On 4-Total Product Cordiality of Some Corona Graphs

M.Sivakumar

Department of Mathematics, Thiruvalluvar University Constituent College of Arts and Science Tittagudi -606106, India

E-mail: sivamaths.vani_r@yahoo.com

Abstract: Let f be a map from V(G) to $\{0, 1, \dots, k-1\}$ where k is an integer, $2 \le k \le |V(G)|$. For each edge uv, assign the label $f(u)f(v) \pmod k$. f is called a k-total product cordial labeling of G if $|ev_f(i) - ev_f(j)| \le 1$, $i, j \in \{0, 1, \dots, k-1\}$ where $ev_f(x)$ denotes the total number of vertices and edges labelled with x ($x = 0, 1, 2, \dots, k-1$). We investigate the 4-Product cordial labeling behaviour of comb, double comb and subdivision of some corona graphs.

Key Words: Labelling, *k*-total product cordial labeling, Smarandachely *k*-total product cordial labeling, comb, double comb, crown.

AMS(2010): 05C78.

§1. Introduction

Throughout this paper we have considered finite, undirected and simple graphs only. The vertex set and edge set of a graph G are denoted by V(G) and E(G) respectively. The graph obtained by subdividing each edge of a graph G by a new vertex is denoted by S(G). The corona $G_1 \odot G_2$ of two graphs G_1 and G_2 is obtained by taking one copy of G_1 (which has p_1 vertices) and p_1 copies of G_2 and then joining the i^{th} vertex of G_1 to every vertex in the i^{th} copy G_2 The notion of k-Total Product cordial labeling of graphs was introduced in [2]. In this paper we investigate the 4-Total Product cordial labeling behaviour of $P_n \odot K_1$, $P_n \odot 2K_1$, $S(P_n \odot K_1)$, $S(P_n \odot 2K_1)$, $S(C_n \odot K_1)$ and $S(C_n \odot 2K_1)$ Terms not defined here are used in the sense of Harary [1].

§2. k-Total Product Cordial Labeling

Definition 2.1 Let f be a map from V(G) to $\{0,1,\dots,k-1\}$ where k is an integer, $2 \le k \le |V(G)|$. For each edge uv, assign the label $f(u)f(v) \pmod k$. f is called a k-total product cordial labeling of G if $|ev_f(i) - ev_f(j)| \le 1$, otherwise, a Smarandachely k-total product cordial labeling of G if $|ev_f(i) - ev_f(j)| \ge 2$ for $i, j \in \{0, 1, \dots, k-1\}$, where $ev_f(x)$ denotes the total number of vertices and edges labelled with $x \ (x = 0, 1, 2, \dots, k-1)$.

A graph with k-total product cordial labeling is called k-total product cordial graph.

¹Received December 25, 2015, Accepted August 16, 2016.

Now we investigate the 4-Total product coordiality of $P_n \odot K_1$ and $P_n \odot 2K_1$.

Theorem 2.2 $P_n \odot K_1$ is 4-total product cordial.

Proof Let $u_1u_2\cdots u_n$ be the path P_n and let v_i be the pendant vertices adjacent to u_i $(1 \le i \le n)$.

Case 1. n is even.

Define
$$f: V(P_n \odot K_1) \to \{0, 1, 2, 3\}$$
 by $f(u_1) = 0$,

$$f(u_i) = 2, \quad 2 \le i \le \frac{n-2}{2}$$

$$f(u_{\frac{n-2}{2}+i}) = 3, \quad 1 \le i \le \frac{n}{2}$$

$$f(v_i) = 2 \quad 1 \le i \le \frac{n}{2}$$

$$f(v_{\frac{n}{2}+i}) = 3, \quad 1 \le i \le \frac{n}{2}.$$

Clearly $ev_f(0) = ev_f(2) = ev_f(3) = n$ and $ev_f(1) = n - 1$. Hence f is a 4-total product cordial labeling.

Case 2. n is odd.

Define
$$f: V(P_n \odot K_1) \to \{0, 1, 2, 3\}$$
 by $f(u_1) = f(u_2) = 0$,

$$\begin{array}{lcl} f(u_i) & = & 2, & 3 \leq i \leq \frac{n-1}{2} \\ f(u_{\frac{n-1}{2}+i}) & = & 3, & 1 \leq i \leq \frac{n-1}{2} \\ f(v_i) & = & 2, & 1 \leq i \leq \frac{n+1}{2} \\ f(v_{\frac{n+1}{2}+i}) & = & 3, & 1 \leq i \leq \frac{n-1}{2}. \end{array}$$

Values of i	$ev_f(i)$
0	n
1	n-1
2	n
3	n

Table 1

Table 1 establish that f is a 4-total product cordial labeling.

