Super F-Centroidal Mean Graphs

S.Arockiaraj¹, A.Rajesh Kannan² and A.Durai Baskar³

- 1. Department of Mathematics, Government Arts & Science College, Sivakasi-626124, Tamil Nadu, India
- 2. Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi- 626 005, Tamil Nadu, India
- 3. Department of Mathematics, C.S.I. Jayaraj Annapackiam College, Nallur 627853, Tamil Nadu, India

E-mail: psarockiaraj@gmail.com, rajmaths@gmail.com, a.duraibaskar@gmail.com

Abstract: Let G be a graph and $f:V(G) \to \{1,2,3,\ldots,p+q\}$ be an injection. For each uv, the induced edge labeling f^* is defined as

$$f^*(uv) = \left\lfloor \frac{2 \left[f(u)^2 + f(u)f(v) + f(v)^2 \right]}{3 \left[f(u) + f(v) \right]} \right\rfloor.$$

Then f is called a super F-centroidal mean labeling if $f(V(G)) \cup \{f^*(uv) : uv \in E(G)\} = \{1, 2, 3, \dots, p+q\}$. A graph that admits a super F-centroidal mean labeling is called a super F-centroidal mean graph. In this paper, the super F-centroidal meanness of some standard graphs have been studied.

Key Words: F-centroidal mean graph, super F-centroidal mean labeling, Smarandachely super F-centroidal mean labeling, super F-centroidal mean graph.

AMS(2010): 05C78.

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V, E) be a graph with p vertices and q edges. For notations and terminology, we follow [7]. For a detailed survey on graph labeling, we refer [6].

Path on n vertices is denoted by P_n and a cycle on n vertices is denoted by C_n . A star graph S_n is the complete bipartite graph $K_{1,n}$. The union $G_1 \cup G_2$ of any two graphs G_1 and G_2 with disjoint vertex sets, has vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. The middle graph M(G) of a graph G is the graph whose vertex set is $\{v: v \in V(G)\} \cup \{e: e \in E(G)\}$ and the edge set is $\{e_1e_2: e_1, e_2 \in E(G)\}$ and e_1 and e_2 are adjacent edges of $G\} \cup \{ve: v \in V(G), e \in E(G)\}$ and e is incident with $v\}$. The graph $G \circ S_m$ is obtained from G by attaching m pendant vertices to each vertex of G. A Twig $TW(P_n)$, $n \geq 3$ is a graph obtained from a path by attaching exactly two pendant vertices to each internal vertices of the path P_n . A subdivision of a graph G, denoted by S(G), is a graph obtained by subdividing edge of G by a vertex. An arbitrary subdivision of a graph G is a graph obtained from G by a sequence of elementary subdivisions forming edges into paths through new vertices of degree 2. Square of a graph G

¹Received December 31, 2018, Accepted September 5, 2019.

denoted by G^2 , has the vertex set as in G and two vertices are adjacent in G^2 if they are at a distance either 1 or 2 apart in G. The baloon of a graph G, $P_n(G)$ is the graph obtained from G by identifying an end vertex of P_n at a vertex of G. The graph $P_n(C_m)$ is called a dragon.

The concept of geometric mean labeling [1] and super geometric mean labeling [2] were introduced by Durai Baskar et al. and studied for some standard graphs. Arockiaraj et al. introduced the concept of F-root square labeling [3] and super F-root square labeling [4]. The concept of F-centroidal mean labeling [5] was introduced and developed its meanness for some standard graphs.

Arockiaraj et al. [5], defined the F-centroidal mean labeling as follows:

A function f is called an F-centroidal mean labeling of a graph G(V, E) with p vertices and q edges if $f: V(G) \to \{1, 2, 3, \dots, q+1\}$ is injective and the induced function $f^*: E(G) \to \{1, 2, 3, \dots, q\}$ defined as

$$f^*(uv) = \left| \frac{2 \left[f(u)^2 + f(u)f(v) + f(v)^2 \right]}{3 \left[f(u) + f(v) \right]} \right|$$

is bijective for all $uv \in E(G)$. A graph that admits an F-centroidal mean labeling is called an F-centroidal mean graph. Motivated by the works of so many authors in the area of graph labeling, we introduced a new type of labeling called a super F-centroidal mean labeling.

