4-Total Mean Cordial Labeling of Some Graphs Derived From H-Graph and Star

R.Ponraj¹, S.Subbulakshmi² and S.Somasundaram³

- 1. Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India
- 2. Research Scholar, Department of Mathematics, Manonmaniam Sundarnar university, Tirunelveli-627012,
- 3. Department of Mathematics, Manonmaniam sundarnar university, Tirunelveli-627012, Tamilnadu, India

E-mail: ponrajmaths@gmail.com, ssubbulakshmis@gmail.com, somutvl@gmail.com

Abstract: Let G be a graph. Let $f: V(G) \to \{0, 1, 2, \dots, k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u) + f(v)}{2} \right\rceil$. f is called k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \le 1$ for all $i, j \in \{0, 1, 2, \dots, k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, \dots, k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

Key Words: Total mean cordial labeling, Smarandachely total mean cordial labeling, path, complete graph, corona, star.

AMS(2010): 05C78.

§1. Introduction

In this paper we consider simple, finite and undirected graphs only. Cordial labeling was introduced by Cahit [3] and cordial relation labeling technique was studied in [1, 2, 4, 5, 6, 9, 17, 18, 19, 20]. The notation of k-total mean cordial labeling has been introduced in [10]. We investigate the 4-total mean cordial labeling behaviour of several graphs like cycle, complete graph, star, bistar, comb and crown in [10, 11, 12, 13, 14, 15, 16]. Let x be any real number. Then $\lceil x \rceil$ stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harary [8] and Gallian [7]. In this paper we investigate the 4-total mean cordial labeling of some graphs derived from H- graph and star.

§2. k-Total Mean Cordial Graph

Definition 2.1 Let G be a graph. Let $f: V(G) \to \{0,1,2,\ldots,k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u) + f(v)}{2} \right\rceil$. f is called k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \le 1$, for all $i, j \in \{0, 1, 2, \cdots, k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, \cdots, k-1\}$.

¹Received June 18, 2022, Accepted September 20, 2022.

A graph with admit a k-total mean cordial labeling is called a k-total mean cordial graph.

Such a labeling f is called a Smarandachely k-total mean cordial labeling of G if there are integers $i, j \in \{0, 1, 2, \cdots, k-1\}$ hold with $|t_{mf}(i) - t_{mf}(j)| \geq 2$ and G is called a Smarandachely k-total mean cordial graph.

§3. Preliminaries

Definition 3.1 Let $P_n^{(1)}: u_1u_2 \ldots u_n$ and $P_n^{(2)}: v_1v_2 \cdots v_n$ be any two paths. We join the vertices $u_{\frac{n+1}{2}}$ and $v_{\frac{n+1}{2}}$ by an edge, if n is odd and join the vertices $u_{\frac{n}{2}}$ and $v_{\frac{n}{2}+1}$ by an edge, if n is even. Then the resulting graph is called a H-graph on 2n vertices. We denote it by H(n).

Definition 3.2 If e = uv is an edge of G then e is said to be subdivided when it is replaced by the edges uw and wv. The graph obtained by subdividing each edge of a graph G is called the subdivision graph of G and is denoted by S(G).

Definition 3.3 The duplication of an edge e = uv of a graph G is the graph G' obtained from G by adding a new vertex x to G such that x is adjacent to both u and v.

Definition 3.4 Let G_1 , G_2 respectively be (p_1, q_1) , (p_2, q_2) graphs. The corona of G_1 with G_2 is the graph $G_1 \odot G_2$ obtained by taking one copy of G_1 , p_1 copies of G_2 and joining the i^{th} vertex of G_1 by an edge to every vertex in the i^{th} copy of G_2 where $1 \le i \le p_1$.

Definition 3.5 The complement \overline{G} of a graph G also has V(G) as its vertex set, but two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.

Definition 3.6 The complete bipartite graph $K_{1,n}$ is called a star.

Definition 3.7 $K_{1,3} * K_{1,n}$ is the graph obtained from $K_{1,3}$ by attaching root of a star $K_{1,n}$ at each pendent vertex of $K_{1,3}$.

Definition 3.8 Consider two copies of graph G namely G_1 and G_2 . Then the graph $G' = \langle G_1 \Delta G_2 \rangle$ is the graph obtained by joining the apex vertices of G_1 and G_2 by an edge as well as to a new vertex x.

Definition 3.9 A sparkler denoted as P_m^{+n} is a graph obtained from the path P_m and appending n edges to an end point. This is a special case of a caterpillar. We refer to the hub of P_m^{+n} , the sparkler as the vertex of degree n+1.

