Energy, Wiener index and Line Graph of Prime Graph of a Ring

Sandeep S. Joshi

Department of Mathematics D.N.C.V.P's Shirish Madhukarrao Chaudhari College, Jalgaon - 425 001, India

Kishor F. Pawar

Department of Mathematics, School of Mathematical Sciences Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon - 425 001, India

Email: sandeep.s.joshi07@gmail.com, kfpawar@nmu.ac.in

Abstract: Let \mathbb{Z}_n be the commutative ring of residue classes modulo n, $PG(\mathbb{Z}_n)$ be the prime graph of a ring over a ring \mathbb{Z}_n . In this paper we study Energy and Wiener index of $PG(\mathbb{Z}_n)$ and give some results of line graph of prime graph of a ring over a ring \mathbb{Z}_n , denote it by $L(PG(\mathbb{Z}_n))$.

Key Words: Prime graph of a ring PG(R), line graph, energy, Wiener index.

AMS(2010): 05C25, 05C15, 13E15.

§1. Introduction

Prime graph of a ring first introduced by Satyanarayana et al. [3]. Prime graph of a ring is defined as a graph whose vertices are all elements of the ring and any two distinct vertices $x, y \in R$ are adjacent if and only if xRy = 0 or yRx = 0. This graph is denoted by PG(R). The concept of energy and Wiener index of zero divisor graph was introduced by Mohammad Reza and Reza Jahani in [4]. Motivated from the article in [4] in Section 2 of this paper we discuss energy of prime graph of a ring and give general MATLAB code for our calculation. In section 3, We calculate Wiener index of $PG(\mathbb{Z}_n)$, for n = p, $n = p^2$ and $n = p^3$. In last section of paper, we introduce Line Graph of Prime Graph of a Ring denoted by $L(PG(\mathbb{Z}_n))$ and discuss Planerity, Girth and degree of all vertices in $L(PG(\mathbb{Z}_n))$. Also, we find center, eccentricity, point covering number, independence number, Energy, Wiener index and Chromatic number of $L(PG(\mathbb{Z}_n))$, where n = p, p prime. Here, we also discuss complement of line graph of prime graph of a ring over a ring \mathbb{Z}_n , denote it by $L(PG(\mathbb{Z}_n))^c$. We study Girth of $L(PG(\mathbb{Z}_n))^c$ and also find Eulerianity and degree of all vertices in $L(PG(\mathbb{Z}_n))^c$, where n = p, p prime.

For more preliminary definitions and Notations the reader is referred to [5]-[8].

§2. Energy of Prime Graph of a Ring

In this section we give some examples and calculate the Energy of prime graph of a ring.

¹Received April 19, 2018, Accepted August 12, 2018.

Definition 2.1 The energy of the prime graph of a ring $PG(\mathbb{Z}_n)$ is defined as the sum of the absolute values of all the eigen values of its adjacency matrix M(PG[R]). i.e. if $\lambda_1, \lambda_2, \dots, \lambda_n$ are n eigen values of M(PG[R]), then the energy of $PG(\mathbb{Z}_n)$ is -

$$E(PG[R]) = \sum_{i=1}^{n} |\lambda_i|.$$

Example 2.2 For p = 2, the adjacency matrix of $PG(\mathbb{Z}_2)$ is

$$M(PG[\mathbb{Z}_2]) = egin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

The characteristic polynomial is $\lambda^2 - 1$. The eigen values are $\lambda_1 = 1, \lambda_2 = -1$. Therefore, $E(PG[\mathbb{Z}_2]) = 2$.

Example 2.3 For p = 3, the adjancency matrix of $PG(\mathbb{Z}_3)$ is

$$M(PG[\mathbb{Z}_3]) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

The characteristic polynomial is $\lambda^3 - 2\lambda$. The eigen values are $\lambda_1 = -1.4142, \lambda_2 = 1.4142, \lambda_3 = 0$. Therefore, $E(PG[\mathbb{Z}_3]) = 2.8284$.

Example 2.4 For p = 4, the adjancency matrix of $PG(\mathbb{Z}_4)$ is

$$M(PG[\mathbb{Z}_4]) = egin{bmatrix} 0 & 1 & 1 & 1 \ 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix}$$

The characteristic polynomial is $\lambda^4 - 3\lambda^2$. The eigen values are $\lambda_1 = 1.7321, \lambda_2 = -1.7321, \lambda_3 = 0, \lambda_4 = 0$. Therefore, $E(PG[\mathbb{Z}_4]) = 3.4641$.

