On Prime Graph $PG_2(R)$ of a Ring

Sandeep S.Joshi

Department of Mathematics D.N.C.V.P's Shirish Madhukarrao Chaudhari College, Jalgaon 425 001, India

Kishor F.Pawar

Department of Mathematics, School of Mathematical Sciences Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425 001, India

E-mail: sandeep.s.joshi07@gmail.com, kfpawar@nmu.ac.in

Abstract: In the present paper we define a simple undirected graph $PG_2(R)$ with all the elements of a ring R as vertices, and two distinct vertices x, y are adjacent if and only if either $x \cdot y = 0$ or $y \cdot x = 0$ or $x + y \in Z(R)$, the set of all zero divisors of R (including zero). We have proved that $PG_2(\mathbb{Z}_n)$ is Eulerian for any odd positive integer n. Also we discuss the Planarity and girth of $PG_2(R)$ and some cases which gives the degree of all vertices in $PG_2(R)$, over a ring \mathbb{Z}_n , for $n \leq 100$.

Key Words: Ring, prime graph of a ring PG(R), degree, planarity, girth.

AMS(2010): 05C25, 05C90, 05C99.

§1. Introduction

The study of graph theory for a commutative ring began when Beck in [1] introduced the notion of zero divisor of the graph. The graph $\Gamma_2(R)$ defined by R. Sen Gupta et al. [2] as: let R be a ring with unity and let G = (V, E) be an undirected graph in which $V = R - \{0\}$ and for any $a, b \in V$, $ab \in E$ if and only if $a \neq b$ and either $a \cdot b = 0$ or $b \cdot a = 0$ or a + b is a zero divisor (including zero). Another graph structure associated to a ring called prime graph was introduced by Satyanarayana et al. [3]. Prime graph is defined as a graph whose vertices are all elements of the ring and any two distinct vertices $x, y \in R$ are adjacent if and only if xRy = 0 or yRx = 0. This graph is denoted by PG(R). Pawar and Joshi in [5] gave a simple formulation for finding the degrees of vertices of prime graph PG(R) as well as it's complement $(PG(R))^c$. Also the number of triangles in PG(R) and $(PG(R))^c$ have been calculated using simple combinatorial approach. We introduced the prime graph $PG_1(R)$ of a ring and discussed all the results related to degree of vertices, Eulerianity, planarity and girth in [6]. Here, we introduced a new type of graph called $PG_2(R)$ as a generalization of [2].

In second section of this paper we give definition and some examples of $PG_2(R)$. In next section we try to find the degree of vertices in $PG_2(R)$ by distributing the vertex set V(G) into

¹Received April 3, 2019, Accepted August 20, 2019.

two sets viz. the set of all zero-divisors and the set of all units and discussed some more cases which gives the degree of all vertices in $PG_2(\mathbb{Z}_n)$, for $n \leq 100$. In last section, we discussed the eulerianity, planarity and girth of $PG_2(R)$.

We refer to [3]-[4] for basic terminology and definitions.

$\S 2$. The Prime Graph $PG_2(R)$ of a Ring

Definition 2.1 The prime graph $PG_2(R)$ is a graph with all the elements of a ring R as vertices, and any two distinct vertices x, y are adjacent if and only if $x \cdot y = 0$ or $y \cdot x = 0$ or $x + y \in Z(R)$, the set of all zero-divisors of R.

Example 2.2 Consider \mathbb{Z}_n , the ring of integers modulo n.

(1) Let $R = \mathbb{Z}_2$. The vertex set $V(PG_2(\mathbb{Z}_2)) = \{0,1\}$. Since 0R1 = 0, the edge set $E(PG_2(\mathbb{Z}_2)) = \{01\}$ and the graph $PG_2(\mathbb{Z}_2)$ as shown in figure below.