Definition 3.10 Let $u_i^{(k)}$ and $v_i^{(k)}$ be the vertices in the k^{th} copy of H-graph, where $i=1,2,3,\cdots,n$ and $k=1,2,3,\cdots,r$. Join the vertices v_1^k and v_1^{k+1} for $k=1,2,3,\ldots,r-1$. The resulting graph is denoted by P(r,H(n)).

Theorem 3.1([10]) Any path is k-total mean cordial.

§4. Main Results

4.1 Graphs Derived From H-Graph

Theorem 4.1 The graph H(n) is a 4-total mean cordial for all values of $n \geq 2$.

Proof Take the vertex set and edge set of H(n) as in Definition 3.1. Clearly |V(H(n))| + |E(H(n))| = 4n - 1. Obviously $H(2) \cong P_4$. Therefore H(2) is 4-total mean cordial follow from Theorem 3.1.

Case 1. $n \equiv 1 \pmod{2}$.

Let $n=2r+1, r \in \mathbb{N}$. Assign the label 2 to the r+1 vertices $u_1, u_2, \ldots, u_{r+1}$. Next we assign the label 3 to the r vertices $u_{r+2}, u_{r+3}, \cdots, u_{2r+1}$. Now we assign the label 0 to the r+1 vertices $v_1, v_2, \cdots, v_{r+1}$. Finally we assign the label 1 to the r vertices $v_{r+2}, v_{r+3}, \cdots, v_{2r+1}$.

Case 2. $n \equiv 0 \pmod{2}$.

Let $n=2r, r\geq 2$. We assign the label 2 to the r vertices u_1, u_2, \dots, u_r . Now we assign the label 3 to the r vertices $u_{r+1}, u_{r+2}, \dots, u_{2r}$. Next we assign the label 0 to the r vertices v_1, v_2, \dots, v_r . Finally we assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \dots, v_{2r}$.

This shows that vertex labeling f is a 4-total mean cordial labeling follows from the Table 1. This completes the proof.

n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n = 2r + 1	2r + 1	2r + 1	2r + 1	2r
n=2r	2r-1	2r	2r	2r

Table 1.

Theorem 4.2 The subdivision of H(n), S(H(n)) is a 4-total mean cordial for all values of $n \ge 2$.

Proof Take the vertex set and edge set as in Definition 3.1. Let x_i $(1 \le i \le n-1)$ be the vertex which subdivide the edge u_iu_{i+1} $(1 \le i \le n-1)$ and y_i $(1 \le i \le n-1)$ be the vertex which subdivide the edge v_iv_{i+1} $(1 \le i \le n-1)$. Let w be the vertex which subdivide the edge $u_{\frac{n+1}{2}}v_{\frac{n+1}{2}}$, if n is odd and w be the vertex which subdivide the edge $u_{\frac{n}{2}}v_{\frac{n}{2}+1}$, if n is even.

Clearly,
$$|V(S(H_{(n)}))| + |E(S(H_{(n)}))| = 8n - 3.$$

Case 1. $n \equiv 0 \pmod{2}$.

Let $n=2r, r\in\mathbb{N}$. Assign the label 2 to the vertex w. We now assign the label 0 to the r vertices u_1, u_2, \dots, u_r . Now we assign the label 1 to the r vertices $u_{r+1}, u_{r+2}, \dots, u_{2r}$. Next we assign the label 0 to the r vertices x_1, x_2, \dots, x_r . Now we assign the label 1 to the r-1 vertices $x_{r+1}, x_{r+2}, \dots, x_{2r-1}$. Next we assign the label 3 to the r vertices v_1, v_2, \dots, v_r . Now we assign the label 2 to the r vertices $v_{r+1}, v_{r+2}, \dots, v_{2r}$. Next we assign the label 3 to the r vertices v_1, v_2, \dots, v_r . Finally we assign the label 2 to the v_r vertices v_r , v_r , v_r . Finally we assign the label 2 to the v_r vertices v_r , v_r , v_r , v_r .

Case 2. $n \equiv 1 \pmod{2}$.

