f(x, y),$$
 $x \in S = [0, T] \subseteq R$ (1)
 $y(x_0) = y_0$ (2)

is called initial value problem (I.V.P.), where (1) is called ordinary differential equation (O.D.E) of the first order and equation (2) is called the initial value.

Definition 9([3,6]) For the problem (1.1) where the function f(x,y) is continuous on the region $(0 \le x \le T, |y| \le R)$ and differentiable with respect to x such that $\left|\frac{df}{dy}\right| \le L, L = const.$ Divide the segment [0,T] into n equal parts by the points $x_i = ih, h = \frac{T}{n}$ is called a step size, $(i = \overline{0,n})$ such that $x_0 = 0 < x_1 < ... < x_{n-1} < x_n = T$ the approximate numerical solutions for this problem at the mesh points $x = x_i$ will be denoted by y_j .

Definition 10([3]) Numerical answers to problems generally contain errors. Truncation error occurs as a result of truncating an infinite process to get a finite process.

Definition 11 For Riemannian manifolds M and N (not necessarily of the same dimension), a map $f: M \to N$ is said to be a topological folding of M into N if, for each piecewise geodesic path $\gamma: I \to M(I = [0,1] \subseteq R)$, the induced path $f \circ \gamma: I \to N$ is piecewise geodesic. If, in addition, $f: M \to N$ preserves lengths of paths, we call f an isometric folding of M into N. Thus an isometric folding is necessarily a topological folding [9]. Some applications are introduced in [5].

§2. Main Results

We will introduce several types of approximate differentiable graph which represent the solution of initial value problems $\mathbf{I.V.P.}$

$$y' = f(x, y),$$

 $y(x_0) = y_0.$ (2.1)

According to the used methods for solving these problems.

Definition 12 We can study the solution of ordinary differential equation y' = f(x, y) using differentiable graph which is a smooth graph with vertex set $\{(x, y(x)) : x, y \in R\}$ and edge set $d((x_i, y(x_i)), (x_{i+1}, y(x_{i+1})))$ where d represent the distance function. A differentiable graph is a smooth graph represent the solution of ordinary differential equation $y' = f(x, y), x \in S$ whose vertices are $(x, y(x)), \forall x \in S$ and its edges are the distance between any two consequent points. In this graph the number of vertices is ∞ , the number of edges is so.

Since the finite difference methods which solve (I.V.P.) divided into the following:

A. El-Abed

- (i) general multi-step methods (implicit-explicit).
- (ii) general single-step methods (implicit-explicit).

So we have the following new types of differentiable graph:

Type [1]: Single-Compound digraph H_{N_1}

Definition 13 A numerical digraph G_N is a simple differentiable digraph consists of numerical vertices V_N^j which represent the numerical solutions y_j of (I.V.P.), and ordered numerical edge set $E_N = \{e_N^1, e_N^2, ..., e_N^n\}$ where $e_N^{j+1} = |(x_{j+1}, y_{j+1}) - (x_j, y_j)| = |v_N^{j+1} - v_N^j|, v_N^j$ is the tail of the edge, and v_N^{j+1} is the head.

Definition 14 A compound graph (digraph) H is a graph (digraph) whose vertex set consists of a set of graphs (digraphs) i.e. $V(G) = \{G_1, G_2, ...\}$ and an edge set of unordered (ordered) pairs of this graphs i.e. $E(G) = \{(G_1, G_2), (G_2, G_3), ...\}$.

Corollary 1 The compound digraph H of a numerical digraph is numerical digraph H_N .

Definition 15 A single-compound digraph H_{N_1} is a compound digraph H_N has one null graph is the tail of digraph.

Theorem 1 The single-step methods (implicit) due to a single-compound digraph H_{N_1} .

Proof The basis of many simple numerical technique for solving the differential equation

$$y' = f(x, y), y(x_0) = y_0, a \le x \le b \tag{2.2}$$

is to find some means of expressing the solution at x + h i.e., y(x + h) in terms of y(x) where (x, y(x)) represent a vertex in the differentiable graph, (x + h, y(x + h)) is the next vertex, the initial value (x_0, y_0) is called the source of graph. An approximate solution can be generated at the discrete points $x_0 + h, x_0 + 2h$, ...representing the vertices of the induced differentiable graph.

All these methods where y_{n+1} is given in terms of y_n alone, n = 0, 1, 2, ..., are called single step methods. The general linear single step method is given by

 $y_{n+1} + \alpha_1 y_n = h[\beta_0 f_1(x_{n+1}, y_{n+1}) + \beta_1 f_1(x_n, y_n)]$ where $\alpha_1, \beta_0, \beta_1$ are constants. If $\beta_0 = 0$ then the method gives y_{n+1} explicitly otherwise it is given implicitly. The trapezium method $y_{n+1} = y_n + \frac{h}{2} [f_1(x_{n+1}, y_{n+1}) + f_1(x_n, y_n)]$ is implicit. In general this equation would be solved by using the iteration method i.e.,

 $\{y_{n+1}\}^{r+1} = y_n + \frac{h}{2}[f(x_{n+1}, y_{n+1}) + f(x_n, \{y_n\}^r)], r = 0, 1, 2, ..., \text{ where } \{y_{n+1}\}^0 \text{ can be obtained from a single -step method and represents a source of numerical digraph } G_{N+1}$ in the vertex V_{n+1} of compound graph H_N . Finally we get A single-compound digraph H_{N_1} . As shown in Figure 1.