FIGURE 1. $PG_2(\mathbb{Z}_2)$

(2) Let $R = \mathbb{Z}_3$. The vertex set $V(PG_2(\mathbb{Z}_3)) = \{0, 1, 2\}$. Since 0R1 = 0, 0R2 = 0, 1+2=0, the edge set $E(PG_2(\mathbb{Z}_3)) = \{01, 02, 12\}$ and the graph $PG_2(\mathbb{Z}_3)$ as shown in figure below-

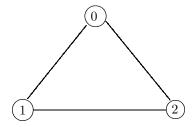


FIGURE 2. $PG_2(\mathbb{Z}_3)$

(3) Let $R = \mathbb{Z}_4$. The vertex set $V(PG_2(\mathbb{Z}_4)) = \{0, 1, 2, 3\}$, the edge set $E(PG_2(\mathbb{Z}_4)) = \{01, 02, 03, 13\}$ and the graph $PG_2(\mathbb{Z}_4)$ as shown in figure below-

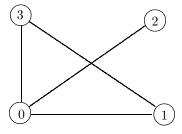


FIGURE 3. $PG_2(\mathbb{Z}_4)$

(4) Let $R = \mathbb{Z}_5$. The vertex set $V(PG_2(\mathbb{Z}_5)) = \{0, 1, 2, 3, 4\}$, the edge set $E(PG_2($

 $\{01, 02, 03, 04, 14, 23\}$ and the graph $PG_2(\mathbb{Z}_5)$ as shown in figure below.

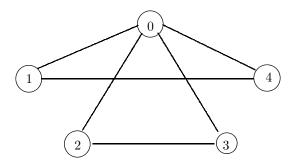


FIGURE 4. $PG_2(\mathbb{Z}_5)$

§3. Degree of Vertices in $PG_2(\mathbb{Z}_n)$

In this section, we find the degree of every vertex of $PG_2(\mathbb{Z}_n)$, for $n \leq 100$ by giving some illustrative examples.

Theorem 3.1 $PG_2(\mathbb{Z}_n)$ is never complete graph unless n=2 or 3.

Proof From Figures 1 and 2 we conclude the theorem.

Theorem 3.2 $PG_2(\mathbb{Z}_{2^r})$, where $r \in \mathbb{N} - \{1\}$, has two components consisting of zero divisors and units of (\mathbb{Z}_{2^r}) respectively. The first is $K_{2^{r-1}}$ consists of all zero divisors and the other is $K_{2^{r-1}+1}$ consists of all the units and the element zero.

Proof From Figure 3 we conclude the theorem.

Theorem 3.3 Let F be a finite field with $|F| = p^n, p \ge 3$ for some prime p and $n \in \mathbb{N}$, then $PG_2(F)$ is a union of $(p^n - 1)/2$ copies of K_3 in which the element zero is adjacent to all the vertices.

Proof From Figure 4 we conclude the theorem.

Example 3.4 Let $R = \mathbb{Z}_6$. The vertex set $V(PG_2(\mathbb{Z}_6)) = \{0, 1, 2, 3, 4, 5\}$, the edge set $E(PG_2(\mathbb{Z}_6)) = \{01, 02, 03, 04, 05, 12, 13, 15, 23, 24, 34, 35, 45\}$ and the graph $PG_2(\mathbb{Z}_6)$ as shown in figure below.

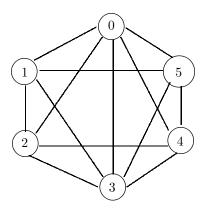


FIGURE 5. $PG_2(\mathbb{Z}_6)$

In \mathbb{Z}_6 , zero-divisors $Z(\mathbb{Z}_6) = \{0, 2, 3, 4\}$, units $U(\mathbb{Z}_6) = \{1, 5\}$ and the value of $\phi(6) = 2$.

$$deg(0) = n - 1 = 6 - 1 = 5$$

$$deg(2) = n - \phi(n) = 6 - 2 = 4$$

$$deg(3) = 2q - 1 = 2 \cdot 3 - 1 = 6 - 1 = 5$$

$$deg(4) = n - \phi(n) = 6 - 2 = 4$$

and as n is even,

$$deg(1) = n - \phi(n) = 6 - 2 = 4$$
$$deg(5) = n - \phi(n) = 6 - 2 = 4.$$

From Example 3.4 we conclude the following three results.

Theorem 3.5 For any $n \in \mathbb{N}$, the degree of vertex zero in $PG_2(\mathbb{Z}_n)$ is n-1.

