Steiner Domination Number of Splitting and Degree Splitting Graphs

Samir K. Vaidya

(Department of Mathematics, Saurashtra University Rajkot - 360 005, Gujarat, India)

Sejal H. Karkar

(Government Engineering College, Rajkot - 360 005, Gujarat, India)

Email: samirkvaidya@yahoo.co.in, sdpansuria@gmail.com

Abstract: A tree T contained in graph G is a Steiner tree with respect to $W \subseteq V(G)$ if T is a tree of minimum order with $W \subseteq V(T)$. The set S(W) consists of all the vertices of G which lie on some Steiner tree with respect to W. The set W is a Steiner set for G if S(W) = V(G). The minimum cardinality among the Steiner sets of G is the Steiner number of G, denoted as S(G). The set W is called Steiner dominating set if W is both a Steiner set and a dominating set. The minimum cardinality among such sets is a Steiner domination number, denoted as S(G). We investigate Steiner domination number of some splitting and degree splitting graphs.

Key Words: Steiner distance, Steiner set, Steiner number, domination number, Steiner domination number.

AMS(2010): 05C69, 05C76.

§1. Introduction

We consider simple, finite, connected and undirected graph G with vertex set V and edge set E. For the standard graph theoretic terminology and notation we follow Chatrand and Lesniak [2] while the terms related to the theory of domination are used in the sense of Haynes et al. [6].

Definition 1.1 The distance d(u, v) between two vertices u and v in a connected graph G is the length of the shortest u - v path in G.

Definition 1.2 The Steiner distance sd(W) of a subset W of vertices of a connected graph G is the minimum number of edges in a connected subgraph of G that contains W. If H is a subgraph of minimum size that contains a set W, then H is necessarily a tree, called a Steiner tree for W or a Steiner W-tree.

¹Received January 13, 2018, Accepted August 15, 2018.

Chartrand et al. have introduced a generalization of distance in [3]. The sharp upper and lower bounds for the Steiner k-diameter of G and \overline{G} are given by Mao [9] while the same author have identified some graph classes attaining these bounds. Let n be an integer such that $2 \le n \le |V(G)|$, then the n diameter of G, $diam_n(G)$, is defined to be the maximum Steiner distance of any n-subset(subset with n elements) of vertices of G. If G be any graph of order p with minimum degree $\delta \ge 2$ and $0 \le n \le p$ then $diam_n(G) \le \frac{p}{\delta + 1} + 2n - 5$, is proved by Ali et al. [1].

Definition 1.3 The set of all vertices of G that lie on some Steiner W-tree is denoted by S(W). If S(W) = V(G), then W is called a Steiner set for G. A Steiner set of minimum cardinality is a minimum Steiner set and this cardinality is the Steiner number S(G).

The concept of Steiner number was introduced by Chartrand and Zhang [4]. In the same paper authors have proved many results on this newly defined concept. This concept was further studied by Santhakumaran and John [8]. For the graph G of Figure 1, there are three Steiner trees related to $W = \{w_1, w_2\}$ which are shown in the same figure. Since S(W) = V(G), W is a Steiner set of G.

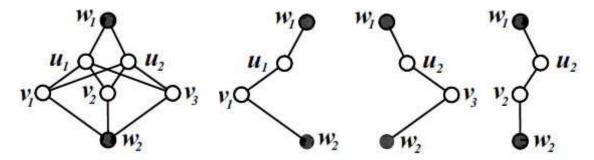


Figure 1 The graph G and its Steiner trees

Definition 1.4 A set $S \subseteq V$ of vertices in a graph G = (V, E) is called a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S. A dominating set S is a minimal dominating set if no proper subset $S' \subset S$ is a dominating set. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in graph G.

Definition 1.5 Let G be a connected graph with vertex set V(G). A set of vertices W in G is called a Steiner dominating set if W is both a Steiner set and a dominating set. The minimum cardinality of a Steiner dominating set of G is called its Steiner domination number, denoted by $\gamma_s(G)$.

The concept of Steiner domination number was introduced by John et al. [7]. It is very interesting to investigate Steiner domination number of graph or graph families as it is known only for handful number of graphs. Vaidya and Mehta [11] have investigated the Steiner domination number of W_n , H_n and Fl_n and the same authors [12] have established some characterizations for Steiner domination in graphs while Steiner domination number for $S'(P_n)$, $S'(C_n)$, $M(P_n)$,

 $M(C_n)$ and F_n are obtained by Vaidya and Karkar [10].

For the graph G of Figure 1, $W = \{w_1, w_2\}$ is a Steiner dominating set of minimum cardinality. Therefore, $\gamma_s(G) = 2$.

