Skolem Difference Odd Mean Labeling For Some Simple Graphs

R. Vasuki, J. Venkateswari and G. Pooranam

Department of Mathematics, Dr.Sivanthi Aditanar College of Engineering Tiruchendur- 628 215, Tamilnadu, India

E-mail: vasukisehar@gmail.com, revathi198715@gmail.com, dpooranamg@gmail.com

Abstract: A graph G with p vertices and q edges is said to have skolem difference odd mean labeling if there exists an injective function $f:V(G)\to\{1,2,3,\cdots,4q-1\}$ such that the induced map $f^*:E(G)\to\{1,3,5,\cdots,2q-1\}$ defined by

$$f^*(uv) = \begin{cases} \frac{|f(u) - f(v)|}{2} & \text{if } |f(u) - f(v)| \text{ is even} \\ \frac{|f(u) - f(v)| + 1}{2} & \text{if } |f(u) - f(v)| \text{ is odd} \end{cases}$$

is a bijection. A graph that admits skolem difference odd mean labeling is called a skolem difference odd mean graph. Here we investigate skolem difference odd mean behaviour of some standard graphs.

Key Words: Labeling, skolem difference odd mean graph, Smarandache k-mean graph.

AMS(2010): 05C78.

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V, E) be a graph with p vertices and q edges. For notations and terminology we follow [1].

Path on n vertices is denoted by P_n and a cycle on n vertices is denoted by C_n . A graph G = (V, E) is called bipartite if $V = V_1 \cup V_2$ with $\phi = V_1 \cap V_2$, and every edge of G is of the form $\{u, v\}$ with $u \in V_1$ and $v \in V_2$. If each vertex in V_1 is joined with every vertex in V_2 , we have a complete bipartite graph. In this case $|V_1| = m$ and $|V_2| = n$, the graph is denoted by $K_{m,n}$. The complete bipartite graph $K_{1,n}$ is called a star graph and it is denoted by S_m . The bistar $B_{m,n}$ is the graph obtained from K_2 by identifying the center vertices of $K_{1,m}$ and $K_{1,n}$ at the end vertices of K_2 respectively. $B_{m,m}$ is often denoted by S_m .

A quadrilateral snake Q_n is obtained from a path u_1, u_2, \dots, u_{n+1} by joining u_i and u_{i+1} to new vertices v_i and w_i respectively and joining v_i and $w_i, 1 \le i \le n$, that is, every edge of a path is replaced by a cycle C_4 . The corona of a graph G on p vertices v_1, v_2, \dots, v_p is the graph obtained from G by adding p new vertices u_1, u_2, \dots, u_p and the new edges $u_i v_i$ for $1 \le i \le p$. The corona of G is denoted by $G \odot K_1$. The graph $P_n \odot K_1$ is called a comb. Let G_1 and G_2 be any two graphs with p_1 and p_2 vertices respectively. Then the cartesian product $G_1 \times G_2$ has $p_1 p_2$ vertices which are $\{(u, v)/u \in G_1, v \in G_2\}$. The edge set of $G_1 \times G_2$ is obtained as follows: (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \times G_2$ if either

¹Received March 24, 2014, Accepted May 15, 2015.

 $u_1 = u_2$ and v_1 and v_2 are adjacent in G_2 or u_1 and u_2 are adjacent in G_1 and $v_1 = v_2$. The product $P_m \times P_n$ is called a planar grid and $P_n \times P_2$ is called a ladder, denoted by L_n . The graph $P_2 \times P_2 \times P_2$ is called a cube and is denoted by Q_3 . A dragon is a graph formed by joining the end vertex of a path to a vertex of the cycle.