Example 2.5 For p = 5, the adjancency matrix of $PG(\mathbb{Z}_5)$ is

$$M(PG[\mathbb{Z}_5]) = egin{bmatrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The characteristic polynomial is $\lambda^5 - 4\lambda^3$. The eigen values are $\lambda_1 = 2, \lambda_2 = -2, \lambda_3 =$

 $0, \lambda_4 = 0, \lambda_5 = 0.$ Therefore, $E(PG[\mathbb{Z}_5]) = 4.$

From the above Discussion we conclude the following theorem.

Theorem 2.6 If p is a prime number then energy of $PG(\mathbb{Z}_p)$ is $2\sqrt{p-1}$.

General MATLAB code to find Energy of a Graph

syms λ To create Symbolic Variables;

 $A = [\cdots; \cdots; \cdots; \cdots]$ To create a matrix that has multiple rows, separate the rows with semicolons; $charpoly(A, \lambda)$ Returns the characteristic polynomial of A in terms of variable λ ;

p = [To input the coefficients of characteristic polynomial;

r = roots(p) Gives the eigen Values of matrix A;

s = sum(abs(r)) Gives the energy of a graph.

The values of $E(PG[\mathbb{Z}_n])$ for n=2,3,4,5,6,9 and 10 are given in table below.

Sr.No.	n	Characteristic Polynomial	Energy
1	2	$\lambda^2 - 1$	2
2	3	$\lambda^3 - 2\lambda$	2.8284
3	4	$\lambda^4 - 3\lambda^2$	3.4641
4	5	$\lambda^5 - 4\lambda^3$	4
5	6	$\lambda^6 - 7\lambda^4 - 4\lambda^3 + 4\lambda^2$	6.6858
6	9	$\lambda^9 - 9\lambda^7 - 2\lambda^6 + 6\lambda^5$	7.4641
7	10	$\lambda^{10} - 13\lambda^8 - 8\lambda^7 + 16\lambda^6$	9.2058

§3. Wiener Index of Prime Graph of a Ring

In this section, We calculate Wiener index of $PG(\mathbb{Z}_n)$, for $n=p, n=p^2$ and $n=p^3$.

Definition 3.1 Let PG(R) be a Prime Graph of a Ring with vertex set V. We denote the length of the shortest path between every pair of vertices $x, y \in V$ with d(x, y). Then the Wiener index of PG(R) is the sum of the distances between all pair of vertices of PG(R), i.e.

$$W(PG[R]) = \sum_{x,y \in V} d(x,y).$$

The following results can be easily verified.

Theorem 3.2 $W(PG[\mathbb{Z}_p]) = (p-1)^2$ if p is a prime.

Theorem 3.3 $W(PG[\mathbb{Z}_{p^2}]) = \frac{p \cdot (p-1)}{2} \cdot [2p^2 - 2p + 1]$ if p is a prime.

Theorem 3.4 $W(PG[\mathbb{Z}_{p^3}]) = \frac{p \cdot (p-1)}{2} [2p^4 + 2p^3 - 2p - 3]$ if p is a prime.

§4. Line Graph of Prime Graph of a Ring

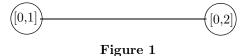
In this section we define line graph of prime graph of a ring, presented some examples and give some results.

Definition 4.1 The line graph $L(PG(\mathbb{Z}_n))$ of the graph $PG(\mathbb{Z}_n)$ is defined to the graph whose set of vertices constitutes of the edges of $PG(\mathbb{Z}_n)$, where two vertices are adjacent if the corresponding edges have a common vertex in $PG(\mathbb{Z}_n)$.

Consider \mathbb{Z}_n , the ring of integers modulo n.

Example 4.2 $L(PG(\mathbb{Z}_2))$ is a single vertex graph, there is no edge in $L(PG(\mathbb{Z}_2))$.

Example 4.3 In $L(PG(\mathbb{Z}_3))$, there is an edge between the vertices [0,1] to [0,2], as shown in figure below.