Let n = 2r + 1, $r \in \mathbb{N}$. Now we assign the label 1 to the vertex w. We now assign the label 0 to the r + 1 vertices u_1, u_2, \dots, u_{r+1} . Next we assign the label 2 to the r vertices $u_{r+2}, u_{r+3}, \dots, u_{2r+1}$. We now assign the label 0 to the r vertices x_1, x_2, \dots, x_r . Now we assign the label

2 to the r vertices $x_{r+1}, x_{r+2}, \dots, x_{2r}$. Now we assign the label 3 to the r+1 vertices v_1, v_2, \dots, v_{r+1} . Next we assign the label 1 to the r vertices $v_{r+2}, v_{r+3}, \dots, v_{2r+1}$. Now we assign the label 3 to the r vertices y_1, y_2, \dots, y_r . Finally we assign the label 1 to the r vertices $y_{r+1}, y_{r+2}, \dots, y_{2r}$. This shows that the vertex labeling f is a 4-total mean cordial labeling follows from the Table 2.

n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n=2r	4r - 1	4r-1	4r-1	4r
n = 2r + 1	4r + 1	4r+2	4r+1	4r + 1

Table 2.

Theorem 4.3 Duplication of all edges of H-graph H(n) is a 4-total mean cordial labeling, if n is odd.

Proof Take the vertex set and edge set of H(n) as in Definition 3.1. Let $H^*(n)$ be the graph obtained by duplication of all edges $u_1u_2, u_2u_3, \cdots, u_{n-1}u_n$ and $v_1v_2, v_2v_3, \cdots, v_{n-1}v_n$ by a new vertices $x_1, x_2, \cdots, x_{n-1}$ and $y_1, y_2, \cdots, y_{n-1}$ respectively. Let w be a new vertex obtained by duplicating the edge $u_{\frac{n+1}{2}}v_{\frac{n+1}{2}}$. In graph $H^*(n), |V(H^*(n))| + |E(H^*(n))| = 10n - 4$.

Assign the label 3 to the vertex w. We now assign the label 2 to the $\frac{n+1}{2}$ vertices $u_1, u_2, \dots, u_{\frac{n+1}{2}}$. Now we assign the label 3 to the $\frac{n-1}{2}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, \dots, u_n$. Next we assign the label 2 to the $\frac{n-1}{2}$ vertices $x_1, x_2, \dots, x_{\frac{n-1}{2}}$. Now we assign the label 3 to the $\frac{n-1}{2}$ vertices $x_{\frac{n+1}{2}}, x_{\frac{n+3}{2}}, \dots, x_{n-1}$. We now assign the label 0 to the $\frac{n+1}{2}$ vertices $v_1, v_2, \dots, v_{\frac{n+1}{2}}$. Next we assign the label 1 to the $\frac{n-1}{2}$ vertices $v_1, v_2, \dots, v_{\frac{n+1}{2}}$. Finally we assign the label 1 to the $\frac{n-1}{2}$ vertices $y_1, y_2, \dots, y_{\frac{n+3}{2}}, \dots, y_{\frac{n+3}{2}}$ vertices $v_1, v_2, \dots, v_{\frac{n+3}{2}}$. Finally we assign the label 1 to the $\frac{n-1}{2}$ vertices $v_1, v_2, \dots, v_{\frac{n+3}{2}}, \dots, v_{\frac{n+3}{2}}$

Clearly, $t_{mf}\left(0\right)=t_{mf}\left(1\right)=\frac{5n-3}{2};\ t_{mf}\left(2\right)=t_{mf}\left(3\right)=\frac{5n-1}{2}.$ This completes the proof. \Box

Theorem 4.4 The graph $H(n) \odot K_1$ is a 4-total mean cordial for all values of $n \geq 2$.

Proof Let $V(H(n)) = \{u_i, v_i : 1 \le i \le n\}$ and let x_1, x_2, \dots, x_n be the pendent vertices connected to u_1, u_2, \dots, u_n and y_1, y_2, \dots, y_n be the pendent vertices connected to v_1, v_2, \dots, v_n . Clearly, $|V(H(n) \odot K_1)| + |E(H(n) \odot K_1)| = 8n - 1$.

Case 1. $n \equiv 1 \pmod{2}$.

Let $n=2r+1, r\in\mathbb{N}$. Assign the label 2 to the 2r+1 vertices u_1,u_2,\cdots,u_{2r+1} . Now we assign the label 3 to the 2r+1 vertices x_1,x_2,\cdots,x_{2r+1} . Next we assign the label 0 to the r vertices v_1,v_2,\cdots,v_r . We now assign the label 1 to the r+1 vertices $v_{r+1},v_{r+2},\cdots,v_{2r+1}$. Now we assign the label 0 to the r+2 vertices y_1,y_2,\cdots,y_{r+2} . Finally we assign the label 1 to the r-1 vertices $y_{r+3},y_{r+4},\cdots,y_{2r+1}$.