Let G be a graph and $f:V(G)\to\{1,2,3,\cdots,p+q\}$ be an injection. For each uv, the induced edge labeling f^* is defined as

$$f^*(uv) = \left\lfloor \frac{2 \left[f(u)^2 + f(u)f(v) + f(v)^2 \right]}{3 \left[f(u) + f(v) \right]} \right\rfloor.$$

Then f is called a super F-centroidal mean labeling if $f(V(G)) \cup \{f^*(uv) : uv \in E(G)\} = \{1, 2, 3, \dots, p+q\}$. A graph that admits a super F-centroidal mean labeling is called a super F-centroidal mean graph. Generally, let $C \subset \{1, 2, 3, \dots, p+q\}$. If $f(V(G)) \cup \{f^*(uv) : uv \in E(G)\} = \{1, 2, 3, \dots, p+q\} \setminus C$, such a f is called a Smarandachely super F-centroidal mean labeling on F. Clearly, if F is a Smarandachely super F-centroidal mean labeling on F is nothing else but the super F-centroidal mean labeling on F.

A super F-centroidal mean labeling of the graph C_4 is shown in Figure 1.

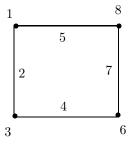


Figure 1 A super F-centroidal mean labeling of C_4

In this paper, we have studied the super F-centroidal meanness of some standard graphs.

§2. Main Results

Theorem 2.1 A union of any number of paths is a super F-centroidal mean graph.

Proof Let the graph G be the union of k paths. Let $\{v_j^{(i)}: 1 \leq j \leq p_i\}$ be the vertices of the i^{th} path P_{p_i} with $p_i \geq 2$ and $1 \leq i \leq k$. Define $f: V(G) \to \left\{1, 2, 3, \cdots, \sum_{i=1}^k 2p_i - k\right\}$ as follows:

$$f(v_j^{(1)}) = 2j - 1$$
, for $1 \le j \le p_1$ and $f(v_j^{(i)}) = f(v_{p_{i-1}}^{(i-1)}) + 2j - 1$, for $2 \le i \le k$ and $1 \le j \le p_i$.

Then the induced edge labeling f^* is obtained as follows:

$$f^*(v_j^{(1)}v_{j+1}^{(1)}) = 2j$$
, for $1 \le j \le p_1 - 1$ and $f^*(v_j^{(i)}v_{j+1}^{(i)}) = f(v_{p_{i-1}}^{(i-1)}) + 2j$, for $2 \le i \le k$ and $1 \le j \le p_1 - 1$.

Hence, f is a super F-centroidal mean labeling of G. Thus the graph G is a super F-centroidal mean graph.

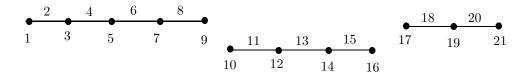


Figure 2 A super F-centroidal mean labeling of union of P_5 , P_4 and P_3

Corollary 2.2 Every path P_n is a super F-centroidal mean graph, for $n \geq 1$.

Theorem 2.3 The middle graph $M(P_n)$ of a path P_n is a super F-centroidal mean graph, for $n \geq 4$.

Proof Let $V(P_n) = \{v_1, v_2, v_3, \dots, v_n\}$ and $E(P_n) = \{e_i = v_i v_{i+1} : 1 \le i \le n-1\}$ be the vertex set and edge set of the path P_n . Then,

$$V(M(P_n)) = \{v_1, v_2, v_3, \dots, v_n, e_1, e_2, e_3, \dots, e_{n-1}\} \text{ and}$$

$$E(M(P_n)) = \{v_i e_i, e_i v_{i+1} : 1 \le i \le n-1\} \cup \{e_i e_{i+1} : 1 \le i \le n-2\}.$$

Define $f: V(M(P_n)) \to \{1, 2, 3, \dots, 5n - 5\}$ as follows:

$$f(v_i) = 5i - 4$$
, for $1 \le i \le n - 1$,
 $f(v_n) = 5n - 5$ and
 $f(e_i) = 5i - 2$, for $1 \le i \le n - 1$.

$$f^*(v_i e_i) = 5i - 3$$
, for $1 \le i \le n - 1$
 $f^*(e_i v_{i+1}) = 5i - 1$, for $1 \le i \le n - 1$
 $f^*(e_i e_{i+1}) = 5i$, for $1 \le i \le n - 2$.

Hence f is a super F-centroidal mean labeling of $M(P_n)$. Thus the middle graph $M(P_n)$ of a path P_n is a super F-centroidal mean graph, for $n \ge 4$.