Theorem 3.6 Let u be the unit element in a ring \mathbb{Z}_n , for any $n \in \mathbb{N}$, the degree of u in $PG_2(\mathbb{Z}_n)$ is

$$deg(u) = n - \phi(n),$$
 if n is even
= $n - \phi(n) + 1,$ if n is odd.

Theorem 3.7 Let z be a non-zero zero-divisor in a ring \mathbb{Z}_n , for any $n \in \mathbb{N}$ and $n = p \cdot q$, where p and q are distinct primes. Then the degree of z in $PG_2(\mathbb{Z}_n)$ is

(a) If
$$p = 2$$
, then

$$deg(z) = 2q - 1,$$
 if z is multiple of q
= $n - \phi(n),$ otherwise.

(b) If $p \neq 2$, then

$$deg(z) = n - \phi(n) + (p - 2),$$
 if z is multiple of p
= $2q + (p - 3),$ if z is multiple of q.

Example 3.8 Let $R = \mathbb{Z}_9$. The vertex set $V(PG_2(\mathbb{Z}_9)) = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$, the edge set $E(PG_2(\mathbb{Z}_9)) = \{01, 02, 03, 04, 05, 06, 07, 08, 36, 12, 15, 18, 42, 45, 48, 72, 75, 78\}$ and the graph $PG_2(\mathbb{Z}_9)$ as shown in figure below.

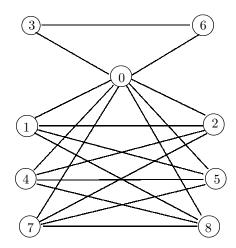


FIGURE 6. $PG_2(\mathbb{Z}_9)$

In \mathbb{Z}_9 , zero-divisors $Z(\mathbb{Z}_9) = \{0,3,6\}$, units $U(\mathbb{Z}_9) = \{1,2,4,5,7,8\}$ and the value of $\phi(9) = 6$ and as n is odd,

$$deg(3,6) = 9 - \phi(9) - 1 = 9 - 6 - 1 = 2$$
$$deg(1,2,4,5,7,8) = 9 - \phi(9) + 1 = 9 - 6 + 1 = 4.$$

From Example 3.8 we conclude the following three results.

Theorem 3.9 Let $n = p^r$, where p is an odd prime and $r \in \mathbb{N} - \{1\}$ then $PG_2(\mathbb{Z}_n)$ has (p+1)/2 components, one is $K_{p^{r-1}}$ consisting of the zero divisors and (p-1)/2 copies of $K_{p^{r-1},p^{r-1}} \cup \{0\}$ for the units and the element zero.

Theorem 3.10 Let z be a non-zero zero-divisor in a ring \mathbb{Z}_n , for any $n \in \mathbb{N}$ such that $z^2 \equiv 0 \pmod{n}$. Then the degree of z in $PG_2(\mathbb{Z}_n)$ is

$$deg(z) = n - \phi(n) - 1.$$

Theorem 3.11 Let u be the unit element and z be a non-zero zero-divisor in a ring \mathbb{Z}_{p^2} , for

any prime p. Then from the Theorem 3.6 the degree of u is

$$deg(u) = n - \phi(n),$$
 if n is even
= $n - \phi(n) + 1,$ if n is odd

and from the Theorem 3.10 the degree of z is

$$deg(z) = n - \phi(n) - 1.$$

Example 3.12 Let $R = \mathbb{Z}_{2^n p}$, for any $n \in \mathbb{N}$, where p is prime,

- (a) If p=2, then
- (1) If n = 1, $R = \mathbb{Z}_4$, the non-zero zero-divisor is 2. Hence

$$deg(2) = 4 - \phi(4) - 1 = 4 - 2 - 1 = 1.$$

(2) If n=2, $R=\mathbb{Z}_8$, the set of non-zero zero-divisors, $Z(\mathbb{Z}_8)-\{0\}=\{2,4,6\}$. So

$$deg(2,4,6) = 8 - \phi(8) - 1 = 8 - 4 - 1 = 3.$$

(3) If n = 3, $R = \mathbb{Z}_{16}$, the set of non-zero zero-divisors, $Z(\mathbb{Z}_{16}) - \{0\} = \{2, 4, 6, 8, 10, 12, 14\}$. Therefore