The concept of mean labeling was introduced and studied by S. Somasundaram and R. Ponraj [5]. Some new families of mean graphs are studied by S.K. Vaidya et al. [10]. Further some more results on mean graphs are discussed in [4,6,7]. A graph G is said to be a mean graph if there exists an injective function f from V(G) to $\{0,1,2,\cdots,q\}$ such that the induced map f^* from E(G) to $\{1,2,3,\cdots,q\}$ defined by $f^*(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$ is a bijection. Furthermore, if f^* is defined by $f^*(uv) = \left\lceil \frac{f(u)+f(v)}{k} \right\rceil$ for an integer $k \geq 2$ hold with previous properties, then G is called a *Smarandache k-mean graph*.

In [2], K. Manickam and M. Marudai introduced odd mean labeling of a graph. A graph G is said to be odd mean if there exists an injective function f from V(G) to $\{0,1,2,3,\cdots,2q-1\}$ such that the induced map f^* from E(G) to $\{1,3,5,\cdots,2q-1\}$ defined by $f^*(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$ is a bijection. Some more results on odd mean graphs are discussed in [8,9].

The concept of skolem difference mean labeling was introduced and studied by K. Murugan and A. Subramanian [3]. A graph G=(V,E) with p vertices and q edges is said to have skolem difference mean labeling if it is possible to label the vertices $x\in V$ with distinct elements f(x) from $1,2,3\cdots,p+q$ in such a way that for each edge e=uv, let $f^*(e)=\left\lceil\frac{|f(u)-f(v)|}{2}\right\rceil$ and the resulting labels of the edges are distinct and are from $1,2,3,\cdots,q$. A graph that admits a skolem difference mean labeling is called a skolem difference mean graph. It motivates us to define a new concept called skolem difference odd mean labeling.

A graph with p vertices and q edges is said to have a skolem difference odd mean labeling if there exists an injective function $f:V(G)\to\{1,2,3,\cdots,4q-1\}$ such that the induced map $f^*:E(G)\to\{1,3,5,\cdots,2q-1\}$ defined by $f^*(uv)=\left\lceil\frac{|f(u)-f(v)|}{2}\right\rceil$ is a bijection. A graph that admits a skolem difference odd mean labeling is called a skolem difference odd mean graph.

For example, a skolem difference odd mean labeling of cube Q_3 shown in Fig.1.



In this paper, we prove that the path P_n , the cycle C_n for $n \geq 4$, $K_{m,n} (m \geq 1, n \geq 1)$, the bistar $B_{m,n}$ for $m \geq 1, n \geq 1$, the quadrilateral snake Q_n , the ladder $L_n, L_n \odot K_1$ and $K_{1,n} \odot K_1$ for $n \geq 1$ are skolem difference odd mean graphs.

§2. Skolem Difference Odd Mean Graphs

Theorem 2.1 Any path is a skolem difference odd mean graph.

Proof Let u_1, u_2, \ldots, u_n be the vertices of the path P_n . Define $f: V(P_n) \to \{1, 2, 3, \cdots, 4q-1 = 1, 2, 3, \cdots, 4q-1 = 1, 2, 3, \cdots, q-1 = 1, 2, 3, \cdots, q-1 = 1, 2, 3, \cdots \}$

4n-5} as follows:

$$f(u_{2i-1}) = 4i - 3,$$

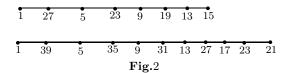
$$1 \le i \le \left\lceil \frac{n}{2} \right\rceil$$

$$f(u_{2i}) = 4n - 4i - 1,$$

$$1 \le i \le \left\lceil \frac{n}{2} \right\rceil$$

The label of the edge $u_i u_{i+1}$ is 2n-2i-1, $1 \le i \le n-1$. Hence, P_n is a skolem difference odd mean graph.

For example, a skolem difference odd mean labeling of P_8 and P_{11} are shown in Fig.2.



Theorem 2.2 Cycle C_n is a skolem difference odd mean graph for $n \geq 4$.