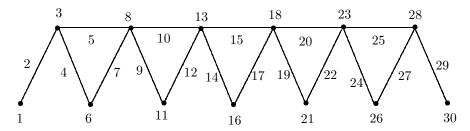


Figure 3 A super F-centroidal mean labeling of $M(P_7)$

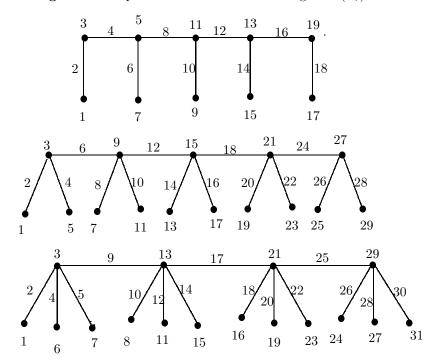


Figure 4. A super F-centroidal mean labeling of $P_5 \circ S_1$, $P_6 \circ S_2$ and $P_4 \circ S_3$

Theorem 2.4 The graph $P_n \circ S_m$ is a super F-centroidal mean graph, for $n \geq 1$ and $m \leq 3$.

Proof Let u_1, u_2, \dots, u_n be the vertices of the path P_n and $v_1^{(i)}, v_2^{(i)}, \dots, v_m^{(i)}$ be the pendant vertices attached at each vertex u_i of the path P_n , for $1 \le i \le n$.

Case 1. m = 1.

Define $f: V(P_n \circ S_1) \to \{1, 2, 3, \dots, 4n-1\}$ as follows:

$$f(u_i) = \begin{cases} 4i - 1, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 4i - 3, & 2 \le i \le n \text{ and } i \text{ is even and} \end{cases}$$
$$f(v_1^{(i)}) = \begin{cases} 4i - 3, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 4i - 1, & 2 \le i \le n \text{ and } i \text{ is even.} \end{cases}$$

Then, the induced edge labeling f^* is obtained as follows:

$$f^*(u_i u_{i+1}) = 4i$$
, for $1 \le i \le n-1$ and $f^*(v_1^{(i)} u_i) = 4i-2$, for $1 \le i \le n$.

Case 2. m=2.

Define
$$f: V(P_n \circ S_2) \to \{1, 2, 3, \dots, 6n - 1\}$$
 as follows: $f(u_i) = 6i - 3$, for $1 \le i \le n$, $f(v_1^{(i)}) = 6i - 5$, for $1 \le i \le n$ and $f(v_2^{(i)}) = 6i - 1$, for $1 \le i \le n$.

Then, the induced edge labeling f^* is obtained as follows:

$$f^*(u_i u_{i+1}) = 6i$$
, for $1 \le i \le n-1$,
 $f^*(v_1^{(i)} u_i) = 6i - 4$, for $1 \le i \le n$ and

$$f^*(v_2^{(i)}u_i) = 6i - 2$$
, for $1 \le i \le n$.

Case 3. m = 3.

Define $f: V(P_n \circ S_3) \to \{1, 2, 3, \dots, 8n-1\}$ as follows:

$$f(u_i) = \begin{cases} 3, & i = 1 \\ 8i - 3, & 2 \le i \le n, \end{cases}$$

$$f(v_1^{(i)}) = \begin{cases} 1, & i = 1 \\ 8i - 8, & 2 \le i \le n, \end{cases}$$

$$f(v_2^{(i)}) = \begin{cases} 6, & i = 1 \\ 8i - 5, & 2 \le i \le n \text{ and } \end{cases}$$

$$f(v_3^{(i)}) = 8i - 1, \text{ for } 1 \le i \le n.$$

$$f^*(u_i u_{i+1}) = 8i + 1, \text{ for } 1 \le i \le n - 1,$$

$$f^*(v_1^{(i)} u_i) = 8i - 6, \text{ for } 1 \le i \le n,$$

$$f^*(v_2^{(i)} u_i) = 8i - 4, \text{ for } 1 \le i \le n \text{ and}$$

$$f^*(v_3^{(i)} u_i) = \begin{cases} 5, & i = 1 \\ 8i - 2, & 2 \le i \le n. \end{cases}$$

In each case, f is a super F-centroidal mean labeling of $P_n \circ S_m$. Thus the graph $P_n \circ S_m$ is a super F-centroidal mean graph, for $n \ge 1$ and $m \le 3$.

Theorem 2.5 The twig graph $TW(P_n)$ of the path P_n is a super F-centroidal mean graph, only when $n \geq 4$.