$$deg(2, 4, 6, 8, 10, 12, 14) = 16 - \phi(16) - 1 = 16 - 8 - 1 = 7.$$

Similarly, we find the degree of all non-zero zero-divisors in $R = \mathbb{Z}_{32}, \mathbb{Z}_{64}$ and so on. In general, we conclude that if p = 2, then

$$deg(z) = n - \phi(n) - 1.$$

- (b) If $p \neq 2$, then
- (1) If n = 1, $R = \mathbb{Z}_{2p}$ where $p = 3, 5, 7, \cdots$ then by Theorem 3.7

$$deg(z) = n - \phi(n) + (p - 2),$$
 if z is multiple of p
= $2q + (p - 3),$ if z is multiple of q.

The results are same for $R = \mathbb{Z}_{10}, \mathbb{Z}_{14}$ and so on.

(2) If n = 2, $R = \mathbb{Z}_{4p}$, where $p = 3, 5, 7, \cdots$. Let p = 3, $R = \mathbb{Z}_{12}$, the set of non-zero zero-divisors, $Z(\mathbb{Z}_{12}) - \{0\} = \{2, 4, 6, 8, 10, 3, 9\}$ and $6^2 \equiv 0 \pmod{12}$. Hence

$$deg(6) = 12 - \phi(12) - 1 = 12 - 4 - 1 = 7$$

 $deg(3, 9) = 12 - 4 - 1 = 7,$ if z is multiple of p

$$deg(2) = 12 - 4 - 1 = 7,$$
 if z is multiple of 2^1 $deg(8) = 12 - 4 - 1 = 7,$ if z is multiple of 2^1 $deg(10) = 12 - 4 - 1 = 7,$ if z is multiple of 2^1 $deg(4) = 12 - 4 - 1 + 2 = 9,$ if z is multiple of 2^2 .

The results are same for $R = \mathbb{Z}_{20}, \mathbb{Z}_{28}$ and so on.

(3) If n = 3, $R = \mathbb{Z}_{8p}$, where $p = 3, 5, 7, \cdots$. Let p = 3, $R = \mathbb{Z}_{24}$, the set of non-zero zero-divisor, $Z(\mathbb{Z}_{24}) - \{0\} = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 3, 9, 15, 21\}$. Therefore

$$\begin{aligned} \deg(6,18) &= n - \phi(n) - 1, & \text{if z is multiple of $2p$} \\ \deg(12) &= n - \phi(n) - 1, & \text{if z} &\geq 0 \ (mod \ n) \\ \deg(3,9,15,21) &= n - \phi(n) + (p-2), & \text{if z is multiple of p} \\ \deg(2,4,10,14,16,20,22) &= n - \phi(n) - 1, & \text{if z is multiple of 2^1} \\ \deg(8) &= n - \phi(n) - 1 + 2^{n-1}, & \text{if z is multiple of 2^n}. \end{aligned}$$

The results are same for $R = \mathbb{Z}_{40}, \mathbb{Z}_{56}$ and so on. In general, we conclude that if $p \neq 2$, then

$$\begin{split} deg(z) &= n - \phi(n) + (p-2), & \text{if } z \text{ is multiple of } p \\ &= n - \phi(n) - 1, & \text{if } z^2 \equiv 0 \pmod{n} \\ &= n - \phi(n) - 1, & \text{if } z \text{ is multiple of } 2p \\ &= n - \phi(n) - 1, & \text{if } z \text{ is multiple of } 2, 2^2, ., 2^{n-1} \\ &= n - \phi(n) - 1 + 2^{n-1}, & \text{if } z \text{ is multiple of } 2^n. \end{split}$$

From Example 3.12 we conclude the following theorem.

Theorem 3.13 Let z be a non-zero zero-divisor in a ring $\mathbb{Z}_{2^n p}$, for any $n \in \mathbb{N}$, where p is prime

(a) If
$$p=2$$
, then

$$deg(z) = n - \phi(n) - 1.$$

(b) If $p \neq 2$, then

$$\begin{aligned} deg(z) &= n - \phi(n) + (p-2), & \text{if z is multiple of p} \\ &= n - \phi(n) - 1, & \text{if $z^2 \equiv 0 \pmod{n}$} \\ &= n - \phi(n) - 1, & \text{if z is multiple of $2p$} \\ &= n - \phi(n) - 1, & \text{if z is multiple of $2, 2^2, \cdots, 2^{n-1}$} \\ &= n - \phi(n) - 1 + 2^{n-1}, & \text{if z is multiple of 2^n}. \end{aligned}$$

Example 3.14 Let $R = \mathbb{Z}_{2^n p^2}$, for any $n \in \mathbb{N}$, where p is odd prime.