Proof Let u_1, u_2, \dots, u_n be the vertices of the cycle C_n . Define $f: V(C_n) \to \{1, 2, 3, \dots, 4q - 1 = 4n - 1\}$ as follows:

Case 1. $n \equiv 0 \pmod{4}$

$$f(u_i) = \begin{cases} 2i - 1, & 1 \le i \le n \text{ and } i \text{ is odd,} \\ 4n - 2i + 3, & 1 \le i \le \frac{n}{2} \text{ and } i \text{ is even,} \\ 4n - 2i - 1, & \frac{n+4}{2} \le i \le n \text{ and } i \text{ is even} \end{cases}$$

For the vertex labeling f, the induced edge labeling f^* is given as follows:

$$f^*(u_i u_{i+1}) = \begin{cases} 2n - 2i + 1, & 1 \le i \le \frac{n}{2} \\ 2n - 2i - 1, & \frac{n+2}{2} \le i \le n - 1 \end{cases}$$
$$f^*(u_n u_1) = n - 1.$$

and

Case 2. $n \equiv 1 \pmod{4}$

$$f(u_i) = \begin{cases} 2i - 1, & 1 \le i \le n - 2 \text{ and } i \text{ is odd} \\ 4n - 2i + 3, & 1 \le i \le \frac{n-1}{2} \text{ and } i \text{ is even} \\ 4n - 2i - 1, & \frac{n+3}{2} \le i \le n - 1 \text{ and } i \text{ is even} \\ 2n, & i = n. \end{cases}$$

For the vertex labeling f, the induced edge labeling f^* is obtained as follows:

$$f^*(u_i u_{i+1}) = \begin{cases} 2n - 2i + 1, & 1 \le i \le \frac{n-1}{2} \\ 2n - 2i - 1, & \frac{n+1}{2} \le i \le n - 1 \end{cases}$$
$$f^*(u_n u_1) = n.$$

and

Case 3. $n \equiv 2 \pmod{4}$

$$f(u_i) = \begin{cases} 2i - 1, & 1 \le i \le \frac{n}{2} \text{ and } i \text{ is odd} \\ 2i + 3, & \frac{n+4}{2} \le i \le n - 1 \text{ and } i \text{ is odd,} \\ 4n - 2i + 3, & 1 \le i \le n - 2 \text{ and } i \text{ is even,} \\ 2n - 1, & i = n. \end{cases}$$

For the vertex labeling f, the induced edge labeling f^* is given as follows:

$$f^*(u_i u_{i+1}) = \begin{cases} 2n - 2i + 1, & 1 \le i \le \frac{n}{2} \\ 2n - 2i - 1, & \frac{n+2}{2} \le i \le n - 1 \end{cases}$$
$$f^*(u_n u_1) = n - 1.$$

and

Case 4. $n \equiv 3 \pmod{4}$

$$f(u_i) = \begin{cases} 2i - 1, & 1 \le i \le n - 4 \text{ and } i \text{ is odd} \\ 2n - 4, & i = n - 2 \\ 4n - 2, & i = n \\ 4n - 2i - 1, & 1 \le i \le \frac{n-3}{2} \text{ and } i \text{ is even} \\ 4n - 2i - 5, & \frac{n+1}{2} \le i \le n - 3 \text{ and } i \text{ is even} \\ 2n - 2, & i = n - 1. \end{cases}$$

For the vertex labeling f, the induced edge labeling f^* is obtained as follows:

$$f^*(u_i u_{i+1}) = \begin{cases} 2n - 2i - 1, & 1 \le i \le \frac{n-3}{2} \\ 2n - 2i - 3, & \frac{n-1}{2} \le i \le n - 2 \\ n, & i = n - 1. \end{cases}$$

and

$$f^*(u_n u_1) = 2n - 1.$$

Then, f is a skolem difference odd mean labeling. Thus, C_n for $n \ge 4$ is a skolem difference odd mean graph.

For example, a skolem difference odd mean labeling of C_{12} and C_{11} are shown in Fig.3.