Example 4.4 In $L(PG(\mathbb{Z}_4))$, there is an edge between the vertices [0,1] to [0,2], [0,2] to [0,3] and [0,3] to [0,1] as shown in figure below.

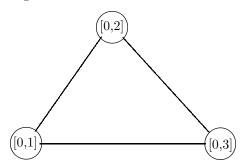


Figure 2

i.e. $L(PG(\mathbb{Z}_4))$ is a complete graph k_3 .

Example 4.5 In $L(PG(\mathbb{Z}_5))$, there is an edge between the vertices [0,1] to [0,2], [0,2] to [0,3], [0,3] to [0,4], [0,4] to [0,1], [0,1] to [0,3] and [0,2] to [0,4] as shown in figure below.

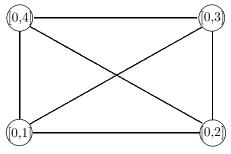
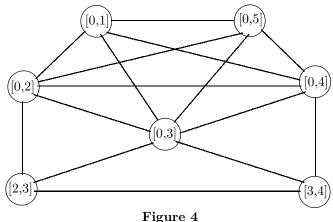


Figure 3

i.e. $L(PG(\mathbb{Z}_5))$ is a complete graph k_4 .

Example 4.6 Let us construct $L(PG(\mathbb{Z}_6))$.



rigure 4

i.e. $L(PG(\mathbb{Z}_6))$ contains a complete subgraph k_5 .

Example 4.7 Let us construct $L(PG(\mathbb{Z}_7))$.

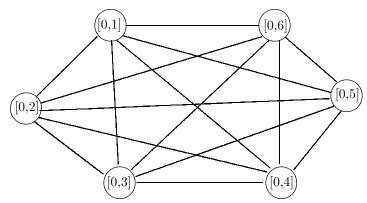


Figure 5

i.e. $L(PG(\mathbb{Z}_7))$ is a complete graph k_6 .

Observations 4.8 Every $L(PG(\mathbb{Z}_n))$ contains a complete subgraph on n-1 vertices.

Observations 4.9 If \mathbb{Z}_n is a prime ring then $L(PG(\mathbb{Z}_n))$ is a regular graph.

Observations 4.10 If n = p, a prime number then $PG(\mathbb{Z}_n)$ is a star graph. So, its line graph $L(PG(\mathbb{Z}_n))$ is a complete graph and hence its eccentricity $e(v) = 1, \forall v \in V(L(PG(\mathbb{Z}_n)))$. Therefore, centre is $L(PG(\mathbb{Z}_n))$.

Theorem 4.11 The graph $L(PG(\mathbb{Z}_n))$ is Hamiltonian if and only if n = p, a prime number and $n \geq 4$.

Proof When n=2, $L(PG(\mathbb{Z}_n))$ is a single vertex graph, hence there is no cycle. For n=3, $L(PG(\mathbb{Z}_n))$ is a single edge graph, hence there is no cycle exist. For n=4, $L(PG(\mathbb{Z}_n))$ is a triangle graph and there exist a cycle which containing every vertex. So, $L(PG(\mathbb{Z}_4))$ is a

Hamiltonian graph. Now, for n = p, a prime number then $L(PG(\mathbb{Z}_n))$ is Hamiltonian graph because there exist a cycle containing every vertex. Hence, the graph $L(PG(\mathbb{Z}_n))$ is Hamiltonian if and only if n = p, a prime number and $n \ge 4$.

Theorem 4.12 Let $L(PG(\mathbb{Z}_n))$ be a line graph of prime graph of a ring, where n = p and p is an odd prime number then point covering number and independence number of $L(PG(\mathbb{Z}_n))$ both are one.

Proof When n=p, $PG(\mathbb{Z}_n)$ is a star graph. So, there is a common vertex which is adjacent to all other vertices and that vertex is called center of the graph. When we draw the line graph of $PG(\mathbb{Z}_n)$, for n=p, and let $a_1=0$ be the common vertex of $PG(\mathbb{Z}_n)$ which is the end point of every edge of $PG(\mathbb{Z}_n)$. Then a_1 appears in every vertex of the line graph. $[a_1, v_i] \in V(L(PG(\mathbb{Z}_n)))$, where $i=1, 2, 3, \cdots, (p-1)$ forms a complete line graph of $PG(\mathbb{Z}_n)$ and here, $[a_1, v_1]$ is adjacent with all other vertices of line graph. In other words, we can say that single vertex cover all other vertices of line graph of $PG(\mathbb{Z}_n)$. Thus, the point cover is one and from that vertex an independence number is also one.