Theorem 2.3 $P_n \odot 2K_1$ is 4-total product cordial.

Proof Let $u_1u_2...u_n$ be the path P_n and let v_i and w_i be the pendant vertices adjacent to u_i $(1 \le i \le n)$.

Case 1. n is even.

Define
$$f: V(P_n \odot 2K_1) \to \{0, 1, 2, 3\}$$
 by $f(u_1) = 0$,

$$f(u_i) = 2, 2 \le i \le \frac{n-2}{2}$$

$$f(u_{\frac{n-2}{2}+i}) = 3 1 \le i \le \frac{n+2}{2}$$

$$f(v_i) = 2, 1 \le i \le \frac{n}{2}$$

$$f(v_{\frac{n}{2}+i}) = 3 1 \le i \le \frac{n}{2}$$

$$f(w_i) = 2, 1 \le i \le \frac{n}{2}$$

$$f(w_{\frac{n}{2}+i}) = 3, 1 \le i \le \frac{n}{2}$$

Clearly $ev_f(0) = ev_f(2) = ev_f(3) = \frac{3n}{2}$ and $ev_f(1) = \frac{3n}{2} - 1$. Hence f is a 4-total product cordial labeling.

Case 2. n is odd.

Define
$$f: V(P_n \odot 2K_1) \to \{0, 1, 2, 3\}$$
 by $f(u_1) = f(u_2) = 0$,

$$f(u_i) = 2, \quad 3 \le i \le \frac{n-1}{2}$$

$$f(u_{\frac{n-1}{2}+i}) = 3, \quad 1 \le i \le \frac{n}{2}$$

$$f(v_i) = 2, \quad 1 \le i \le \frac{n+1}{2}$$

$$f(v_{\frac{n-1}{2}+i}) = 3, \quad 1 \le i \le \frac{n-1}{2}$$

$$f(w_i) = 2, \quad 1 \le i \le \frac{n-1}{2}$$

$$f(w_{\frac{n-1}{2}+i}) = 3, \quad 1 \le i \le \frac{n+1}{2}.$$

Values of i	$ev_f(i)$
0	$\frac{3n-1}{2}$
1	$\frac{3n-1}{2}$
2	$\frac{3n-1}{2}$
3	$\frac{3n+1}{2}$

Table 2

Table 2 shows that f is a 4-total product cordial labeling.

Now we look in to the subdivision graphs.

Theorem 2.4 $S(P_n \odot K_1)$ is 4-total product cordial.

Proof Let
$$V(S(P_n \odot K_1)) = \{u_i, v_i, w_i, z_j : 1 \le i \le n, 1 \le j \le n-1\}$$
 and $E(S(P_n \odot K_1)) = \{u_i v_i, v_i w_i, u_i z_j, z_j u_{j+1} : 1 \le i \le n, 1 \le j \le n-1\}.$

Case 1. $n \equiv 0 \pmod{4}$.

Let n = 4t. Define $f(u_1) = 0$,

$$f(u_i) = 2, 2 \le i \le \frac{n-2}{2}$$

$$f(u_{\frac{n-2}{2}+i}) = 3, 1 \le i \le \frac{n}{2}$$

$$f(v_i) = 2 1 \le i \le \frac{n}{2}$$

$$f(v_{\frac{n}{2}+i}) = 3, 1 \le i \le \frac{n}{2}$$

$$f(w_i) = 2 1 \le i \le \frac{n}{2}$$

$$f(w_{\frac{n}{2}+i}) = 3, 1 \le i \le \frac{n}{2}$$

$$f(z_i) = 2, 1 \le j \le \frac{n-2}{2}$$

$$f(z_{\frac{n-2}{2}+i}) = 3, 1 \le j \le \frac{n}{2}$$

Clearly $ev_f(0) = ev_f(1) = ev_f(2) = 4t - 1$ and $ev_f(3) = 4t$. Hence f is a 4-total product cordial labeling.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1. Assign the label to the vertices u_i, v_i, w_i, z_j $1 \le i \le n - 1$, $1 \le j \le n - 1$ as in case 1. Then label 3, 3, 2, 0 to the vertices z_n , u_n , v_n , w_n respectively. Here $ev_f(0) = ev_f(1) = ev_f(2) = 4t + 1$ and $ev_f(3) = 4t + 2$. Hence f is a 4-total product cordial labeling.

