Gallai and Anti-Gallai Symmetric n-Sigraphs

S. Vijay

(Department of Mathematics, Government Science College, Hassan-573 201, India)

C. N. Harshavardhana

(Department of Mathematics, Government First Grade College for Women, Holenarasipur-573 211, India)

P. Somashekar

(Department of Mathematics, Maharani's Science College for Women, Mysuru-570 005, India)

E-mail: vijayshivanna82@gmail.com, cnhmaths@gmail.com, somashekar2224@gmail.com

Abstract: An n-tuple (a_1, a_2, \dots, a_n) is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, \dots, a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the underlying graph of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function. In this paper, we introduced a new notions Gallai and anti-Gallai symmetric n-sigraph of a symmetric n-sigraphs and its properties are obtained. Also we give the relation between Gallai symmetric n-sigraphs and anti-Gallai symmetric n-sigraphs. Further, we discuss structural characterizations of these notions.

Key Words: Symmetric *n*-sigraph, Smarandachely symmetric *n*-sigraph, symmetric *n*-marked graph, Smarandachely symmetric *n*-marked graph, balance, switching, Gallai symmetric *n*-sigraphs, Smarandachely Gallai symmetric *n*-sigraph, anti-Gallai symmetric *n*-sigraph, Smarandachely anti-Gallai *n*-sigraph, complementation.

AMS(2010): 05C22.

§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [3]. We consider only finite, simple graphs free from self-loops.

Let $n \geq 1$ be an integer. An n-tuple (a_1, a_2, \dots, a_n) is symmetric, if $a_k = a_{n-k+1}, 1 \leq k \leq n$. Let $H_n = \{(a_1, a_2, \dots, a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \leq k \leq n\}$ be the set of all symmetric n-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \lceil \frac{n}{2} \rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the underlying graph of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function. Generally, a Smarandachely symmetric n-sigraph (Smarandachely

¹Received April 16, 2023, Accepted August 29, 2023.

²Corresponding author: vijayshivanna82@gmail.com

symmetric n-marked graph) for a subgraph $H \prec G$ is such a graph that G-E(H) is symmetric n-sigraph (symmetric n-marked graph). For example, let H be a path $P_2 \succ G$ or a claw $K_{1,3} \prec G$. Certainly, if $H = \emptyset$, a Smarandachely symmetric n-sigraph (or Smarandachely symmetric n-sigraph) is nothing else but a symmetric n-sigraph (or symmetric n-marked graph).

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-tuple/symmetric n-marked graph.

An *n*-tuple (a_1, a_2, \dots, a_n) is the *identity n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*.

Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of A.

In [11], the authors defined two notions of balance in n-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [7]):

Definition 1.1 Let $S_n = (G, \sigma)$ be an n-sigraph. Then,

- (i) S_n is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_n is the identity n-tuple, and
 - (ii) S_n is balanced, if every cycle in S_n contains an even number of non-identity edges.

Notice that an i-balanced n-sigraph need not be balanced and conversely. The following characterization of i-balanced n-sigraphs is obtained in [11].

Proposition 1.1 (E. Sampathkumar et al. [11]) An n-sigraph $S_n = (G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S_n defined as follows: each vertex $v \in V$, $\mu(v)$ is the *n*-tuple which is the product of the *n*-tuples on the edges incident with v. Complement of S_n is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}$, $\sigma^c(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Proposition 1 in [11].

In [11], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_n = (G, \sigma)$ as follows: (See also [5, 8 - 10, 13 - 23]).

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$, be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label (a_1, a_2, \dots, a_n) then $\phi(u)\phi(v)$ is an edge in S'_n with label (a_1, a_2, \dots, a_n) .

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, switching S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*-sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just switched *n*-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $S_{\mu}(S_n) \cong S'_n$.

Two n-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be cycle isomorphic, if there

exists an isomorphism $\phi: G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle C in S_n equals to the *n*-tuple $\sigma(\phi(C))$ in S'_n .

We make use of the following known result (see [11]).