Proof Let $v_1, v_2, v_3, \dots, v_n$ be the vertices of the path P_n and $u_1^{(i)}, u_2^{(i)}$ be the pendant vertices at each vertex v_i , for $2 \le i \le n-1$.

Assume that $n \geq 4$.

Define $f: V(TW(P_n)) \to \{1, 2, 3, \dots, 6n - 9\}$ as follows:

$$f(v_i) = \begin{cases} 2i - 1, & 1 \le i \le 2 \\ 6i - 7, & 3 \le i \le n - 1 \\ 6i - 9, & i = n, \end{cases}$$

$$f(u_1^{(i)}) = \begin{cases} 6, & i = 2 \\ 6i - 9, & 3 \le i \le n - 1 \text{ and} \end{cases}$$

$$f(u_2^{(i)}) = \begin{cases} 8, & i = 2 \\ 6i - 5, & 3 \le i \le n - 2 \\ 6i - 4, & i = n - 1. \end{cases}$$

Then, the induced edge labeling f^* is obtained as follows:

$$f^*(v_i v_{i+1}) = \begin{cases} 5i - 3, & 1 \le i \le 2\\ 6i - 4, & 3 \le i \le n - 2, \end{cases}$$

$$f^*(v_{n-1} v_n) = 6n - 11,$$

$$f^*(v_i u_1^{(i)}) = 6i - 8, \text{ for } 2 \le i \le n - 1 \text{ and }$$

$$f^*(v_i u_2^{(i)}) = \begin{cases} 5, & i = 2\\ 6i - 6, & 3 \le i \le n - 1. \end{cases}$$

Hence f is a super F-centroidal mean labeling of $TW(P_n)$. Thus the twig graph $TW(P_n)$ is a super F-centroidal mean graph, for $n \geq 4$.

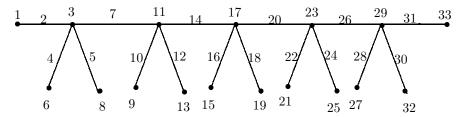


Figure 5. A super F-centroidal mean labeling of $TW(P_7)$

Theorem 2.6 The graph $[P_n; S_1]$ is a super F-centroidal mean graph, for $n \ge 1$.

Proof Let $u_1, u_2, u_3, \dots, u_n$ be the vertices of the path P_n and $v_1^{(i)}, v_2^{(i)}, v_3^{(i)}, \dots, v_{m+1}^{(i)}$ be the vertices of the star graph S_m such that $v_1^{(i)}$ is the central vertex of the star graph $S_m, 1 \le i \le n$.

Assume that m=1. Define $f:V([P_n;S_1])\to \{1,2,3,\cdots,6n-1\}$ as follows:

$$f(u_i) = 6i - 1, \text{ for } 1 \le i \le n,$$

$$f(v_1^{(i)}) = 6i - 3, \text{ for } 1 \le i \le n \text{ and}$$

$$f(v_2^{(i)}) = \begin{cases} 1, & i = 1 \\ 6i - 6, & 2 \le i \le n. \end{cases}$$

Then, the induced edge labeling f^* is obtained as follows:

$$f^*(u_i u_{i+1}) = 6i + 2, \text{ for } 1 \le i \le n - 1,$$

$$f^*(u_i v_1^{(i)}) = 6i - 2, \text{ for } 1 \le i \le n \text{ and}$$

$$f^*(v_1^{(i)} v_2^{(i)}) = \begin{cases} 2, & i = 1 \\ 6i - 5, & 2 \le i \le n. \end{cases}$$

Hence f is a super F-centroidal mean labeling of $[P_n; S_1]$. Thus the graph $[P_n; S_1]$ is a super F-centroidal mean graph, for $n \ge 1$.

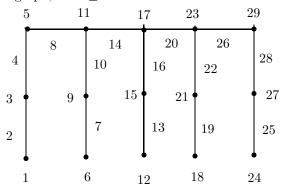


Figure 6 A super F-centroidal mean labeling of $[P_5; S_1]$

Theorem 2.7 Arbitrary subdivision of $K_{1,3}$ is a super F-centroidal mean graph.

Proof Let G be the graph of arbitrary subdivision of $K_{1,3}$. Let v_0, v_1, v_2 and v_3 be the vertices of $K_{1,3}$ in which v_0 is the central vertex and v_1, v_2 and v_3 are the pendent vertices of $K_{1,3}$. Let the edges v_0v_1, v_0v_2 and v_0v_3 of S_3 be subdivided by p_1, p_2 and p_3 number of vertices respectively.