(a) If
$$n = 1$$
, then $R = \mathbb{Z}_{2p^2}$, where $p = 3, 5, 7, \cdots$.

(1) Let
$$p = 3$$
, $R = \mathbb{Z}_{18}$ and 6^2 , $12^2 \equiv 0 \pmod{18}$. Hence

$$\begin{aligned} \deg(6,12) &= n - \phi(n) - 1, & \text{if } z^2 \equiv 0 \pmod{n} \\ \deg(3,15) &= n - \phi(n) - 1, & \text{if } z \text{ is multiple of } p \\ \deg(9) &= n - \phi(n) - 1 + p(p-1), & \text{if } z \text{ is multiple of } p^2 \\ \deg(2,4,8,10,14,16) &= n - \phi(n), & \text{if } z \text{ is multiple of } 2^1. \end{aligned}$$

(2) Let
$$p = 5$$
, $R = \mathbb{Z}_{50}$ and 10^2 , 20^2 , 30^2 , $40^2 \equiv 0 \pmod{50}$. So

$$\begin{aligned} deg(10,20,30,40) &= n - \phi(n) - 1, & \text{if } z^2 \equiv 0 \pmod{n} \\ deg(5,15,35,45) &= n - \phi(n) - 1, & \text{if } z \text{ is multiple of } p \\ deg(25) &= n - \phi(n) - 1 + p(p-1), & \text{if } z \text{ is multiple of } p^2 \\ deg(2,4,6,\cdots,48) &= n - \phi(n), & \text{if } z \text{ is multiple of } 2^1. \end{aligned}$$

The results are same for $R = \mathbb{Z}_{98}, \mathbb{Z}_{242}$ and so on. In general, we conclude that if n = 1, then

$$deg(z) = n - \phi(n) - 1 + p(p - 1), mtext{if } z \text{ is multiple of } p^2$$

$$= n - \phi(n) - 1, mtext{if } z^2 \equiv 0 \pmod{n}$$

$$= n - \phi(n) - 1, mtext{if } z \text{ is multiple of } p$$

$$= n - \phi(n), mtext{if } z \text{ is multiple of } 2.$$

- (b) If $n \neq 1$,
- (1) If n=2, $R=\mathbb{Z}_{4p^2}$, where $p=3,5,7,\cdots$, then $R=\mathbb{Z}_{36}$, \mathbb{Z}_{100} and so on. If n=3, $R=\mathbb{Z}_{8p^2}$, where $p=3,5,7,\cdots$, then $R=\mathbb{Z}_{72}$, \mathbb{Z}_{200} and so on. Therefore, we conclude the result as

$$\begin{aligned} deg(z) &= n - \phi(n) - 1 + p(p-1), & \text{if z is multiple of p^2} \\ &= n - \phi(n) - 1, & \text{if $z^2 \equiv 0 \ (mod \ n)$} \\ &= n - \phi(n) - 1, & \text{if z is multiple of p} \\ &= n - \phi(n) - 1, & \text{if z is multiple of $2, 2^2, \cdots, 2^{n-1}$} \\ &= n - \phi(n) - 1 + 2^{n-1}, & \text{if z is multiple of 2^n}. \end{aligned}$$

From Example 3.14 we conclude the following theorem.

Theorem 3.15 Let z be a non-zero zero-divisor in a ring $\mathbb{Z}_{2^np^2}$, for any $n \in \mathbb{N}$, where p is odd prime

(a) If n = 1, then

$$deg(z) = n - \phi(n) - 1 + p(p - 1),$$
 if z is multiple of p^2

$$= n - \phi(n) - 1,$$
 if $z^2 \equiv 0 \pmod{n}$

$$= n - \phi(n) - 1,$$
 if z is multiple of p

$$= n - \phi(n),$$
 if z is multiple of z .