Definition 1.6 A vertex v is an extreme vertex of a graph G if the subgraph induced by neighbors of v is complete.

Definition 1.7([5]) A systematic visit of each vertex of a tree is called a tree traversal.

Definition 1.8 The bistar $B_{m,n}$ is the graph obtained by joining the center(apex) vertices of $K_{1,m}$ and $K_{1,n}$ by an edge.

Definition 1.9 Let G be a graph with $V(G) = S_1 \cup S_2 \cup S_3 \cup \cdots S_t \cup T$ where each S_i is a set of all vertices of the same degree with at least two elements and $T = V(G) \setminus \bigcup_{i=1}^t S_i$. The degree splitting of G denoted by DS(G) is obtained from G by adding vertices $w_1, w_2, w_3, \cdots, w_t$ and joining w_i to each vertex of S_i for $1 \le i \le t$. Note that if $V(G) = \bigcup_{i=1}^t S_i$ then $T = \emptyset$.

Definition 1.10 For a graph G the splitting graph S'(G) of a graph G is obtained by adding a new vertex v' corresponding to each vertex v of G such that N(v) = N(v').

Definition 1.11 A friendship graph F_n is a one point union of n copies of cycle C_3 .

§2. Main Results

Observation 2.1 $\gamma(B_{m,n}) = m + n$.

Theorem 2.2 $\gamma_s(S'(B_{m,n})) = m + n + 2$.

Proof Let $u, u_1, u_2, \cdots u_m, v, v_1, v_2, \cdots v_n$ be m+n+2 vertices of $B_{m,n}$ and $u', u'_1, u'_2, \cdots u'_m, v', v'_1, v'_2, \cdots, v'_n$ be the corresponding vertices which are added to obtain $S'(B_{m,n})$. Then $V(S'(B_{m,n})) = \{u, u_1, u_2, \cdots, u_m, v_1, v_2, \cdots v_n, v, u', u'_1, u'_2, \cdots u'_m, v', v'_1, v'_2, \cdots v'_n\}$. Now $u'_1, u'_2, \cdots u'_m, v'_1, v'_2, \cdots v'_n$ are extreme vertices as the subgraph induced by their neighbors is complete, namely, the complete graph K_1 . Therefore, they must be in Steiner dominating set W. If $u'_1, u'_2, \cdots u'_m, v'_1, v'_2, \cdots v'_n \in W$ then $u'_1, u'_2, \cdots u'_m, v'_1, v'_2, \cdots v'_n, u, v \in S(W)$. Now there some trees between u' and v' which include remaining vertices $u_1, u_2, \cdots u_m, v_1, v_2, \cdots v_n$. So if $u', u'_1, u'_2, \cdots u'_m, v', v'_1, v'_2, \cdots v'_n \in W$ then there are four Steiner W-trees which include all the vertices of the graph. That is, if $u', u'_1, u'_2, \cdots u'_m, v', v'_1, v'_2, \cdots v'_n \in W$ then $u_1, u_2, \cdots u_m, v_1, v_2, \cdots v_n, u', u'_1, u'_2, \cdots u'_m, v', v'_1, v'_2, \cdots v'_n \in S(W)$. Therefore, $W = \{u', u'_1, u'_2, \cdots u'_m, v', v'_1, v'_2, \cdots v'_n\}$ becomes a Steiner set of minimum cardinality m+n+2 and it is also a dominating set. Hence

$$\gamma_s(S'(B_{m,n})) = m + n + 2.$$

Theorem 2.3 $\gamma_s(DS(B_{m,n})) = 2$.

Proof Let $u, u_1, u_2, \cdots u_m, v, v_1, v_2, \cdots v_n$ be m+n+2 vertices of $B_{m,n}$ and x_1, x_2 be the

corresponding vertices which are added in order to obtain $DS(B_{m,n})$. Then, $V(DS(B_{m,n})) = \{u, u_1, u_2, \dots u_m, v, v_1, v_2, \dots v_n, x_1, x_2\}$. Now if G is a connected graph of order $n \geq 2$ then $2 \leq S(G) \leq n$. Without loss of generality let $x_1, x_2 \in W$ then there are four Steiner W-tree traversal between x_1 and x_2 which together include all the vertices of $DS(B_{m,n})$. Therefore, $W = \{x_1, x_2\}$ becomes a Steiner set of minimum cardinality and it is also a dominating set. Therefore, $W = \{x_1, x_2\}$ becomes a Steiner dominating set of minimum cardinality. Hence