 $\text{Let } v_0, v_1^{(1)}, v_2^{(1)}, v_3^{(1)}, \cdots, v_{p_1+1}^{(1)} = v_1, v_0, v_1^{(2)}, v_2^{(2)}, v_3^{(2)}, \cdots, v_{p_2+1}^{(2)} = v_2 \text{ and } v_0, v_1^{(3)}, v_2^{(3)}, v_3^{(3)}, \cdots, v_{p_3+1}^{(3)} (=v_3) \text{ be the vertices of } G \text{ and } v_0 = v_0^{(i)} \text{ for } 1 \leq i \leq 3.$

Let $e_j^{(i)} = v_{j-1}^{(i)} v_j^{(i)}$ for $1 \le j \le p_i + 1$ and $1 \le i \le 3$ be the edges with G and it has $p_1 + p_2 + p_3 + 4$ vertices and $p_1 + p_2 + p_3 + 3$ edges with $p_1 \le p_2 \le p_3$.

Case 1. $p_1 = p_2, p_1 \ge 1 \text{ and } p_3 \ge 3.$

Define $f: V(G) \to \{1, 2, 3, \dots, 2(p_1 + p_2 + p_3) + 7\}$ as follows:

$$f(v_0) = 2(p_1 + p_2) + 5,$$

$$f(v_j^{(1)}) = \begin{cases} 2(p_1 + p_2), & j = 1\\ 2(p_1 + p_2) + 5 - 4j, & 2 \le j \le p_1 + 1, \end{cases}$$

$$f(v_j^{(2)}) = \begin{cases} 2(p_1 + p_2) + 7 - 4j, & 1 \le j \le 2\\ 2(p_1 + p_2) + 6 - 4j, & 3 \le j \le p_2 + 1 \text{ and} \end{cases}$$

$$f^*(v_j^{(3)}) = 2(p_1 + p_2) + 5 + 2j \text{ for } 1 \le j \le p_3 + 1.$$

Then, the induced edge labeling f^* is obtained as follows:

$$f^*(v_0v_1^{(i)}) = 2(p_1 + p_2) + 2i, \text{ for } 1 \le i \le 3,$$

$$f^*(v_j^{(1)}v_{j+1}^{(1)}) = \begin{cases} 2(p_1 + p_2) - 2, & j = 1\\ 2(p_1 + p_2) + 3 - 4j, & 2 \le j \le p_1, \end{cases}$$

$$f^*(v_j^{(2)}v_{j+1}^{(2)}) = \begin{cases} 2(p_1 + p_2) + 1, & j = 1\\ 2(p_1 + p_2) + 4 - 4j, & 2 \le j \le p_2 \text{ and} \end{cases}$$

$$f^*(v_j^{(3)}v_{j+1}^{(3)}) = 2(p_1 + p_2) + 6 + 2j, \text{ for } 1 \le j \le p_3.$$

Case 2. $p_1 < p_2$.

Define
$$f: V(G) \to \{1, 2, 3, \dots, 2(p_1 + p_2 + p_3) + 7\}$$
 as follows:

$$f(v_0) = 2(p_1 + p_2) + 5,$$

$$f(v_j^{(1)}) = \begin{cases} 2(p_1 + p_2) + 3, & j = 1\\ 2(p_1 + p_2) + 8 - 4j, & 2 \le j \le p_1 + 1, \end{cases}$$

$$f(v_j^{(2)}) = \begin{cases} 2(p_1 + p_2) + 3 - 4j, & 1 \le j \le p_1\\ 2p_2 + 3 - 2j, & p_1 + 1 \le j \le p_2 + 1 \text{ and} \end{cases}$$

$$f^*\left(v_j^{(3)}\right) = 2(p_1 + p_2) + 5 + 2j \text{ for } 1 \le j \le p_3 + 1.$$

$$f^*(v_0 v_1^{(i)}) = 2(p_1 + p_2) + 2i, \text{ for } 1 \le i \le 3,$$

$$f^*(v_j^{(1)} v_{j+1}^{(1)}) = \begin{cases} 2(p_1 + p_2) + 5 - 4j, & j = 1 \\ 2(p_1 + p_2) + 6 - 4j, & 2 \le j \le p_1, \end{cases}$$

$$f^*(v_j^{(2)}v_{j+1}^{(2)}) = \begin{cases} 2(p_1 + p_2) + 1 - 4j, & 1 \le j \le p_1 - 1\\ 2p_2 + 2 - 2j, & p_1 \le j \le p_2 \text{ and} \end{cases}$$
$$f^*(v_i^{(3)}v_{i+1}^{(3)}) = 2(p_1 + p_2) + 6 + 2j, \text{ for } 1 \le j \le p_3.$$

In both cases, f is a super F-centroidal mean labeling of the arbitrary subdivision of S_3 .