(b) If $n \neq 1$, then

$$deg(z) = n - \phi(n) - 1 + p(p - 1), \qquad \text{if } z \text{ is multiple of } p^2$$

$$= n - \phi(n) - 1, \qquad \text{if } z^2 \equiv 0 \pmod{n}$$

$$= n - \phi(n) - 1, \qquad \text{if } z \text{ is multiple of } p$$

$$= n - \phi(n) - 1, \qquad \text{if } z \text{ is multiple of } 2, 2^2, \dots, 2^{n-1}$$

$$= n - \phi(n) - 1 + 2^{n-1}, \qquad \text{if } z \text{ is multiple of } 2^n.$$

Example 3.16 Let $R = \mathbb{Z}_{2^n pq}$, for any $n \in \mathbb{N}$, where p and q are distinct odd primes and p < q. Then

- (a) Let n = 1,
- (1) $R = \mathbb{Z}_{2pq}$, where p = 3 and $q = 5, 7, 11, \cdots$. We find the degree of all non-zero zero-divisors in $R = \mathbb{Z}_{30}, \mathbb{Z}_{42}, \mathbb{Z}_{66}, \mathbb{Z}_{78}$ and so on.
- (2) $R = \mathbb{Z}_{2pq}$, where p = 5 and $q = 7, 11, 13, \cdots$. We find the degree of all non-zero zero-divisors in $R = \mathbb{Z}_{70}, \mathbb{Z}_{110}$ and so on.
 - (b) Let $n \neq 1$.
- (1) If n=2, $R=\mathbb{Z}_{4pq}$, where p=3 and $q=5,7,11,\cdots$ then we find the degree of all non-zero zero-divisors in $R=\mathbb{Z}_{60},\mathbb{Z}_{84}$ and so on.
- (2) If n=3, $R=\mathbb{Z}_{8pq}$, where p=3 and $q=5,7,11,\cdots$ then we find the degree of all non-zero zero-divisors in $R=\mathbb{Z}_{120},\mathbb{Z}_{168}$ and so on.

From Example 3.16 and previous discussion we conclude results following.

Theorem 3.17 Let z be a non-zero zero-divisor in a ring \mathbb{Z}_{2^npq} , for any $n \in \mathbb{N}$, where p and q are distinct odd primes and p < q.

(a) If
$$n = 1$$
, then

$$deg(z) = n - \phi(n),$$
 if z is multiple of 2
 $= n - \phi(n) + p - 2,$ if z is multiple of p or $2p$
 $= n - \phi(n) + q - 2,$ if z is multiple of q or $2q$
 $= 2pq - 1,$ if z is multiple of pq .

(b) If $n \neq 1$, then

$$deg(z) = n - \phi(n) - 1, \qquad \qquad \text{if } z^2 \equiv 0 \pmod{n}$$

$$= n - \phi(n) + pq - (p + q), \qquad \qquad \text{if } z \text{ is multiple of } pq$$

$$= n - \phi(n) + p - 2, \qquad \qquad \text{if } z \text{ is multiple of } p$$

$$= n - \phi(n) + q - 2, \qquad \qquad \text{if } z \text{ is multiple of } q$$

$$= n - \phi(n) - 1 + 2^{n-1}, \qquad \qquad \text{if } z \text{ is multiple of } 2^n$$

$$= n - \phi(n) - 1 + 2^n, \qquad \qquad \text{if } z \text{ is multiple of } 2^n p$$

$$= n - \phi(n)/2 - 1, \qquad \qquad \text{if } z \text{ is multiple of } 2^n q$$

$$= n - \phi(n) - 1, \qquad \qquad \text{otherwise.}$$

We are also discussed some more cases in continuation to Theorem 3.5– Theorem 3.17 which calculates the degree of vertices in $PG_2(\mathbb{Z}_n)$, for $n \leq 100$.

Case 1. (a) Let z be a non-zero zero-divisor in a ring \mathbb{Z}_n , n=3pq where $p=3, q=5,7,11,13,\cdots$. Then

$$deg(z) = n - \phi(n) - 1,$$
 if $z^2 \equiv 0 \pmod{n}$

$$= n - \phi(n) + q - 2,$$
 if z is multiple of q

$$= n - \phi(n) + 2p - 1,$$
 if z is multiple of $3p$

$$= n - \phi(n) - 1,$$
 otherwise.