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4t + 2. Assign the label to the vertices u_i, v_i, w_i, z_j $1 \le i \le n - 1$, $1 \le j \le n - 1$ as in case 2. Then label 3, 3, 2, 0 to the vertices z_n, u_n, v_n, w_n respectively. Here $ev_f(0) = ev_f(1) = ev_f(2) = 4t + 3$ and $ev_f(3) = 4t + 4$. Hence f is a 4-total product cordial labeling.

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4t + 3. Assign the label to the vertices u_i, v_i, w_i, z_j $1 \le i \le n - 1$, $1 \le j \le n - 1$ as in case 3. Then label 3, 3, 2, 0 to the vertices z_n, u_n, v_n, w_n respectively. Here $ev_f(0) = ev_f(1) = ev_f(2) = 4t + 5$ and $ev_f(3) = 4t + 6$. Hence f is a 4-total product cordial labeling. \square

Theorem 2.5 $S(P_n \odot 2K_1)$ is 4-total product cordial.

Proof Let $V(S(P_n \odot 2K_1)) = \{u_i, v_i, w_i, a_j, b_i, c_i : 1 \le i \le n, 1 \le j \le n-1\}$ and $E(S(P_n \odot 2K_1)) = \{u_i a_j, u_i b_i, u_i c_i, b_i v_i, c_i w_i, a_j u_{j+1} : 1 \le i \le n, 1 \le j \le n-1\}.$

Case 1. $n \equiv 0 \pmod{4}$.

Let n = 4t and let $f(u_1) = 0$,

$$f(u_i) = 2, \quad 2 \le i \le \frac{n-2}{2}$$

$$f(u_{\frac{n-2}{2}+i}) = 3, \quad 1 \le i \le \frac{n}{2}$$

$$f(v_i) = 2, \quad 1 \le i \le \frac{n}{2}$$

$$f(v_{\frac{n}{2}+i}) = 3, \quad 1 \le i \le \frac{n}{2}$$

$$f(w_i) = 2, 1 \le i \le \frac{n}{2}$$

$$f(w_{\frac{n}{2}+i}) = 3, 1 \le i \le \frac{n}{2}$$

$$f(a_j) = 2, 1 \le j \le \frac{n-2}{2}$$

$$f(a_{\frac{n-2}{2}+1}) = 1$$

$$f(a_{\frac{n-2}{2}+1+j}) = 1, 1 \le j \le \frac{n-2}{2}$$

$$f(b_i) = 2, 1 \le i \le \frac{n}{2}$$

$$f(b_{\frac{n}{2}+i}) = 3, 1 \le i \le \frac{n}{2}$$

$$f(c_i) = 2, 1 \le i \le \frac{n}{2}$$

$$f(c_{\frac{n}{2}+i}) = 3, 1 \le i \le \frac{n}{2}$$

Clearly $ev_f(0) = ev_f(1) = ev_f(2) = 4t + 7$ and $ev_f(3) = 4t + 8$. Hence f is a 4-total product cordial labeling.

Case 2. $n \equiv 1 \pmod{4}$.

Let n=4t+1 and assign the label to the vertices $u_i, v_i, w_i, a_j, b_i, c_i \ 1 \le i \le n-1, \ 1 \le j \le n-2$ as in case 1. Then label 3, 3, 2, 2, 1, 0 to the vertices $a_n, u_n, b_n, v_n, c_n, w_n$ respectively. Here $ev_f(0) = ev_f(1) = ev_f(2) = 4t + 10$ and $ev_f(3) = 4t + 11$. Hence f is a 4-total product cordial labeling.

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4t + 2. Assign the label to the vertices $u_i, v_i, w_i, a_j, b_i, c_i \ 1 \le i \le n - 2, \ 1 \le j \le n - 3$ as in case 2. Then label 3, 3, 2, 2, 2, 2, 3, 3, 2, 3, 0, 3 to the vertices $a_{n-2}, u_{n-1}, b_{n-1}, v_{n-1}, c_{n-1}, w_{n-1}, a_{n-1}, u_n, b_n, v_n, c_n, w_n$ respectively. Here $ev_f(0) = ev_f(1) = ev_f(2) = 4t + 13$ and $ev_f(3) = 4t + 14$. Hence f is a 4-total product cordial labeling.