$$\gamma_s(DS(B_{m,n})) = 2.$$

Lemma 2.4 $S(DS(P_n)) = n - 5, n \ge 7.$

Proof Consider P_n with $V(P_n) = \{v_1, v_2, \cdots v_n\}$ with partition $V_1 = \{v_2, v_3, \cdots v_{n-1}\}$ and $V_2 = \{v_1, v_n\}$. Now in order to obtain $DS(P_n)$ from P_n we add x_1 and x_2 corresponding to V_1 and V_2 . Thus, $V(DS(P_n)) = \{x_1, x_2, v_1, v_2, \cdots v_n\}$. Let $x_1, v_4 \in W$ then there are some Steiner W-trees which include the vertices $x_1, v_1, v_2, v_3, v_4, x_2$. So, if $x_1, v_4 \in W$ then $x_1, v_1, v_2, v_3, v_4, x_2 \in S(W)$. Let $x_1, v_4, v_{n-3} \in W$ then $x_1, v_1, v_2, v_3, v_4, x_2, v_{n-3}, v_{n-2}, v_{n-1}, v_n \in S(W)$. Then, there does not exist tree traversal containing x_1, v_4, v_{n-3} which includes $v_5, v_6, \cdots, v_{n-4}$. The vertices $v_5, v_6, \cdots, v_{n-4}$ must be included in W to obtain Steiner tree of minimum size which include $v_5, v_6, \cdots, v_{n-4}$. Therefore, if $x_1, v_4, v_5, \cdots v_{n-4}, v_{n-3} \in W$. Then there are following four Steiner W- trees as listed below:

- (1) $x_1v_1v_2v_3\cdots v_{n-4}v_{n-3}$,
- (2) $x_1v_1v_2x_2v_4v_5v_6\cdots v_{n-3}$,
- (3) $x_1v_nv_{n-1}v_{n-2}v_{n-3}\cdots v_5v_4$,
- (4) $x_1v_nv_{n-1}x_2v_{n-2}v_{n-3}v_{n-4}\cdots v_5, v_4,$

which include all the vertices of the graph. Thus $W = \{x_1, v_4, v_5, \dots v_{n-4}, v_{n-3}\}$ becomes a Steiner set of minimum size which include n-6 vertices of P_n and a vertex x_1 . Hence

$$S(DS(P_n)) = n - 5.$$

Theorem 2.5 $\gamma_s(DS(P_n)) = n - 3, n \ge 7.$

Proof From the Theorem 2.4 $W = \{x_1, v_4, v_5, \dots v_{n-4}, v_{n-3}\}$ is a Steiner set of minimum cardinality. But it is not a dominating set as v_2 and v_{n-1} are not dominated by any of the vertices. Therefore, these two vertices must be in Steiner dominating set W. So, $\{x_1, v_2, v_4, v_5, \dots v_{n-4}, v_{n-3}, v_{n-1}\}$ is a Steiner dominating set of minimum cardinality. Hence

$$\gamma_s(DS(P_n)) = n - 3.$$

Proposition 2.6([7]) $\gamma_s(K_{m,n}) = min\{m,n\}$ if $m, n \geq 2$.

Theorem 2.7 $\gamma_s(S'(K_{m,n})) = m + n$.

Proof Let $v_1, v_2, \dots, v_m, u_1, u_2, \dots, u_n$ be m+n vertices of $K_{m,n}$. Now $v'_1, v'_2, \dots, v'_m, u'_1, u'_2, \dots, u'_n$ be the corresponding vertices which are added in order to obtain $S'(K_{m,n})$ with parti-

tions $W = \{v'_1, v'_2, \cdots v'_m, u'_1, u'_2, \cdots u'_n\}$ and $X = \{v_1, v_2, \cdots v_m, u_1, u_2, \cdots u_n\}$. It is very clear that W is a Steiner set as there are $\max\{m,n\}$ number of Steiner trees which include all the vertices of the graph. Here W dominates all the vertices of the graph. Therefore, it is also a dominating set. Thus, W is a Steiner dominating set. We claim that W is a Steiner dominating set with minimum cardinality. If possible let U be any Steiner set such that |U| < |W| and $U \subset W$. Then, there exists a vertex $v'_i \in W$ such that $v'_i \notin U$. But as the vertices of W are mutually non adjacent, the Steiner U-tree containing v'_j and v'_k ($j \neq i, k \neq i, 1 \leq j, k \leq n$) will not contain v'_i . Therefore, U is not Steiner set. If $U \subset X$ then some vertices of W and some vertices of X which are not included in U are not in any Steiner U- trees. Therefore, U is not Steiner set. Let $U \subset W \cup X$ such that U contain at least one vertex from each of W and X then some vertices of W and X do not lie on any Steiner U-tree. Thus, U is not a Steiner set. So, W is a Steiner dominating set of minimum cardinality M + n. Hence

$$\gamma_s(S'(K_{m,n})) = m + n.$$

Proposition 2.8([4]) Let G be a connected graph of order $p \ge 2$. Then $\gamma_s(G) = 2$ if and only if there exists a Steiner dominating set $S = \{u, v\}$ of G such that $d(u, v) \le 3$.