Case 2. $n \equiv 0 \pmod{2}$.

Let $n=2r, r \in \mathbb{N}$. We assign the label 2 to the 2r vertices u_1, u_2, \dots, u_{2r} . Next we assign the label 3 to the 2r vertices x_1, x_2, \dots, x_{2r} . Now we assign the label 0 to the r vertices v_1, v_2, \dots, v_r . Next we assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \dots, v_{2r}$. Now we assign the

label 0 to the r+1 vertices y_1, y_2, \dots, y_{r+1} . Finally we assign the label 1 to the r-1 vertices $y_{r+2}, y_{r+3}, \dots, y_{2r}$. Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the Table 3.

n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n = 2r + 1	4r + 1	4r+2	4r+2	4r + 2
n=2r	4r	4r-1	4r	4r

Table 3.

Theorem 4.5 The graph $H(n) \odot \overline{K_2}$ is a 4-total mean cordial for all values of $n \geq 2$.

Proof Let

$$\begin{split} V\left(H\left(n\right)\odot\overline{K_{2}}\right) &= \left\{u_{i},v_{i},x_{i},y_{i},p_{i},q_{i}:1\leq i\leq n\right\},\\ E\left(H\left(n\right)\odot\overline{K_{2}}\right) &= \left\{u_{i}u_{i-1},v_{i}v_{i-1}:1\leq i\leq n-1\right\}\bigcup\left\{u_{i}x_{i},u_{i}y_{i},v_{i}p_{i},v_{i}q_{i}:1\leq i\leq n\right\}. \end{split}$$

Clearly, $|V(H(n) \odot \overline{K_2})| + |E(H(n) \odot \overline{K_2})| = 12n-1$. Assign the label 1 to the *n* vertices u_1, u_2, \ldots, u_n . Now we assign the label 3 to the *n* vertices x_1, x_2, \ldots, x_n . We now assign the label 0 to the *n* vertices y_1, y_2, \ldots, y_n . Next we assign the label 0 to the *n* vertices v_1, v_2, \ldots, v_n . We now assign the label 3 to the *n* vertices p_1, p_2, \ldots, p_n . Finally we assign the label 3 to the *n* vertices q_1, q_2, \ldots, q_n . Thus $t_{mf}(0) = 3n - 1$; $t_{mf}(1) = t_{mf}(2) = t_{mf}(3) = 3n$.

Theorem 4.6 The graph P(r, H(n)) is a 4-total mean cordial for all values of $n \geq 2$.

Proof Take the vertex set and edge set of P(r, H(n)) as in Definition 3.10. In the graph P(r, H(n)), |V(P(r, H(n)))| + |E(P(r, H(n)))| = 4nr - 1.

Case 1. $n \equiv 1 \pmod{2}$.

Let $n=2t+1,\,t\in\mathbb{N}$. Assign the label 1 to the t vertices $u_1^k,\,u_2^k,\,\cdots,\,u_t^k$. Now we assign the label 0 to the t+1 vertices $u_{t+1}^k,\,u_{t+2}^k,\,\cdots,\,u_{2t+1}^k$. Next we assign the label 3 to the t vertices $v_1^k,\,v_2^k,\,\cdots,\,v_t^k$. Finally we assign the label 2 to the t+1 vertices $v_{t+1}^k,\,v_{t+2}^k,\,\cdots,\,v_{2t+1}^k$.

Case 2. $n \equiv 0 \pmod{2}$.

Let $n=2t,\,t\in\mathbb{N}$. We assign the label 2 to the t vertices $u_1^k,\,u_2^k,\,\cdots,\,u_t^k$. Next we assign the label 3 to the t vertices $u_{t+1}^k,\,u_{t+2}^k,\,\cdots,\,u_{2t}^k$. Now we assign the label 0 to the t vertices $v_1^k,\,v_2^k,\,\cdots,\,v_t^k$. Finally we assign the label 1 to the t vertices $v_{t+1}^k,\,v_{t+2}^k,\,\cdots,\,v_{2t}^k$. This shows that vertex labeling f is a 4-total mean cordial labeling follows from the Table 4.

n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
$n ext{ is odd}$	(2t+1)r	(2t+1)r	(2t+1)r	(2t+1)r-1
n is even	2tr	2tr	2tr	2tr-1

Table 4.