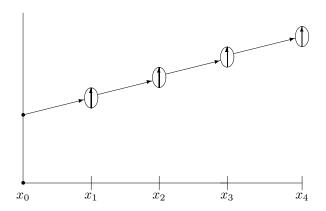


Figure 1. Single Compound Graph H_{N_1}

Definition 16 A single-compound digraph H_{N_1} is a Compound numerical digraph has a unique null graph which is the source of graph.

Type [2]: A simple numerical digraph G_N

Definition 17 A numerical digraph G_N is a simple differentiable digraph consists of numerical vertices V_N^j which represent the numerical solutions y_j of (I.V.P.) and ordered numericaledge set $E_N = \{e_N^1, e_N^2, ..., e_N^n\}$ where $e_N^{j+1} = |(x_{j+1}, y_{j+1}) - (x_j, y_j)| = |v_N^{j+1} - v_N^j|, v_N^j$ is the tail of the edge, and v_N^{j+1} is the head.

Theorem 2 The explicit single-step method get a simple numerical digraph G_N .

Proof The general single step given by

$$y_{n+1} = y_n + h\phi(x_n, y_n, h), x_n = x_0 + nh, y(x_0) = y_0.$$

For example, Euler's method has $\phi(x, y, h) = f(x, y)$, then

 $y_{n+1} = y_n + hf(x_n, y_n)$, and for differential equation (2.1) give the following differentiable digraph (Figure 2)

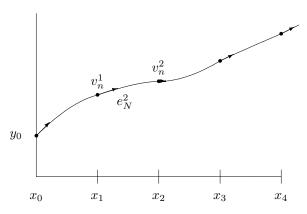


Figure 2: Simple numerical graph

28 A. El-Abed

where (x_n, y_n) represent the set of vertices $\{v_N^j\}$, j = 0, 1, ..., and $|(x_{j+1}, y_{j+1}) - (x_j, y_j)|$ represent the set of edges $\{e_N^{j+1}\}$. The initial value y_0 represent the source of simple numerical digraph G_N .

Type [3]: Multi-Compound Digraph H_{N_m}

Definition 18 A multi-compound digraph H_{N_m} is a compound digraph H_N has m null graphs are the tail of digraph.

Theorem 3 The implicit multi-step method give a multi-compound digraph H_{N_m} .

Proof The general multi-step method is defined to be

$$y_{n+1} + \alpha_1 y_n + \dots + \alpha_m y_{n-m+1} = h[\beta_0 f_{n+1} + \beta_1 f_n + \dots + \beta_m f_{n-m+1}], \tag{2.3}$$

where f_p is used to denote $f(x_p, y_p)$, n = m - 1, m - 2, To apply this general method we need m steps which represent m null graphs $G_{N_0}, G_{N_1}, ..., G_{N_{m-1}}$ in a multi-compound digraph H_{N_m} as indicate in the following example. If $\beta_0 = 0$ then the method (2.3) gives y_{n+1} explicitly otherwise it is given implicitly, when m = 1 equation (2.3) reduce to the single step method.

Example 1 Find the differentiable graph of $y' = y^2$, y(0) = 1 using a 3-step method.

Solution 1. by using

$$y_{n+1} - y_n = h[9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2}]/24, h = 0.1,$$
(2.4)

then $n = 2, 3, ..., \Rightarrow \{y_3\}^{r+1} - y_2 = 0.1[9\{f_3\}^r + 19f_2 - 5f_1 + f_0]/24, r = 0, 1, 2, ...,$ so the iterative vertex $(x_3, \{y_3\}^{r+1})$ depend on the vertex $(x_3, \{y_3\}^0)$ which can be determined from an explicit 3-srep method say

$$y_{n+1} - y_n = h[23f_n - 16f_{n-1} + 5f_{n-2}]l12, (2.5)$$

at $n=2 \Rightarrow y_3-y_2=h[23f(x_2,y_2)-16f(x_1,y_1)+5f(x_0,y_0)]l12$, where $V_0=(x_0,y_0),V_1=(x_1,y_1),V_2=(x_2,y_2)$ represent three null graphs G_{N_0},G_{N_1},G_{N_2} in the induced compound digraph by predictor method (2.5) we get the vertex $v_{N_3}=(x_3,\{y_3\}^0)$ which is the tail of the digraph G_{N_3} in the compound digraph H_{N_3} then correct $\{y_3\}^0$ using equation (2.4) until we get the fixed vertex $v_{N_3}^f$. This gives a numerical digraph $G_{N_3}=V_3$ and similarly we get the other vertices (simple digraphs) $V_4=G_{N_4},...,V_l=G_{N_l},l$ is a + ve integer. Finally we get bounded compound digraph H_{N_3} as shown in Figure 3.