Theorem 2.9 $\gamma_s(DS(K_{m,n})) = 2, m \neq n, m, n \geq 2.$

Proof Let $v_1, v_2, \dots v_m, u_1, u_2, \dots u_n$ be m + n vertices of $K_{m,n}$ with partitions $W = \{v_1, v_2, \dots v_m\}$ and $X = \{u_1, u_2, \dots u_n\}$. In order to construct $DS(K_{m,n})$ we add w_1 and w_2 . If we consider w_1 and w_2 in Steiner set W then S(W) = V(G) and W is also a dominating set. Therefore W becomes a Steiner dominating set and $d(w_1, w_2) = 3$. Hence by Proposition 2.8,

$$\gamma_s(DS(K_{m,n})) = 2.$$

Proposition 2.10([7]) Each extreme vertex of a connected graph G belongs to every Steiner dominating set of G.

Theorem 2.11 $\gamma_s(S'(F_n)) = 2n + 1$.

Proof Let $v_0, v_1, v_2, \ldots v_n, v_{n+1}, \cdots v_{2n}$ be the 2n+1 vertices of F_n where v_0 is the apex vertex. Now $v_0', v_1', v_2', \ldots v_n', v_{n+1}', \cdots v_{2n}'$ be the vertices which are added to obtain $S'(F_n)$. The vertices $v_0', v_1', v_2', \ldots v_n', v_{n+1}', \cdots v_{2n}'$ must be in Steiner dominating set W as they are extreme vertices. But $W = \{v_0', v_1', v_2', \ldots v_n', v_{n+1}', \cdots v_{2n}'\}$ is not a Steiner dominating set as it is neither a Steiner set nor a dominating set. Therefore, we must include some more vertices to obtain a Steiner dominating set. Let $v_0 \in W$ then $S(W) = V(S'(F_n))$ and

$$W = \{v'_0, v'_1, v'_2, \cdots v'_n, v'_{n+1}, \cdots v'_{2n}\}$$

is a dominating set of minimum cardinality. Hence

$$\gamma_s(S'(F_n)) = 2n + 1.$$

§3. Concluding Remarks

The Steiner domination in graphs is one of the interesting domination models. It is always challenging to investigate Steiner domination number of a graph. We have obtained Steiner domination number of larger graphs which are obtained by means of various graph operations.

Acknowledgment

The authors are highly thankful to the anonymous referees for their critical comments and constructive suggestions for the improvement in the first draft of this paper.

References

- [1] P. Ali, P. Dankelmann and S. Mukwembi, Upper bounds on the Steiner diameter of a graph, *Discrete Appl. Math.*, 160(2012), 1845-1850.
- [2] G. Chartrand and L. Lesniak, *Graphs & Diagraphs*, 4/e, Chapman and Hall/CRC press, 2005.
- [3] G. Chartrand, O. R. Oellermann, S. L. Tian and H. B. Zou, Steiner distance in graphs, Casopis Pro Pestovani Matematiky, 114(1989), 399-410.
- [4] G. Chartrand and P. Zhang, The Steiner number of a graph, *Discrete Mathematics*, 242(2002), 41-54.
- [5] J. Gross and J. Yellen, Graph Theory and Its Applications, CRC Press, 1999.
- [6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [7] J. John, G. Edwin and P. Sudhahar, The Steiner domination number of a graph, *International Journal of Mathematics and Computer Application Research*, 3(2013), 37-42.
- [8] A. P. Santhakumaran and J. John, The forcing Steiner number of a graph, *Discussiones Mathematicae Graph Theory*, 31(2011), 171-181.
- [9] Y. Mao, The Steiner diameter of a graph, arXiv: 1509.02801 [math.CO], (2015).
- [10] S. K. Vaidya and S. H. Karkar, Steiner domination number of some graphs, International Journal of Mathematics and Scientific Computing, 5(2015), 1-3.
- [11] S. K. Vaidya and R. N. Mehta, Steiner domination number of some wheel related graphs, International Journal of Mathematics and Soft Computing, 5(2015), 15-19.
- [12] S. K. Vaidya and R. N. Mehta, On Steiner domination in graphs, Malaya Journal of Matematik, 6(2018), 381-384.