4.2 Graphs Derived From Stars

Theorem 4.7 The graph $K_{1,3} * K_{1,n}$ is 4-total mean cordial for all values of n.

Proof Let $V(K_{1,3} * K_{1,n}) = \{u, u_1, u_2, u_3, x_i, y_i, z_i : 1 \le i \le n\}$ and $E(K_{1,3} * K_{1,n}) = \{uu_1, uu_2, uu_3\} \cup \{u_1x_i, u_2y_i, u_3z_i : 1 \le i \le n\}$. Note that $|V(K_{1,3} * K_{1,n})| + |E(K_{1,3} * K_{1,n})| = 6n + 7$. Assign the labels 0,0,3,1 to the vertices u,u_1,u_2,u_3 .

Case 1. $n \equiv 0 \pmod{2}$.

Let $n=2r, r\in\mathbb{N}$. Assign the label 0 to the r-1 vertices $x_1, x_2, \cdots, x_{r-1}$. Now we assign the label 1 to the vertex x_r . Now we assign the label 2 to the r vertices $x_{r+1}, x_{r+2}, \cdots, x_{2r}$. Next we assign the label 0 to the r vertices y_1, y_2, \cdots, y_r . We now assign the label 3 to the r vertices $y_{r+1}, y_{r+2}, \cdots, y_{2r}$. Now we assign the label 1 to the r-1 vertices $z_1, z_2, \cdots, z_{r-1}$. Finally we assign the label 3 to the r+1 vertices $z_r, z_{r+1}, \cdots, z_{2r}$.

Case 2. $n \equiv 1 \pmod{2}$.

Let $n=2r+1, r\in\mathbb{N}$. We now assign the label 0 to the r vertices x_1, x_2, \dots, x_r . Now we assign the label 1 to the two vertices x_{r+1}, x_{r+2} . Next we assign the label 2 to the r-1 vertices $x_{r+3}, x_{r+4}, \dots, x_{2r+1}$. Now we assign the label 0 to the r+1 vertices y_1, y_2, \dots, y_{r+1} . We now assign the label 3 to the r vertices $y_{r+2}, y_{r+3}, \dots, y_{2r+1}$. Now we assign the label 1 to the r-1 vertices z_1, z_2, \dots, z_{r-1} . Finally we assign the label 3 to the r+2 vertices $z_r, z_{r+1}, \dots, z_{2r+1}$. Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the Table 5. This completes the proof.

n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n = 2r + 1	3r+4	3r+3	3r+3	3r+3
n=2r	3r+1	3r+2	3r+2	3r+2

Table 5.

Example 4.1 A 4-total mean cordial labeling of $K_{1,3} * K_{1,5}$ is given in Figure 1.

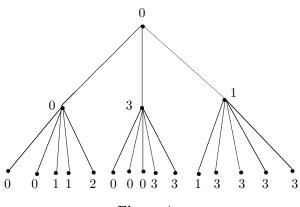


Figure 1

Theorem 4.8 The graph $\left\langle K_{1,n}^{(1)} \Delta K_{1,n}^{(2)} \right\rangle$ is 4-total mean cordial for all values of n.

Proof Let u_1, u_2, \dots, u_n be the pendent vertices of $K_{1,n}^{(1)}$ and v_1, v_2, \dots, v_n be the pendent vertices of $K_{1,n}^{(2)}$. Let u and v be the vertices of $K_{1,n}^{(1)}$ and $K_{1,n}^{(2)}$ which adjacent to u_i $(1 \le i \le n)$ and v_i $(1 \le i \le n)$ respectively. Let u and v are adjacent to a new common vertex x. Note that $\left|V\left(\left\langle K_{1,n}^{(1)}\Delta K_{1,n}^{(2)}\right\rangle\right)\right| + \left|E\left(\left\langle K_{1,n}^{(1)}\Delta K_{1,n}^{(2)}\right\rangle\right)\right| = 4n + 6$. Assign the labels 0,1,3 to the vertices x,u,v. Consider the vertices u_1,u_2,\dots,u_n . Now we assign the label 0 to the n vertices u_1,u_2,\dots,u_n . We now consider the vertices v_1,v_2,\dots,v_n . Finally we assign the label 2 to the n vertices v_1,v_2,\dots,v_n . Obviously $t_{mf}(0) = t_{mf}(3) = n+1$; $t_{mf}(1) = t_{mf}(2) = n+2$.

Theorem 4.8 The graph P_n^{+n} is a 4-total mean cordial for all values of n.