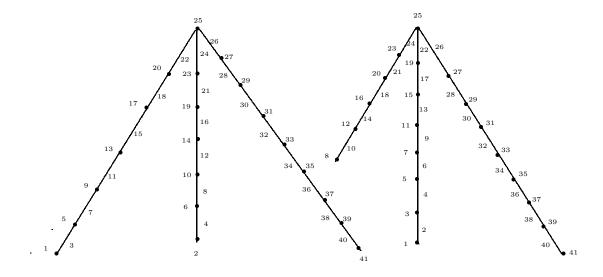


Figure 7. A super *F*-centroidal mean labeling of *G* with $p_1 = p_2 = 5, p_3 = 7$ and $p_1 = 4, p_2 = 6, p_3 = 7$

The graphs does not fall on the Case 1 are found to be a super F-centroidal mean graphs whose super F-centroidal mean labeling is shown in Figure 8.

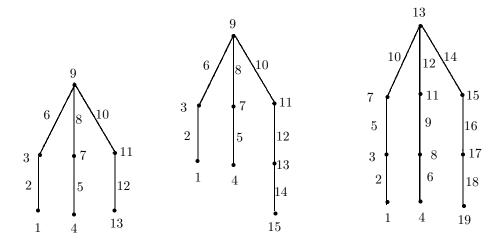


Figure 8 A super *F*-centroidal mean labeling of *G* with $p_1 = p_2 = p_3 = 1$, $p_1 = p_2 = 1$, $p_3 = 2$ and $p_1 = p_2 = p_3 = 2$

Theorem 2.8 Every cycle C_n is a super F-centroidal mean graph, for $n \geq 4$.

Proof Let u_1, u_2, \dots, u_n be the vertices of the cycle C_n . Assume that $n \geq 5$. A vertex labeling $f: V(C_n) \to \{1, 2, 3, \dots, 2n\}$ is defined as

$$f(u_i) = \begin{cases} 1, & i = 1 \\ 4i - 4, & 2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } n \text{ is odd} \\ 4i - 6, & i = \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ and } n \text{ is odd} \\ 4n - 4i + 5, & \left\lfloor \frac{n}{2} \right\rfloor + 3 \le i \le n \text{ and } n \text{ is odd} \\ 4i - 5, & 2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \text{ and } n \text{ is even} \\ 4i - 4, & i = \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } n \text{ is even} \\ 4n - 4i + 6, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le i \le n \text{ and } n \text{ is even.} \end{cases}$$

Then, the induced edge labeling f^* is obtained as follows:

$$f^*(u_iu_{i+1}) = \begin{cases} 2, & i = 1 \text{ and } n \text{ is odd} \\ 4i - 2, & 2 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \text{ and } n \text{ is odd} \\ 4i - 3, & i = \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } n \text{ is odd} \\ 4n - 4i + 3, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le i \le n - 1 \text{ and } n \text{ is odd} \\ 3i - 1, & 1 \le i \le 2 \text{ and } n \text{ is even} \\ 4i - 3, & 3 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \text{ and } n \text{ is even} \\ 4i - 5, & i = \left\lfloor \frac{n}{2} \right\rfloor + 1 \text{ and } n \text{ is even} \\ 4n - 4i + 4, & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le i \le n - 1 \text{ and } n \text{ is even and} \end{cases}$$

$$f^*(u_n u_1) = \begin{cases} 3, & n \text{ is odd} \\ 4, & n \text{ is even.} \end{cases}$$

Hence f is a super F-centroidal mean labeling of C_n , for $n \geq 5$. Thus the graph C_n is a super F-centroidal mean graph, for $n \geq 5$.