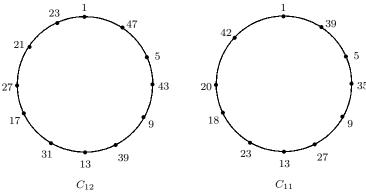


Fig.3

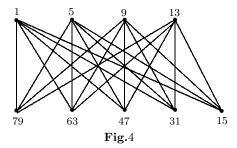
Theorem 2.3 Every complete bipartite graph $K_{m,n} (m \ge 1, n \ge 1)$ is a skolem difference odd mean graph.

Proof Let $V = V_1 \cup V_2$ where $V_1 = \{u_1, u_2, \dots, u_m\}$ and $V_2 = \{v_1, v_2, \dots, v_n\}$. The graph $K_{m,n}$ has m + n vertices and mn edges. Define $f: V(K_{m,n}) \to \{1, 2, 3, \dots, 4q - 1 = 4mn - 1\}$ as follows:

$$f(u_i) = 4i - 3,$$
 $1 \le i \le m$
 $f(v_j) = 4mn - 4m(j - 1) - 1,$ $1 \le j \le n$

For the vertex labeling f, the induced edge label f^* is obtained as $f^*(u_iv_j) = 2mn - 2i + 1 - 2m(j-1), 1 \le i \le m, 1 \le j \le n$. Then, f gives a skolem difference odd mean labeling. Hence, $K_{m,n}$ is a skolem difference odd mean graph for all $m \ge 1, n \ge 1$.

For example, a skolem difference odd mean labeling of $K_{4,5}$ is shown in Fig.4.



Corollary 2.4 By taking m = 1, in the proof of the above theorem, we get a star graph $K_{1,n}$ and it is a skolem difference odd mean graph.

Theorem 2.5 The bistar $B_{m,n}$ is a skolem difference odd mean graph for $m \ge 1, n \ge 1$.

Proof Let $V(K_2) = \{u, v\}$ and $u_i (1 \le i \le m), v_j (1 \le j \le n)$ be the vertices adjacent to u and v respectively. Define $f: V(B_{m,n}) \to \{1, 2, \cdots, 4q - 1 = 4(m+n) + 3\}$ by

$$f(u) = 1,$$

$$f(v) = 4(m+n) + 3,$$

$$f(u_i) = 4i - 1, \quad 1 \le i \le m,$$

$$f(v_j) = 4j + 1, \quad 1 \le j \le n.$$

The induced edge labels are given as follows:

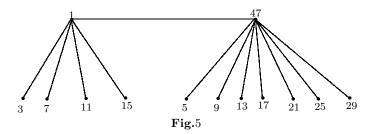
$$f^*(uv) = 2m + 2n + 1,$$

$$f^*(uu_i) = 2i - 1, \quad 1 \le i \le m$$

$$f^*(vv_j) = 2m + 2n - 2j + 1, \quad 1 \le j \le n.$$

Then, f is a skolem difference odd mean labeling and hence $B_{m,n}$ is a skolem difference odd mean graph for all $m \ge 1, n \ge 1$.

For example, a skolem difference odd mean labeling of $B_{4,7}$ is shown in Fig.5.



Theorem 2.6 A quadrilateral snake is a skolem difference odd mean graph.

Proof Let Q_n denote the quadrilateral snake obtained from $u_1, u_2, \ldots, u_{n+1}$ by joining u_i, u_{i+1} to new vertices v_i, w_i respectively and joining v_i and $w_i, 1 \le i \le n$. The graph Q_n has 3n+1 vertices and 4n edges. We define $f: V(Q_n) \to \{1, 2, 3, \cdots, 4q-1 = 16n-1\}$ as follows:

$$f(u_i) = \begin{cases} 6i - 5, & 1 \le i \le n + 1 \text{ and } i \text{ is odd} \\ 16n - 10i + 11, & 1 \le i \le n + 1 \text{ and } i \text{ is even} \end{cases}$$

$$f(v_i) = \begin{cases} 16n - 10i + 9, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 6i - 3, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(w_i) = \begin{cases} 6i - 1, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 16n - 10i + 3, & 1 \le i \le n \text{ and } i \text{ is even.} \end{cases}$$