- (b) In this case when p = q = 3, then $deg(z) = n \phi(n) 1$.
- Case 2. Let z be a non-zero zero-divisor in a ring \mathbb{Z}_n , $n=3p^2$, $p=3,5,7,\cdots$. Then

$$\begin{aligned} deg(z) &= n - \phi(n) - 1, & \text{if } z^2 \equiv 0 \pmod{n} \\ &= n - \phi(n) - 1, & \text{if } z \text{ is multiple of } p \text{ and } 3p \\ &= n - \phi(n) + 1, & \text{if } z \text{ is multiple of } 3 \\ &= n - \phi(n) - 1 + p(p - 1), & \text{if } z \text{ is multiple of } p^2. \end{aligned}$$

Case 3. Let z be a non-zero zero-divisor in a ring \mathbb{Z}_n , $n=2p^3$, $p=3,5,7,\cdots,p>2$. Then

$$\begin{aligned} deg(z) &= n - \phi(n) - 1, & \text{if } z^2 \equiv 0 \pmod{n} \\ &= n - \phi(n) - 1, & \text{if } z \text{ is multiple of } p \text{ and } p^2 \\ &= n - \phi(n), & \text{if } z \text{ is multiple of } 2 \\ &= n - \phi(n) - p, & \text{if } z \text{ is multiple of } 2p \\ &= n - \phi(n) - p + 1, & \text{if } z \text{ is multiple of } 2p^2 \\ &= n - \phi(n) - 1 + 2p^2, & \text{if } z \text{ is multiple of } p^3. \end{aligned}$$

Case 4. Let z be a non-zero zero-divisor in a ring \mathbb{Z}_n , $n=p^4$, $p=2,3,5,7,\cdots$. Then

$$deg(z) = n - \phi(n) - 1.$$

Case 5. Let z be a non-zero zero-divisor in a ring \mathbb{Z}_n , $n=2p^2q$, p=3, $q=5,7,11,\cdots$. Then

$$deg(z) = n - \phi(n) - 1, \qquad \qquad \text{if } z^2 \equiv 0 \pmod{n}$$

$$= n - \phi(n) - 1, \qquad \qquad \text{if } z \text{ is multiple of } p, \ 2p \ and \ pq$$

$$= n - \phi(n) + 2p - 1, \qquad \qquad \text{if } z \text{ is multiple of } 2p^2 \text{ and } p^2$$

$$= n - \phi(n) + 2q + 1, \qquad \qquad \text{if } z \text{ is multiple of } 2q$$

$$= n - \phi(n) + q - 2, \qquad \qquad \text{if } z \text{ is multiple of } q$$

$$= n - 1, \qquad \qquad \text{if } z \text{ is multiple of } p^2q$$

$$= n - \phi(n), \qquad \qquad \text{if } z \text{ is multiple of } p^2q$$

$$= n - \phi(n), \qquad \qquad \text{if } z \text{ is multiple of } 2.$$

§4. Eulerianity, Planarity and Girth of $PG_2(\mathbb{Z}_n)$

In this section, we proved that $PG_2(\mathbb{Z}_n)$ is Eulerian for any odd positive integer n and is planar if and only if n = 4, 6 or n is a prime number. Also, we found that the girth of $PG_2(\mathbb{Z}_n)$ is 3, for $n \neq 2$.

Theorem 4.1 $PG_2(\mathbb{Z}_n)$ is Eulerian, when n is odd positive integer.

Proof Let n be even, so from Theorem 3.5, we have that deg(0) = n - 1, which is an odd number, so not Eulerian. Again if n is odd, then by Theorems 3.6 – 3.11 and from the above discussion, degree of every vertex in $PG_2(\mathbb{Z}_n)$ is an even number. Hence, $PG_2(\mathbb{Z}_n)$ is Eulerian, when n is odd positive integer.

Theorem 4.2 $PG_2(\mathbb{Z}_n)$ is planar if and only if n = 4, 6 or n is a prime.