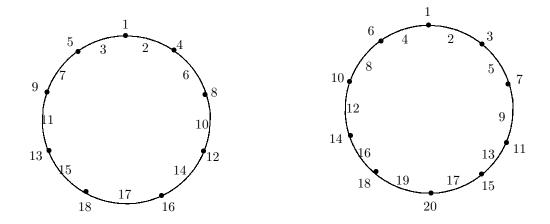


Figure 9 A super F-centroidal mean labeling of C_9 and C_{10}

For n = 4, a super F-centroidal mean labeling of C_4 , is shown in Figure 1. But, the graph C_3 is not a super F-centroidal mean graph.

Theorem 2.9 $P_n \cup C_m$ is a super F-centroidal mean graph, for $n \geq 1$ and $m \geq 3$.

Proof Let u_1, u_2, \dots, u_m and v_1, v_2, \dots, v_n be the vertices of the cycle C_m and the path P_n respectively.

Case 1. $m \ge 4$.

Define $f: V(P_n \cup C_m) \to \{1, 2, 3, \dots, 2m + 2n - 1\}$ as follows:

$$f(u_i) = \begin{cases} 1, & i = 1 \\ 4i - 4, & 2 \le i \le \left\lfloor \frac{m}{2} \right\rfloor \\ 2m - 3, & i = \left\lfloor \frac{m}{2} \right\rfloor + 1 \text{ and } m \text{ is odd} \end{cases}$$

$$2m, & i = \left\lfloor \frac{m}{2} \right\rfloor + 1 \text{ and } m \text{ is even} \end{cases}$$

$$2m, & i = \left\lfloor \frac{m}{2} \right\rfloor + 2 \text{ and } m \text{ is odd} \end{cases}$$

$$2m - 3, & i = \left\lfloor \frac{m}{2} \right\rfloor + 2 \text{ and } m \text{ is even} \end{cases}$$

$$4m + 5 - 4i, & \left\lfloor \frac{m}{2} \right\rfloor + 3 \le i \le n \text{ and } n \text{ is even and} \end{cases}$$

$$f(v_i) = 2m + 2i - 1$$
, for $1 \le i \le n$.

$$f^*(u_i u_{i+1}) = \begin{cases} 4i - 2, & 1 \le i \le \lfloor \frac{m}{2} \rfloor \\ 2m - 1, & i = \lfloor \frac{m}{2} \rfloor + 1 \\ 2m - 2, & i = \lfloor \frac{m}{2} \rfloor + 2 \text{ and } m \text{ is odd} \\ 2m - 5, & i = \lfloor \frac{m}{2} \rfloor + 2 \text{ and } m \text{ is even} \\ 4m + 3 - 4i, & \lfloor \frac{m}{2} \rfloor + 3 \le i \le m - 1, \end{cases}$$

$$f^*(u_1 u_m) = 3 \text{ and}$$

$$f^*(v_i v_{i+1}) = 2m + 2i, \text{ for } 1 \le i \le n - 1.$$

Case 2. m = 3.

Define
$$f:V(P_n\cup C_3)\to\{1,2,3,\cdots,2n+5\}$$
 as follows:
$$f(v_i)=2i-1, \text{ for } 1\leq i\leq n,$$

$$f(u_1)=2n,$$

$$f(u_2)=2n+3 \text{ and}$$

$$f(u_3)=2n+5.$$

Then, the induced edge labeling f^* is obtained as follows:

$$f^*(v_i v_{i+1}) = 2i$$
, for $1 \le i \le n-1$,
 $f^*(u_1 u_2) = 2n+1$,
 $f^*(u_2 u_3) = 2n+4$ and
 $f^*(u_1 u_3) = 2n+2$.

Hence f is a super F-centroidal mean labeling of $P_n \cup C_m$. Thus the graph $P_n \cup C_m$ is a super F-centroidal mean graph for $n \ge 1$ and $m \ge 3$.

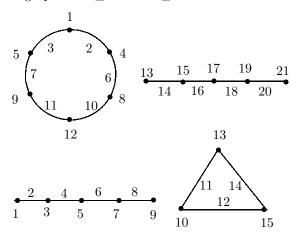


Figure 10 A super F-centroidal mean labeling of $P_5 \cup C_6$ and $P_4 \cup C_3$

Theorem 2.10 P_n^2 is a super F-centroidal mean graph, for $n \geq 3$.