The following results can be immediately verified.

Theorem 4.13 The general formula for degree of vertex in $L(PG(\mathbb{Z}_n))$ is:

$$deg[u, v] = gcd(u, n) + gcd(v, n) - 2,$$
 if $u^2 \neq 0$ and $v^2 \neq 0$
 $= gcd(u, n) + gcd(v, n) - 3,$ if either $u^2 = 0$, $v^2 = 0$
 $= gcd(u, n) + gcd(v, n) - 4,$ if $u^2 = 0$ and $v^2 = 0$

Theorem 4.14 $L(PG(\mathbb{Z}_n))$ is planer if and only if n = 2, 3, 4, 5 and is non-planer for $n \geq 6$.

Theorem 4.15 The girth $gr(L(PG(\mathbb{Z}_n))) = 3$ if and only if $n \geq 4$. If n = 2, 3 then $gr(L(PG(\mathbb{Z}_n))) = \infty$.

Theorem 4.16 The chromatic number $\chi(L(PG(\mathbb{Z}_p))) = p-1$ for $p=2,3,5,\cdots$.

Theorem 4.17 The chromatic number $\chi(L(PG(\mathbb{Z}_{p^n}))) = p^n - 1$, p prime.

Theorem 4.18 The energy $E(L(PG(\mathbb{Z}_p))) = 2p - 4$, for $p = 3, 5, \cdots$ and n = 4.

Theorem 4.19 The Wiener index $W(L(PG(\mathbb{Z}_p))) = \frac{p(p-1)}{2}$, for $p = 3, 5, \cdots$ and n = 4.

Theorem 4.20 The graph $L(PG(\mathbb{Z}_n))^c$ is Eulerian if and only if n = p, a prime number and $n \ge 4$.

Proof When n = 2, there is no graph, as there is no edge between the vertices 0 and 1 in $(PG(\mathbb{Z}_n))^c$. For n = 3, $L(PG(\mathbb{Z}_n))^c$ is a single vertex graph. For n = 4, $L(PG(\mathbb{Z}_n))^c$ is triangle graph and every vertex is of even degree. Now, For n = p, a prime number, every vertex of $L(PG(\mathbb{Z}_n))^c$ have even degree. Hence, the graph $L(PG(\mathbb{Z}_n))^c$ is Eulerian if and only if n = p,

a prime number and $n \geq 4$.

Theorem 4.21 The general formula for degree of vertex in $L(PG(\mathbb{Z}_n))^c$, where n = p a prime number and $n \geq 5$ is:

$$deg[u, v] = n + \phi(n) - 5$$

Theorem 4.22 The girth $gr(L(PG(\mathbb{Z}_n))^c) = 3$ if and only if $n \geq 4$. If n = 2, 3 then $gr(L(PG(\mathbb{Z}_n))^c) = \infty$.

References

- [1] Beck I, Coloring of commutative rings, Journal of Algebra, 116 (1) (1988):208-226.
- [2] Sheela Suthar, Om Prakash, Covering of line graph of zero divisor graph over ring \mathbb{Z}_n , British Journal of Mathematics and Computer Science, 5 (6) (2015) 728–734.
- [3] S. Bhavanari, S. P. Kuncham, Nagaraju Dasari, Prime graph of a ring, J. of Combinatorics, Information & System Sciences, 35 (1-2) (2010) 27–42.
- [4] Mohammad Reza Ahmadi, Reza Jahani-Nezhad, Energy and Wiener index of zero-divisor graphs, *Iranian Journal of Mathematical Chemistry*, 2 (1) (Sept.- 2011) 45-51.
- [5] S. Bhavanari, S. P. Kuncham, Discrete Mathematics and Graph Theory, Prentice Hall India Pvt. Ltd, 2009.
- [6] Narsingh Deo:, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India Pvt. Ltd, 1997.
- [7] David S. Dummit, Richard M. Foote, Abstract Algebra, Second Edition, John Wiley & sons, Inc., 1999.
- [8] Chris Godsil, Gordon Royle, Algebraic Graph Theory, Springer-Verlag, Newyork Inc., 2001.