Case 4. $n \equiv 3 \pmod{4}$.

Let n=4t+3. We assign the label to the vertices $u_i, v_i, w_i, a_j, b_i, c_i \ 1 \le i \le n-3$, $1 \le j \le n-4$ as in case 3. Then label 3, 3, 2, 0, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3 to the vertices $a_{n-3}, u_{n-2}, b_{n-2}, v_{n-2}, c_{n-2}, w_{n-2}, a_{n-2}, u_{n-1}, b_{n-1}, v_{n-1}, c_{n-1}, w_{n-1}, a_{n-1}, u_n, b_n, v_n, c_n, w_n$ respectively. Here $ev_f(0) = ev_f(1) = ev_f(2) = 4t + 22$ and $ev_f(3) = 4t + 23$. Hence f is a 4-total product cordial labeling.

Theorem 2.6 $S(C_n \odot K_1)$ is 4-total product cordial.

Proof Let $V(S(C_n \odot K_1)) = \{u_i, v_i, w_i, z_i : 1 \le i \le n\}$ and $E(S(C_n \odot K_1)) = \{u_i z_i, u_i w_i, w_i v_j, z_i u_{i+1} : 1 \le i \le n\}$.

Case 1. $n \equiv 0, 2 \pmod{4}$.

Let n = 4t and let $f(u_1) = 0$,

$$f(u_i)$$
 = $f(z_i)$ = 3 $1 \le i \le n$
 $f(v_i)$ = 2 $1 \le i \le n$
 $f(w_i)$ = 2 $1 \le i \le \frac{n}{2}$
 $f(v_{\frac{n}{2}+i})$ = 0 $1 \le i \le \frac{n}{2}$

In this case, $ev_f(0) = ev_f(1) = ev_f(2) = ev_f(3) = 2n$. Hence f is a 4-total product cordial labeling.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1. We assign the label to the vertices $u_i, v_i, w_i, z_i, 1 \le i \le n - 1$ as in case 1. Then label 3, 3, 2, 0 to the vertices u_n, z_n, w_n, v_n respectively. Hence $ev_f(0) = ev_f(1) = ev_f(2) = ev_f(3) = 2n$. Hence f is a 4-total product cordial labeling.

Case 3. $n \equiv 3 \pmod{4}$.

Let n = 4t + 3 and assign the label to the vertices $u_i, v_i, w_i, z_i, 1 \le i \le n - 1$ as in case 1. Then label 3, 3, 2, 0 to the vertices u_n, z_n, w_n, v_n respectively. Hence $ev_f(0) = ev_f(1) = ev_f(2) = ev_f(3) = 2n$. Therefore f is a 4-total product cordial labeling.

Theorem 2.7 $S(C_n \odot 2K_1)$ is 4-total product cordial.

Proof Let $V(S(C_n \odot 2K_1)) = \{u_i, v_i, w_i, a_i, b_i, c_i : 1 \le i \le n, \}$ and $E(S(C_n \odot 2K_1)) = \{u_i u_{i+1 \pmod{n}}, u_i a_i, u_i b_i, b_i v_i, u_i c_i, c_j w_i : 1 \le i \le n\}.$

Case 1. $n \equiv 0 \pmod{4}$

Define

$$f(u_i) = f(a_i) = 3 \quad 1 \le i \le n$$

$$f(v_i) = f(b_i) = 2 \quad 1 \le i \le \frac{n}{2}$$

$$f(b_{\frac{n}{2}+i}) = f(v_{\frac{n}{2}+i}) = 0 \quad 1 \le i \le \frac{n}{4}$$

$$f(b_{\frac{3n}{4}+i}) = f(v_{\frac{3n}{4}+i}) = 0 \quad 1 \le i \le \frac{n}{4}$$

$$f(w_i) = f(c_i) = 2 \quad 1 \le i \le \frac{n}{2}$$

$$f(c_{\frac{n}{2}+i}) = f(w_{\frac{n}{2}+i}) = 0 \quad 1 \le i \le \frac{n}{4}$$

$$f(c_{\frac{3n}{4}+i}) = f(w_{\frac{3n}{4}+i}) = 0 \quad 1 \le i \le \frac{n}{4}$$

Therefore $ev_f(0) = ev_f(1) = ev_f(2) = ev_f(3) = 3n$. Hence f is a 4-total product cordial labeling.