Proof We discuss different cases for planarity of $PG_2(\mathbb{Z}_n)$.

Case 1. For n = 2, $PG_2(\mathbb{Z}_2)$ is a complete graph K_2 . Hence it is a planar graph.

Case 2. For n = 3, $PG_2(\mathbb{Z}_3)$ is complete graph K_3 . Therefore it is a planar graph.

Case 3. If n is prime and n > 3, $PG_2(\mathbb{Z}_n)$ is a union of copies of K_3 in which again zero is a common vertex. So, the graph is planar when n is prime.

Case 4. If n = 4, $PG_2(\mathbb{Z}_4)$ has two components consisting of zero divisors and units of \mathbb{Z}_2^2 . The first is K_2 and the other is K_3 in which zero is again a common vertex, hence planar.

Case 5. If n = 6, $PG_2(\mathbb{Z}_6)$ is union of eight copies of K_3 hence planar.

Case 6. If n = 8, the graph $PG_2(\mathbb{Z}_8)$ contains a subgraph K_5 . So, it cannot be a planar graph.

- Case 7. Let $n = 2^m$, m > 2 contains K_5 and hence cannot be planar.
- Case 8. Let $p \geq 3$, $PG_2(\mathbb{Z}_p^m)$, where m > 1 contains $K_{3,3}$, hence it cannot be planar.
- Case 9. Let n be even. If n = 10, then the subgraph induced by the vertices $\{0, 2, 4, 6, 8\}$ forms K_5 and for n = 12, the subgraph induced by the vertices $\{0, 2, 4, 6, 8\}$ forms again K_5 . So, the subgraph of $PG_2(\mathbb{Z}_n)$ where n is even forms K_5 and hence the graph is not planar.
- Case 10. Let n be odd. If n = 15 then the subgraph induced by $\{0, 3, 6, 9, 12\}$ forms K_5 and for n = 21 the subgraph induced by $\{0, 3, 6, 9, 12\}$ forms again K_5 . So, the subgraph of $PG_2(\mathbb{Z}_n)$, where n is odd forms a subgraph K_5 and hence the graph is nonplanar. Hence the result.

Theorem 4.3 The girth, $gr(PG_2(\mathbb{Z}_n))$ is 3, for $n \geq 3$.

Proof We know that $PG_2(\mathbb{Z}_2)$ is a complete graph K_2 , hence girth of $PG_2(\mathbb{Z}_2)$ is ∞ . Now, let $n \geq 3$, then in $PG_2(\mathbb{Z}_n)$ always 3-cycle exist and hence $gr((PG_2(\mathbb{Z}_n)) = 3)$, for $n \geq 3$.

Acknowledgements

The authors would like to express their sincere thanks to the North Maharashtra University, Jalgaon for their financial support under the Vice Chancellor Research Motivation Scheme.

References

- [1] Beck I., Coloring of commutative rings, Journal of Algebra, 116 (1) (1988), 208–226.
- [2] R. Sen Gupta, The graph $\Gamma_2(R)$ over a ring R, International Journal of Pure and Applied Mathematics, 86 (6) (2013), 893–904.
- [3] S. Bhavanari, S. P. Kuncham and Nagaraju Dasari, Prime graph of a ring, J. of Combinatorics, Information & System Sciences, 35 (1-2) (2010): 27–42.
- [4] Harary F., Graph Theory (Third ed.), Addison-Wesley, Reading, MA, 1972.
- [5] Kishor F. Pawar and Sandeep S. Joshi, The prime graph $PG_1(R)$ of a ring R, Palestine Journal of Mathematics, 6(1), (2017): 153–158.
- [6] Sandeep S. Joshi and Kishor F. Pawar, Energy, Wiener index and line graph of prime graph of a ring, *International Journal of Mathematical Combinatorics*, Vol.3(2018): 74–80.
- [7] Kishor Pawar and Sandeep Joshi, Study of prime graph of a ring, *Thai Journal of Mathematics*, Vol.17, 2(2019), 369–377.
- [8] Sandeep S. Joshi and Kishor F. Pawar, Coloring of prime graph $PG_1(R)$ and $PG_2(R)$ of a ring, *Palestine Journal of Mathematics*(Accepted), (2018).