Proposition 1.2 (E. Sampathkumar et al. [11]) Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

§2. Gallai *n*-Sigraphs

The Gallai graph $\mathcal{GL}(G)$ of a graph G = (V, E) is the graph whose vertex-set $V(\mathcal{GL}(G)) = E(G)$ and two distinct vertices e_1 and e_2 are adjacent in $\mathcal{GL}(G)$ if e_1 and e_2 are incident in G, but do not span a triangle in G (see [4]). In fact, this concept was introduced by Gallai [2] in his examination of comparability graphs and this notation was suggested by Sun [24]. The author Sun wasted Gallai graphs $\mathcal{GL}(G)$ to characterize a nice class of perfect graphs. Gallai graphs are also wasted in the polynomial time algorithm to determinate complete bipartite $K_{1,3}$ -free perfect graphs by the authors Chvátal and Sbihi [1].

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of Gallai graphs to n-sigraphs as follows:

The Gallai n-sigraph $\mathcal{GL}(S_n)$ of an n-sigraph $S_n = (G, \sigma)$ is an n-sigraph whose underlying graph is $\mathcal{GL}(G)$ and the n-tuple of any edge uv in $\mathcal{GL}(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n and similarly, the Smarandachely Gallai symmetric n-sigraph on S_n subgraph $S_n = (G, \sigma)$ is called Gallai Smarandachely symmetric $S_n = (G, \sigma)$ is called Gallai $S_n = (G, \sigma)$ as introduced above, since the entire class of $S_n = (G, \sigma)$ is introduced $S_n = (G, \sigma)$ as introduced above, since the entire class of $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ as introduced above, since the entire class of $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ as introduced above, since the entire class of $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ as introduced above, since the entire class of $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ as introduced above, since the entire class of $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ as introduced above, since the entire class of $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ as introduced above, since the entire class of $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ as introduced above, since the entire class of $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ as introduced above, since the entire class of $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ in $S_n = (G, \sigma)$ in $S_n = (G, \sigma)$ is called $S_n = (G, \sigma)$ in $S_n =$

Proposition 2.1 For any n-sigraph $S_n = (G, \sigma)$, its Gallai n-sigraph $\mathcal{GL}(S_n)$ is i-balanced.

Proof Since the *n*-tuple of any edge uv in $\mathcal{GL}(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n , by Proposition 1.1, $\mathcal{GL}(S_n)$ is i-balanced.

For any positive integer k, the k^{th} iterated Gallai n-sigraph $\mathcal{GL}(S_n)$ of S_n is defined as

$$(\mathcal{GL})^0(S_n) = S_n, \ (\mathcal{GL})^k(S_n) = \mathcal{GL}((\mathcal{GL})^{k-1}(S_n)).$$

Corollary 2.1 For any n-sigraph $S_n = (G, \sigma)$ and any positive integer k, $(\mathcal{GL})^k(S_n)$ is i-balanced.

In [4], the author characterize the graphs for which $\mathcal{GL}(G) \cong G$.

Theorem 2.1 Let G = (V, E) be any graph, Gallai graph $\mathcal{GL}(G)$ is isomorphic to G if, and only if, $G \cong C_n$, where $n \geq 4$.

In view of the above result, we now characterize the n-sigraphs for which Gallai n-sigraph

 $\mathcal{GL}(S_n)$ and S_n are switching equivalent.

Theorem 2.2 For any n-sigraph $S_n = (G, \sigma)$, the Gallai n-sigraph $\mathcal{GL}(S_n)$ and S_n are switching equivalent if, and only if, S_n is i-balanced n-sigraph and G is isomorphic to C_n , where $n \geq 4$.

Proof Suppose $S_n \sim \mathcal{GL}(S_n)$. This implies, $G \cong \mathcal{GL}(G)$ and hence G is isomorphic to C_n , where $n \geq 4$. Now, if S_n is any n-sigraph with underlying graph as cycle C_n , where $n \geq 4$, Proposition 2.1 implies that $\mathcal{GL}(S_n)$ is i-balanced and hence if S_n is i-unbalanced and its $\mathcal{GL}(S_n)$ being i-balanced can not be switching equivalent to S_n in accordance with Proposition 1.2. Therefore, S_n must be i-balanced.

Conversely, suppose that S_n is an *i*-balanced *n*-sigraph and G is isomorphic to C_n , where $n \geq 4$. Then, since $\mathcal{GL}(S_n)$ is *i*-balanced as per Proposition 2.1 and since $G \cong \mathcal{GL}(G)$, the result follows from Proposition 1.2 again.