The induced edge labels are given by

$$f^*(u_i u_{i+1}) = \begin{cases} 8n - 8i + 3, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 8n - 8i + 5, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

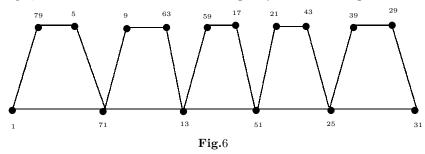
$$f^*(v_i w_i) = \begin{cases} 8n - 8i + 5, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 8n - 8i + 3, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f^*(u_i v_i) = 8n - 8i + 7, \quad 1 \le i \le n \text{ and}$$

$$f^*(u_i w_{i-1}) = 8n - 8i + 9, \quad 2 \le i \le n + 1.$$

Thus, f is a skolem difference odd mean labeling and hence Q_n is a skolem difference odd mean graph.

For example, a skolem difference odd mean labeling of Q_5 is shown in Fig.6.



Theorem 2.7 The ladder $L_n = P_n \times K_2$ is a skolem difference odd mean graph.

Proof Let u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n be the vertices of L_n and $E(L_n) = \{u_i v_i : 1 \le i \le n\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{v_i v_{i+1} : 1 \le i \le n-1\}$. Define $f : V(L_n) \to \{1, 2, 3, \dots, 4q-1 = 12n-9\}$ as follows:

$$f(u_i) = \begin{cases} 4i - 3, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 12n - 8i - 1, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(v_i) = \begin{cases} 12n - 8i - 1, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 4i - 3, & 1 \le i \le n \text{ and } i \text{ is even.} \end{cases}$$

For the vertex labeling f, the induced edge labeling f^* is given as follows:

$$f^*(u_i v_i) = 6n - 6i + 1, \quad 1 \le i \le n$$

$$f^*(u_i u_{i+1}) = \begin{cases} 6n - 6i - 3, & 1 \le i \le n - 1 \text{ and } i \text{ is odd} \\ 6n - 6i - 1, & 1 \le i \le n - 1 \text{ and } i \text{ is even} \end{cases}$$

$$f^*(v_i v_{i+1}) = \begin{cases} 6n - 6i - 1, & 1 \le i \le n - 1 \text{ and } i \text{ is odd} \\ 6n - 6i - 3, & 1 \le i \le n - 1 \text{ and } i \text{ is even.} \end{cases}$$

Then, f is a skolem difference odd mean labeling and hence L_n is a skolem difference odd mean graph.

For example, a skolem difference odd mean labeling of $L_8 = P_8 \times K_2$ is shown in Fig.7.

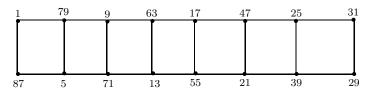


Fig.7

Theorem 2.8 $L_n \odot K_1$ is a skolem difference odd mean graph.

Proof Let L_n be the ladder. Let G be the graph obtained by joining a pendant edge to each vertex of the ladder. let u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n be the vertices of the ladder. For $1 \le i \le n$, let u_i' and v_i' be the new vertices made adjacent with u_i and v_i respectively. The graph G has 4n vertices and 5n-2 edges.