Proof Let $u_1 \ u_2 \cdots u_n$ be the path P_n . Then $V(P_n^{+n}) = V(P_n) \cup \{v_j : 1 \le j \le n\}$ and $E(P_n^{+n}) = E(P_n) \cup \{u_i v_j : 1 \le j \le n\}$. Note that $|V(P_n^{+n})| + |E(P_n^{+n})| = 4n - 1$.

Case 1. $n \equiv 1 \pmod{2}$.

Let n=2r+1, $r \in \mathbb{N}$. Assign the label 0 to the r+1 vertices u_1, u_2, \dots, u_{r+1} . Next we assign the label 1 to the r vertices $u_{r+2}, u_{r+3}, \dots, u_{2r+1}$. Now we assign the label 3 to the 2r+1 vertices $v_1, v_2, \dots, v_{2r+1}$.

Case 2. $n \equiv 0 \pmod{2}$.

Let $n=2r, r \in \mathbb{N}$. We now assign the label 0 to the r vertices u_1, u_2, \dots, u_r . Now we assign the label 1 to the r vertices $u_{r+1}, u_{r+2}, \dots, u_{2r}$. Finally we assign the label 3 to the 2r vertices v_1, v_2, \dots, v_{2r} .

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 6. \Box

n	$t_{mf}(0$	$t_{mf}(1$	$) \mid t_{mf}(2)$	$t_{mf}(3)$
n is o	dd = 2r + 1	$1 \qquad 2r$	2r+1	2r+1
n is ev	ven $2r-1$	$1 \qquad 2r$	2r	2r

Table 6.

References

- [1] M.Andar, S.Boxwala and N.Limaye, New families of cordial graphs, *J. Combin. Math. Combin. comput.*, 53 (2005), 117-154.
- [2] M.Andar, S.Boxwala and N.Limaye, On the coordinality of corona graphs, Ars. Combin., 78 (2006), 179-199.
- [3] I.Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars Combin., 23 (1987), 201-207.
- [4] I.Cahit, H-cordial graphs, Bull. Inst Combin. Appl., 18 (1996), 87-101.
- [5] G.Chartrand, S.M.Lee and P.Zhang, Uniformly cordial graphs, *Discrete Math.*, 306 (2006), 726-737.
- [6] A.T.Diab, Generalization of some result on cordial graphs, Ars Combin., 99 (2011), 161-173.

- [7] J.A.Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 19 (2016), #Ds6.
- [8] Harary, Graph Theory, Addision wesley, New Delhi (1969).
- [9] N.Khan, Cordial labelling of cycles, Annals Pure Appl. Math., 1, No.2 (2012), 117-130.
- [10] R.Ponraj, S.Subbulakshmi, S.Somasundaram, k-Total mean cordial graphs, J.Math. Comput. Sci., 10(2020), No.5, 1697-1711.
- [11] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial graphs derived from paths, *J.Appl and Pure Math.*, Vol 2(2020), 319-329.
- [12] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial labeling in subdivision graphs, *Journal of Algorithms and Computation*, 52(2020), 1-11.
- [13] R.Ponraj, S.Subbulakshmi, S.Somasundaram, Some 4-total mean cordial graphs derived from wheel, *J. Math. Comput. Sci.*, 11(2021), 467-476.
- [14] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial graphs derived from star and bistar, Turkish Journal of Computer and Mathematics Education, 12(2021), 951-956.
- [15] R.Ponraj, S.Subbulakshmi, S.Somasundaram, On 4-total mean cordial graphs, J. Appl. Math and Informatics, Vol 39(2021), 497-506.
- [16] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial labelling of special graphs, *Journal of Algorithms and Computation*, 53(2021), 13-22.
- [17] M.A.Seoud and A.E.I.Abdul, Magsoud on cordial and balanced labeling of graphs, J. Egyptian Math. Soc., 7 (1999) 127-135.
- [18] A.Sugumaran and K.Rajesh, Some graph operations on sum divisor cordial labeling related to H-graph, *International Journal of Statistics and Applied Mathematics*, (2018), 389-395.
- [19] S.K.Vaidya and M.C.Barasara, Product cordial labeling of line graph of some graphs, Kraqujevac. J. Math., 40(2) (2016), 290-297.
- [20] S.K.Vaidya and N.H.Shah, Cordial labeling for some bistar related graphs, Internat. J. Mathematics Soft Comput., 4(2) (2014), 33-39.