Proposition 2.2 For any two S_n and S'_n with the same underlying graph, their Gallai n-sigraphs are switching equivalent.

Now, we characterize Gallai n-sigraphs. The following result characterize n-sigraphs which are Gallai n-sigraphs.

Theorem 2.3 An n-sigraph $S_n = (G, \sigma)$ is a Gallai n-sigraph if, and only if, S_n is i-balanced n-sigraph and its underlying graph G is a Gallai graph.

Proof Suppose that S_n is *i*-balanced and G is a $\mathcal{GL}(G)$. Then there exists a graph H such that $\mathcal{GL}(H) \cong G$. Since S_n is *i*-balanced, by Proposition 1.1, there exists an n-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the n-sigraph $S'_n = (H, \sigma')$, where for any edge e in H, $\sigma'(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $\mathcal{GL}(S'_n) \cong S_n$. Hence S_n is a Gallai n-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is a Gallai *n*-sigraph. Then there exists an *n*-sigraph $S'_n = (H, \sigma')$ such that $\mathcal{GL}(S'_n) \cong S_n$. Hence G is the $\mathcal{GL}(G)$ of H and by Proposition 2.1, S_n is *i*-balanced.

§3. Anti-Gallai *n*-Sigraph of a *n*-Sigraph

The anti-Gallai graph $\mathcal{AGL}(G)$ of a graph G = (V, E) is the graph whose vertex-set $V(\mathcal{AGL}(G)) = E(G)$; two distinct vertices e_1 and e_2 are adjacent in $\mathcal{AGL}(G)$ if e_1 and e_2 are incident in G and lie on a triangle in G (see [4]). Equivalently, the anti-Gallai graph $\mathcal{AGL}(G)$ is the complement of Gallai graph $\mathcal{GL}(G)$ in the line graph L(G). We can easily observe that the Gallai graphs $\mathcal{GL}(G)$ and anti-Gallai graphs $\mathcal{AGL}(G)$ are the spanning subgraphs of the line graph L(G) (See [4] for details).

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of anti-Gallai graphs to n-sigraphs as follows:

The anti-Gallai n-sigraph $\mathcal{AGL}(S_n)$ of an n-sigraph $S_n = (G, \sigma)$ is an n-sigraph whose

underlying graph is $\mathcal{AGL}(G)$ and the *n*-tuple of any edge uv is $\mathcal{AGL}(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n . Similarly, the *Smarandachely anti-Gallai n-sigraph* of a Smarandachely *n*-sigraph $S_n = (G, \sigma)$ on $H \prec G$ is the anti-Gallai *n*-sigraph of the Smarandachely *n*-sigraph on H. Further, an *n*-sigraph $S_n = (G, \sigma)$ is called anti-Gallai *n*-sigraph, if $S_n \cong \mathcal{AGL}(S'_n)$ for some *n*-sigraph S'_n . The following result indicates the limitations of the notion $\mathcal{AGL}(S_n)$ as introduced above, since the entire class of *i*-unbalanced *n*-sigraphs is forbidden to be anti-Gallai *n*-sigraphs.

Proposition 3.1 For any n-sigraph $S_n = (G, \sigma)$, its anti-Gallai n-sigraph $\mathcal{AGL}(S_n)$ is i-balanced.

Proof Since the *n*-tuple of any edge uv in $\mathcal{AGL}(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n , by Proposition 1.1, $\mathcal{AGL}(S_n)$ is i-balanced.

For any positive integer k, the k^{th} iterated anti-Gallai n-sigraph $\mathcal{AGL}(S_n)$ of S_n is defined to be

$$(\mathcal{AGL})^0(S_n) = S_n, \quad (\mathcal{AGL})^k(S_n) = \mathcal{AGL}((\mathcal{AGL})^{k-1}(S_n)).$$

Corollary 3.1 For any n-sigraph $S_n = (G, \sigma)$ and any positive integer k, $(\mathcal{AGL})^k(S_n)$ is *i-balanced*.

In [4], the author characterize the graphs for which $\mathcal{AGL}(G) \cong G$.

Theorem 3.1 Let G = (V, E) be any graph, anti-Gallai graph $\mathcal{AGL}(G)$ is isomorphic to G if, and only if $G \cong K_3$.

In view of the above result, we now characterize the *n*-sigraphs for which anti-Gallai *n*-sigraph $\mathcal{AGL}(S)$ and S are switching equivalent.