Define
$$f: V(G) \to \{1, 2, \cdots, 4q - 1 = 20n - 9\}$$
 by
$$f(u_i) = \begin{cases} 20n - 8i - 1, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 12i - 7, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(v_i) = \begin{cases} 12i - 7, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 20n - 8i - 1, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(u_i') = \begin{cases} 12i - 11, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 20n - 8i - 5, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(v_i') = \begin{cases} 20n - 8i - 5, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 12i - 11, & 1 \le i \le n \text{ and } i \text{ is odd} \end{cases}$$

For the vertex labeling f, the induced edge labeling f^* is obtained as follows:

$$f^*(u_i u_{i+1}) = \begin{cases} 10n - 10i - 3, & 1 \le i \le n - 1 \text{ and } i \text{ is odd} \\ 10n - 10i - 1, & 1 \le i \le n - 1 \text{ and } i \text{ is even} \end{cases}$$

$$f^*(v_i v_{i+1}) = \begin{cases} 10n - 10i - 1, & 1 \le i \le n - 1 \text{ and } i \text{ is odd} \\ 10n - 10i - 3, & 1 \le i \le n - 1 \text{ and } i \text{ is even} \end{cases}$$

$$f^*(u_i u_i') = \begin{cases} 10n - 10i + 5, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 10n - 10i + 1, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f^*(v_i v_i') = \begin{cases} 10n - 10i + 1, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 10n - 10i + 5, & 1 \le i \le n \text{ and } i \text{ is odd} \end{cases}$$

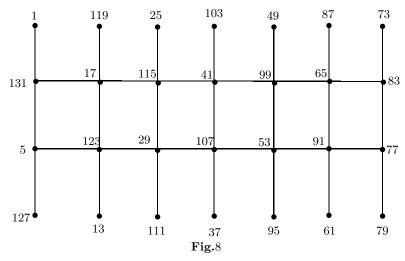
$$10n - 10i + 1, & 1 \le i \le n \text{ and } i \text{ is odd} \end{cases}$$

$$10n - 10i + 1, & 1 \le i \le n \text{ and } i \text{ is odd} \end{cases}$$

$$10n - 10i + 1, & 1 \le i \le n \text{ and } i \text{ is odd} \end{cases}$$

Thus, $L_n \odot K_1$ is a skolem difference odd mean labeling and hence $L_n \odot K_1$ is a skolem difference odd mean graph.

For example, a skolem difference odd mean labeling of $L_7 \odot K_1$ is shown in Fig.8.



Theorem 2.9 Let the path $G_1 = (p_1, q_1)$ and the star $G_2 = (p_2, q_2)$ have skolem difference odd mean

labeling f and g respectively. Let u be the end vertex of G_1 and v be the central vertex of G_2 such that f(u) = 1 and g(v) = 1. Then the graph $(G_1)_f * (G_2)_g$ obtained from G_1 and G_2 by identifying the vertices u and v is also skolem difference odd mean.

Proof Let $V(G_1) = \{u, u_i : 1 \le i \le p_1 - 1\}$ and $V(G_2) = \{v, v_i : 1 \le i \le p_2 - 1\}$. Then the graph $(G_1)_f * (G_2)_g$ has $p_1 + p_2 - 1$ vertices and $q_1 + q_2$ edges.

Define $h: V((G_1)_f * (G_2)_g) \to \{1, 2, 3, \dots, 4(q_1 + q_2) - 1\}$ as follows:

$$h(u_i) = f(u_i), 1 \le i \le p_1 - 1$$

 $h(u) = f(u) = g(v)$ and
 $h(v_i) = g(v_i) + 2(p_1 + q_1 - 1), 1 \le i \le p_2 - 1.$

Then the induced edge labels of G_1 are $1, 3, 5, \ldots, 2q_1 - 1$ and that of G_2 are

$$2q_1+1, 2q_1+3, \cdots, 2(q_1+q_2)-1.$$

Hence, the graph $(G_1)_f * (G_2)_g$ obtained from G_1 and G_2 by identifying the vertices u and v is a skolem difference odd mean graph.

For example, a skolem difference odd mean labeling of G_1, G_2 and $G_1 * G_2$ are shown in Fig.9.