Case 2. $n \equiv 1 \pmod{4}$

Let n = 4t + 1. We assign the label to the vertices $u_i, v_i, w_i, a_i, b_i, c_i$ $1 \le i \le n - 1$ as in case 1. Then label 3, 3, 3, 2, 2, 2 to the vertices $u_n, a_n, b_n, v_n, w_n, c_n$ respectively. Hence $ev_f(0) = ev_f(1) = ev_f(2) = ev_f(3) = 3n$. Hence f is a 4-total product cordial labeling.

Case 3. $n \equiv 2 \pmod{4}$

Let n = 4t + 2. Define

$$f(u_i) = f(a_i) = 3 \quad 1 \le i \le n$$

$$f(v_i) = f(b_i) = 2 \quad 1 \le i \le \frac{n}{2}$$

$$f(b_{\frac{n}{2}+i}) = f(v_{\frac{n}{2}+i}) = 0 \quad 1 \le i \le \frac{n}{2} - 2$$

$$f(b_{n-2+i}) = f(v_{n-2+i}) = 3 \quad 1 \le i \le \frac{n}{2} - 3$$

$$f(w_i) = f(c_i) = 2 \quad 1 \le i \le \frac{n}{2}$$

$$f(c_{\frac{n}{2}+i}) = f(w_{\frac{n}{2}+i}) = 0 \quad 1 \le i \le \frac{n}{2} - 3$$

$$f(c_{n-3+i}) = f(w_{n-3+i}) = 3 \quad 1 \le i \le \frac{n}{2} - 2.$$

Therefore $ev_f(0) = ev_f(1) = ev_f(2) = ev_f(3) = 3n$. Hence f is a 4-total product cordial labeling.

Case 4. $n \equiv 3 \pmod{4}$

Let n = 4t + 3 and let

$$f(u_i) = f(a_i) = 3 \quad 1 \le i \le n$$

$$f(v_i) = f(b_i) = 2 \quad 1 \le i \le \frac{n-1}{2}$$

$$f(v_{\frac{n+1}{2}}) = 2$$

$$f(w_{\frac{n+1}{2}}) = 0$$

$$f(v_n) = 3$$

$$f(w_n) = 2$$

$$f(v_{\frac{n+1}{2}+i}) = f(w_{\frac{n+1}{2}+i}) = 0 \quad 1 \le i \le \frac{n-3}{4}$$

$$f(v_{\frac{3n-1}{4}+i}) = f(w_{\frac{3n-1}{4}+i}) = 3 \quad 1 \le i \le \frac{n-3}{4}$$

$$f(b_i) = f(c_i) = 2 \quad 1 \le i \le \frac{n-1}{2}$$

$$f(b_{\frac{n-1}{2}+i}) = f(c_{\frac{n-1}{2}+i}) = 0 \quad 1 \le i \le \frac{n+1}{4}$$

Therefore $ev_f(0) = ev_f(1) = ev_f(2) = ev_f(3) = 3n$. Hence f is a 4-total product cordial labeling.

References

- [1] F.Harary, Graph Theory, Addision wisely, New Delhi.
- [2] R.Ponraj, M.Sundaram and M.Sivakumar, k-total product cordial labeling of graphs, Applications and Applied mathematics: An International Journal, 7(2012), 708-716.
- [3] R.Ponraj, M.Sivakumar and M.Sundaram, On 3-total product cordial graphs, *International Mathematical Forum*,7(2012) 1537 1546.

- [4] R.Ponraj and M.Sivakumar, A note on k-total product cordial labeling of graphs, Global journal of Mathematics and Mathematical sciences, 2(2012), 37-44.
- [5] R.Ponraj, M.Sivakumar and M.Sundaram, 3-total product cordial labeling of some subdivided graphs, *International journal of Mathematics research*, 5(2012), 517-526.
- [6] R.Ponraj, M.Sivakumar and M.Sundaram, New families of 3-total product cordial graphs, *International Journal of Mathematical Archive*, 3(2012), 1985-1990.