Theorem 3.2 For any n-sigraph $S_n = (G, \sigma)$, the anti-Gallai signed graph $\mathcal{AGL}(S_n)$ and S are switching equivalent if, and only if, S_n is i-balanced and G is isomorphic to K_3 .

Proof Suppose $S_n \sim \mathcal{AGL}(S_n)$. This implies, $G \cong \mathcal{AGL}(G)$ and hence G is isomorphic to K_3 . Now, if S_n is any n-sigraph with underlying graph as C_3 , Proposition 2.1 implies that $\mathcal{AGL}(S_n)$ is i-balanced and hence if S_n is i-unbalanced and its $\mathcal{AGL}(S_n)$ being i-balanced can not be switching equivalent to S_n in accordance with Proposition 1.2. Therefore, S_n must be i-balanced.

Conversely, suppose that S_n is an *i*-balanced *n*-sigraph and G is isomorphic to C_3 . Then, since $\mathcal{AGL}(S_n)$ is *i*-balanced as per Proposition 3 and since $G \cong \mathcal{AGL}(G)$, the result follows from Proposition 1.2 again.

Proposition 3.2 For any two S_n and S'_n with the same underlying graph, their anti-Gallai n-sigraphs are switching equivalent.

Now, we characterize Gallai n-sigraphs. The following result characterize n-sigraphs which are Gallai n-sigraphs.

Theorem 3.3 An n-sigraph $S_n = (G, \sigma)$ is an anti-Gallai n-sigraph if, and only if, S_n is i-balanced n-sigraph and its underlying graph G is an anti-Gallai graph.

Proof Suppose that S_n is *i*-balanced and G is a $\mathcal{AGL}(G)$. Then there exists a graph H such that $\mathcal{AGL}(H) \cong G$. Since S_n is *i*-balanced, by Proposition 1.1, there exists an n-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the n-sigraph $S'_n = (H, \sigma')$, where for any edge e in H, $\sigma'(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $\mathcal{AGL}(S'_n) \cong S_n$. Hence S_n is an anti-Gallai n-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is an anti-Gallai n-sigraph. Then there exists an n-sigraph $S'_n = (H, \sigma')$ such that $\mathcal{AGL}(S'_n) \cong S_n$. Hence G is the $\mathcal{AGL}(G)$ of H and by Proposition 2.1, S_n is i-balanced.

We now characterize n-sigraphs whose Gallai n-sigraphs and anti-Gallai n-sigraphs are switching equivalent. In case of graphs the following result is due to Palathingal and Aparna Lakshmanan [6].

Theorem 3.4 For any graph G = (V, E), the graphs $\mathcal{GL}(G)$ and $\mathcal{AGL}(G)$ are isomorphic if, and only if, G is $nK_3 \cup nK_{1,3}$.

Theorem 3.5 For any n-sigraph $S_n = (G, \sigma)$, $\mathcal{GL}(S_n) \sim \mathcal{AGL}(S_n)$ if, and only if, G is $nK_3 \cup nK_{1,3}$.

Proof Suppose $\mathcal{GL}(S_n) \sim \mathcal{AGL}(S_n)$. This implies, $\mathcal{GL}(G) \cong \mathcal{AGL}(G)$ and hence by Theorem 3.4, we see that the graph G must be isomorphic to $nK_3 \cup nK_{1,3}$.

Conversely, suppose that G is isomorphic to $nK_3 \cup nK_{1,3}$. Then $\mathcal{GL}(G) \cong \mathcal{AGL}(G)$ by Theorem 3.4. Now, if S_n is an n-sigraph with underlying graph as $nK_3 \cup nK_{1,3}$, by Propositions 2.1 and 3.1, $\mathcal{GL}(S_n)$ and $\mathcal{GL}(S_n)$ are i-balanced. The result follows from Proposition 1.2. \square

§4. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a *sigraph*) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, \dots, a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, \dots, a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the $\mathcal{GL}(S_n)$ ($\mathcal{AGL}(S_n)$) is *i*-balanced. We now examine, the condition under which *m*-complement of $\mathcal{GL}(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Proposition 4.1 Let $S_n = (G, \sigma)$ be an n-sigraph. Then, for any $m \in H_n$, if $\mathcal{GL}(G)$ ($\mathcal{AGL}(G)$) is bipartite then $(\mathcal{GL}(S_n))^m$ ($(\mathcal{AGL}(S_n))^m$) is i-balanced.