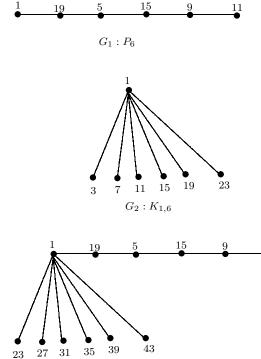


Fig.9

Theorem 2.10 The graph $K_{1,n} \odot K_1$ is skolem difference odd mean for all $n \ge 1$.

 $G_1 * G_2$

Proof Let G be the graph $K_{1,n} \odot K_1$ obtained from the star $K_{1,n}$ with vertices $u_0, u_1, u_2, \dots, u_n$ by joining a vertex v_i to $u_i, 0 \le i \le n$.

Let $V(G) = \{u_0, u_i, v_0, v_i : 1 \le i \le n\}$ and $E(G) = \{u_0v_0, u_0u_i, u_iv_i : 1 \le i \le n\}$. The graph G has 2n + 2 vertices and 2n + 1 edges. Define $f : V(G) \to \{1, 2, \dots, 4q - 1 = 8n + 3\}$ as follows:

$$f(u_0) = 1$$

$$f(u_i) = 4n + 4i - 1, 1 \le i \le n$$

$$f(v_0) = 8n + 3$$

$$f(v_i) = 8i - 3, 1 \le i \le n.$$

For the vertex labeling f, the induced edge labeling f^* in given as follows:

$$f^*(u_0v_0) = 4n + 1$$

$$f^*(u_0u_i) = 2n + 2i - 1, 1 \le i \le n$$

$$f^*(u_iv_i) = 2n - 2i + 1, 1 \le i \le n.$$

Then, f is a skolem difference odd mean labeling and hence G is a skolem difference odd mean graph. \Box

For example, a skolem difference odd mean labeling of $K_{1,7} \odot K_1$ is shown in Fig.10.

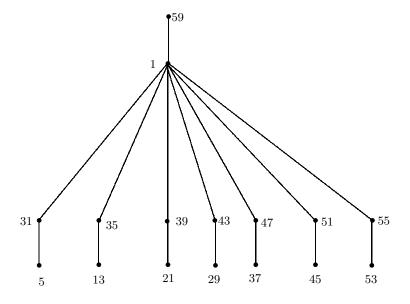


Fig.10

References

- [1] F.Harary, Graph Theory, Addison-Wesley, Reading Mass., 1972.
- [2] K.Manikam and M.Marudai, Odd mean labeling of graphs, *Bulletin of Pure and Applied Sciences*, **25E**(1) (2006), 149–153.
- [3] K.Murugan and A.Subramanian, Skolem difference mean labeling of *H*-graphs, *International Journal of Mathematics and Soft Computing*, **1**(1) (2011), 115–129.

- [4] A.Nagarajan and R.Vasuki, On the meanness of arbitrary path super subdivision of paths, *Australian J. Combin.*, **51** (2011), 41–48.
- [5] S.Somasundaram and R.Ponraj, Mean labelings of graphs, National Academy Science Letters, 26 (2003), 210–213.
- [6] R. Vasuki and A. Nagarajan, Meanness of the graphs $P_{a,b}$ and P_a^b , International Journal of Applied Mathematics, **22**(4) (2009), 663–675.
- [7] R. Vasuki and S. Arokiaraj, On mean graphs, International Journal of Mathematical Combinatorics, 3 (2013), 22–34.
- [8] R. Vasuki and A. Nagarajan, Odd mean labeling of the graphs $P_{a,b}$, P_a^b and $P_{\langle 2a \rangle}^b$, Kragujevac Journal of Mathematics, **36**(1) (2012), 125–134.
- [9] R. Vasuki and S. Arokiaraj, On odd mean graphs, *Journal of Discrete Mathematical Sciences and Cryptography*, (To appear).
- [10] S.K.Vaidya and Lekha Bijukumar, Some new families of mean graphs, *Journal of Mathematics Research*, **2**(3) (2010), 169–176.