Proof Let v_1, v_2, \dots, v_n be the vertices of the path P_n . Assume that $n \neq 5$. Define $f: V(P_n^2) \to \{1, 2, 3, \dots, 3n - 3\}$ as follows:

$$f(v_i) = \begin{cases} 3i - 2, & 1 \le i \le n - 2 \text{ and } i \text{ is odd} \\ 3i - 3, & 1 \le i \le n - 2 \text{ and } i \text{ is even,} \end{cases}$$
$$f(v_{n-1}) = 3n - 5 \text{ and}$$
$$f(v_n) = 3n - 3.$$

Then, the induced edge labeling f^* is obtained as follows:

$$f^*(v_i v_{i+1}) = 3i - 1, \text{ for } 1 \le i \le n - 1,$$

$$f^*(v_i v_{i+2}) = \begin{cases} 3i + 1, & 1 \le i \le n - 4 \text{ and } i \text{ is odd} \\ 3i, & 2 \le i \le n - 4 \text{ and } i \text{ is even,} \end{cases}$$

$$f^*(v_{n-3} v_{n-1}) = \begin{cases} 3n - 9, & n \text{ is odd} \\ 3n - 8, & n \text{ is even and} \end{cases}$$

$$f^*(v_{n-2} v_n) = 3n - 6.$$

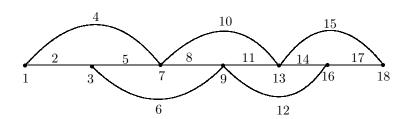


Figure 11 A super F-centroidal mean labeling of P_7^2

For n=5, a super F-centroidal mean labeling of P_n^5 is shown the Figure 12.

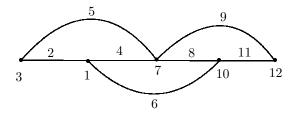


Figure 12 A super *F*-centroidal mean labeling of P_5^2

Hence f is a super F-centroidal mean labeling of P_n^2 . Thus the graph P_n^2 is a super F-centroidal mean graph, for $n \geq 3$.

Theorem 2.11 If the graph G is a super F-centroidal mean graph, then $P_n(G)$ is also a super F-centroidal mean graph.

Proof Let f be a super F-centroidal mean graph of G. Let $v_1, v_2, v_3, \dots, v_p$ be the vertices and $e_1, e_2, e_3, \dots, e_q$ be the edges of G so that the vertex having maximum vertex label is taken as v_p . Let $u_1, u_2, u_3, \dots, u_n$ and $E_1, E_2, E_3, \dots, E_{n-1}$ be the vertices and edges of P_n respectively and v_p is identified with u_1 in $P_n(G)$.

Define $g: V(P_n(G)) \to \{1, 2, 3, \dots, p+q+2j-2\}$ as follows:

$$g(v_i) = f(v_i)$$
, for $1 \le i \le p$ and $g(u_j) = p + q + 2j - 2$, for $1 \le j \le n$.

Then, the induced edge labeling g^* is obtained as follows:

$$g^*(e_i) = f(e_i)$$
, for $1 \le i \le p$ and $g^*(E_j) = p + q + 2j - 1$, for $1 \le j \le n - 1$.

Hence $P_n(G)$ is a super F-centroidal mean graph. Thus the graph G is a super F-centroidal mean graph then $P_n(G)$ is also a super F-centroidal mean graph.

Corollary 2.12 A dragon $P_n(C_m)$ is a super F-centroidal mean graph, for $m \ge 4$ and $n \ge 2$.

§3. Conclusion

In this paper, the super F-centroidal meanness of some standard graphs have been studied. It is possible to investigate the super F-centroidal meanness for other graphs.

References

- [1] A.Durai Baskar and S.Arockiaraj, Geometric meanness of graphs obtained from paths, *Util. Math.*, 101(2016), 45–68.
- [2] A.Durai Baskar and S.Arockiaraj, Super geometric mean graphs, SUT Journal of Mathematics, 52(2)(2016), 97–116.
- [3] S.Arockiaraj, A.Durai Baskar and A.Rajesh Kannan, F-root square mean labeling of Graphs obtained from paths, International Journal of Mathematical Combinatorics, 2(2017), 92–104.
- [4] S.Arockiaraj and A.Rajesh Kannan, Further results on super F-root square mean graphs, International Journal of Pure and Applied Mathematics, 117 (2017), 83–90.
- [5] S. Arockiaraj, A. Rajesh Kannan and P.Manivannan, F-centroidal meanness of some chain related graphs, Journal of Advanced Research in Dynamical and Control Systems,

- 10(15)(2018), 519-524.
- [6] J.A.Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 17(2017), #DS6.
- [7] F.Harary, Graph Theory, Narosa Publishing House Reading, New Delhi (1988).