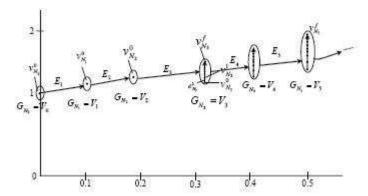


Figure 3: Multi-compound digraph

Definition 19 A fixed vertex V_N^f is a numerical vertex which all next vertices coincided on it.

Corollary 2 The multi-compound digraph H_{N_m} must have null graphs.

Type [4]: Nonhomogeneous Numerical Digraph G_{N_m}

Definition 20 A nonhomogeneous graph G is a graph whose vertices divided into multi-groups such that each one has a specific character.

Definition 21 A nonhomogeneous numerical digraph G_{N_m} is a numerical digraph whose vertices divided into multi-groups such that each one has a specific character.

Theorem 4 The explicit multi-step method give nonhomogeneous numerical digraph G_{N_m} .

Proof The general explicit multi-step method

 $y_{n+1} + \alpha_1 y_n + \ldots + \alpha_m y_{n-m+1} = h[\beta_1 f_n + \beta_2 f_{n-1} + \ldots + \beta_m f_{n-m+1}]$, i.e., to determine the vertex (x_{n+1}, y_{n+1}) we need know m vertices begin from (x_0, y_0) up to (x_n, y_n) .

for example: The difference method

 $y_{n+1}-y_n=h[23f_n-16f_{n-1}+5f_{n-2}]/12, n=2,3,...,$ is 3-step method, the group of vertices $(x_3,y_3),(x_4,y_4),...,$ are given by this multi-step method whenever the group $(x_0,y_0),(x_1,y_1),(x_2,y_2)$ are gotten from single-step method .See Figure 3.

30 A. El-Abed

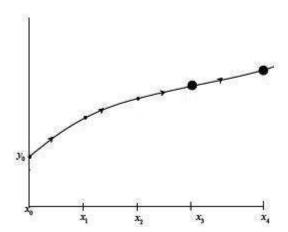


Figure 4: Nonhomogenous Numerical Digraph G_{N_m}

There is an important role to the step size h in the all types of numerical digraphs.

Definition 22 The initial tight graph (digraph) T is a package of graphs (digraph) which have one source.

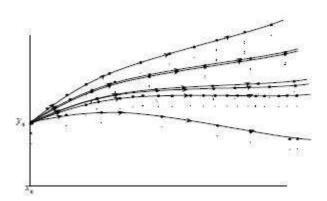


Figure 5: Initial Tight Digraph T

Theorem 5 As the order of numerical digraph in bounded interval $\to \infty$ the consistent digraph is obtained.

Proof Since the local error of the approximate solution of (I.V.P.)(1.1) depends on the step size h s.t. $\sup |E(h,x)| \leq Mh^k$, where M,k is a positive integers [4], for all sufficiently small h, the order of bounded numerical digraph $\to \infty$, and then the difference method is said to be consistent of order k.

Theorem 6 The limit of foldings F_j of initial tight graph give a convergent numerical graph.

Proof Let $F_i: T \to T$ be a folding map of an initial tight graph T s.t., $F_i(G_N^j) = G_N^m$, where order of $(G_N^j) \leq$ order of (G_N^m) , then $\lim_{i \to \infty} F_i =$ The highest order numerical digraph, which is required. As shown in Figure 6.

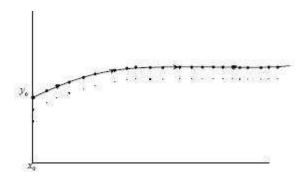


Figure 6: Limit of Foldings F_i

References

- [1] A. T. White, *Graph, Groups and Surfaces*, Amsterdam, North-Holland, Publishing Company (1973).
- [2] Douglas B.West, Introduction to Graph Theory, Prentice-Hall of India, New Delhi (2005).
- [3] John Wiley & Sons Inc, Numreical Solution of Differential Equations, University of Keele, England (1987).
- [4] L. W. Beineke and R. J. Wilson, Selected Topics in Graph Theory(II), Academic Press Inc. LTD, London (1983).
- [5] P. Difrancesco, Folding and coloring problems in mathematics and physics, *Bulletin of the American Mathematical Society*, Vol. 135(2000), 277-291, .
- [6] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, University of California, Los Angeles (1962).
- [7] R. J. Wilson, Introduction to Graph Theory, Oliver & Boyed, Edinburgh (1972).
- [8] R. J. Wilson, J. Watkins, Graphs, An Introductory Approach, a first course in discrete mathematics, Jon Wiley & Sons Inc, Canda (1990).
- [9] S. A. Robertson, Isometric folding of Riemannnian manifold, *Proc. Roy. Soc. Edinburgh*, Vol.77(1977), 275-289.