Proof Since, by Proposition 2.1 (Proposition 3.1), $\mathcal{GL}(S_n)$ ($\mathcal{AGL}(S_n)$) is i-balanced, for each k,

 $1 \leq k \leq n$, the number of *n*-tuples on any cycle C in $\mathcal{GL}(S_n)$ ($\mathcal{AGL}(S_n)$) whose k^{th} co-ordinate are - is even. Also, since $\mathcal{GL}(G)$ ($\mathcal{AGL}(G)$) is bipartite, all cycles have even length; thus, for each k, $1 \leq k \leq n$, the number of *n*-tuples on any cycle C in $\mathcal{GL}(S_n)$ ($\mathcal{AGL}(S_n)$) whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m \in H_n$. Hence $(\mathcal{GL}(S_n))^t$ ($(\mathcal{AGL}(S_n))^t$) is *i*-balanced.

Acknowledgement

The authors would like to thank the referees for their valuable comments which helped to improve the manuscript.

References

- [1] V. Chvátal and N. Sbihi, Recognizing claw-free perfect graphs, *J. Combin. Theory Ser.* B, 44(1988), 154-176.
- [2] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung., 18(1967), 25-66.
- [3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- [4] V. B. Le, Gallai graphs and anti-Gallai graphs, Discrete Math., 159(1996), 179-189.
- [5] V. Lokesha, P.S.K.Reddy and S. Vijay, The triangular line *n*-sigraph of a symmetric *n*-sigraph, *Advn. Stud. Contemp. Math.*, 19(1) (2009), 123-129.
- [6] J. J. Palathingal and S. Aparna Lakshmanan, Gallai and anti-Gallai graph operators, Electron. Notes Discrete Math., 63(2017), 447-453.
- [7] R. Rangarajan and P.S.K.Reddy, Notions of balance in symmetric *n*-sigraphs, *Proceedings* of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
- [8] R. Rangarajan, P.S.K.Reddy and M. S. Subramanya, Switching equivalence in symmetric *n*-sigraphs, *Adv. Stud. Comtemp. Math.*, 18(1) (2009), 79-85.
- [9] R. Rangarajan, P.S.K.Reddy and N. D. Soner, Switching equivalence in symmetric *n*-sigraphs-II, *J. Orissa Math. Sco.*, 28 (1 & 2) (2009), 1-12.
- [10] R. Rangarajan, P.S.K.Reddy and N. D. Soner, mth Power Symmetric n-Sigraphs, Italian Journal of Pure & Applied Mathematics, 29(2012), 87-92.
- [11] E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
- [12] E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, The Line *n*-sigraph of a symmetric *n*-sigraph, *Southeast Asian Bull. Math.*, 34(5) (2010), 953-958.
- [13] P.S.K.Reddy and B. Prashanth, Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
- [14] P.S.K.Reddy, S. Vijay and B. Prashanth, The edge C_4 n-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. & Engg. Appls., 3(2) (2009), 21-27.
- [15] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-II, *Proceedings of the Jangieon Math. Soc.*, 13(3) (2010), 305-312.
- [16] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.

- [17] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. & Engg. Appls., 5(1) (2011), 95-101.
- [18] P.S.K.Reddy, B. Prashanth and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
- [19] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching Equivalence in Symmetric *n*-Sigraphs-IV, *Scientia Magna*, 7(3) (2011), 34-38.
- [20] P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line *n*-sigraph of a symmetric *n*-sigraph-IV, *International J. Math. Combin.*, 1 (2012), 106-112.
- [21] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching equivalence in symmetric n-sigraphs-V, *International J. Math. Combin.*, 3 (2012), 58-63.
- [22] P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line *n*-sigraph of a symmetric *n*-sigraph-V, *Kyungpook Mathematical Journal*, 54(1) (2014), 95-101.
- [23] P.S.K.Reddy, R. Rajendra and M. C. Geetha, Boundary n-Signed Graphs, Int. Journal of Math. Sci. & Engg. Appls., 10(2) (2016), 161-168.
- [24] L. Sun, Two classes of perfect graphs, J. Combin. Theory Ser. B, 53(1991), 273-292.