Symmetric Hamilton Cycle Decompositions of Complete Graphs Plus a 1-Factor

Abolape D.Akwu

(Department of Mathematics, Federal University of Agriculture, Makurdi, Nigeria)

Deborah O.A.Ajayi

(Department of Mathematics, University of Ibadan, Ibadan, Nigeria)

E-mail: abolaopeyemi@yahoo.co.uk, olayide.ajayi@ui.edu.ng

Abstract: Let $n \geq 2$ be an integer. The complete graph K_n with 1-factor I added has a decomposition into Hamilton cycles if and only if n is even. We show that $K_n + I$ has a decomposition into Hamilton cycles which are symmetric with respect to the 1-factor I added. We also show that the complete bipartite graph $K_{n,n}$ plus a 1-factor has a symmetric Hamilton decomposition, where n is odd.

Key Words: Complete graphs, complete bipartite graph, 1-factor, Hamilton cycle decomposition.

AMS(2010):

§1. Introduction

By a decomposition of a nonempty graph G is meant a family of subgraphs G_1, G_2, \dots, G_k of G such that their edge set form a partition of the edge set of G. Any member of the family is called a part (of the decomposition). This decomposition is usually denoted by $G = G_1 \oplus G_2 \oplus \cdots \oplus G_k$.

Let $n \geq 2$ be an integer. The complete graph K_n has many Hamilton cycles and since its vertices have degree n-1, K_n has a decomposition into Hamilton cycles if and only if n is odd. Suppose that n=2m+1. The familiar Hamilton cycle decomposition of K_n referred to as the Walecki decomposition in [1] is a symmetric decomposition in that each Hamilton cycle H in the decomposition is symmetric in the following sense. Let the vertices of K_n be labeled as $0,1,2,\cdots,m,\bar{1},\bar{2},\cdots,\bar{m}$. Then each H is invariant under the involution $i\to\bar{i}$, where $\bar{i}=i$; the vertex 0 is a fixed point of this involution. A symmetric Hamilton cycle decomposition of K_n different from Walecki's is constructed in [1].

Let G be a graph, then G[2] is a graph whereby each vertex x is replaced by a pair of two independent vertices x, \bar{x} and each edge xy is replaced by four edges $xy, x\bar{y}, \bar{x}y, \bar{x}\bar{y}$.

Now suppose that n is even. Adding the edges of a 1-factor I to K_n results in a graph

¹Received December 10, 2012, Accepted September 2, 2013.

 $K_n + I$ each of whose vertices has even degree n. The graph $K_n + I$ does have a decomposition into Hamilton cycles (see [3]). The complete solution to the problem of decomposing $K_n + I$ into cycles of given uniform length is given in [3].

The degrees of vertices of the complete bipartite graph $K_{n,n}$ equal n, and $K_{n,n}$ has a decomposition into Hamilton cycles if and only if n is even. If n is odd, adding a 1-factor I to $K_{n,n}$ results in a graph $K_{n,n} + I$ with all vertices of even degree n + 1 and $K_{n,n} + I$ also has a decomposition into Hamilton cycles.

Let n=2m be an even integer with $m \geq 1$. Consider the complete bipartite graph $K_{n,n}$ with vertex bipartition into sets $\{1,2,\cdots,n\}$ and $\{\bar{1},\bar{2},\cdots,\bar{n}\}$. By a symmetric Hamilton cycle in $K_{n,n}$, we mean a Hamilton cycle such that $i\bar{j}$ is an edge if and only if $\bar{i}j$ is an edge. Thus a Hamilton cycle in $K_{n,n}$ is symmetric if and only if it is invariant under the involution $i \to \bar{i}$.

A symmetric hamilton cycle decomposition of $K_{n,n}$ is a partition of the edges of $K_{n,n}$ into m symmetric Hamilton cycles. Now let n=2m+1 be an odd integer with $m \geq 1$, and consider the 1-factor $I = \{\{1, \bar{n}\}, \{2, \overline{n-1}\}, \cdots, \{n, \bar{1}\}\}$ of $K_{n,n} + I$. A symmetric Hamilton cycle decomposition of $K_{n,n} + I$ is a partition of the edges of $K_{n,n} + I$ into m+1 symmetric Hamilton cycles.

Let m > 1 be even, consider the vertex set of the complete graph K_{2m} to be $\{1, 2, \dots, m\} \cup \{\bar{1}, \bar{2}, \dots, \bar{m}\}$, where $I = \{1\bar{1}, 2\bar{2}, \dots, m\bar{m}\}$ is a 1-factor of K_{2m} .

The edges of $K_{2m} + I$ are naturally partitioned into edges of K_m on $\{1, 2, \dots, m\}$, the edges of $K_{m,m} + I$, and the edges of K_m on $\{\bar{1}, \bar{2}, \dots, \bar{m}\}$. We denote the complete graph on $\{\bar{1}, \bar{2}, \dots, \bar{m}\}$ by \bar{K}_m . We abuse terminology and write this edge partition as:

$$K_{2m} + I = K_m \cup (K_{m,m} + I) \cup \bar{K_m}$$

By a symmetric Hamilton cycle of $K_{2m} + I$ we mean a Hamilton cycle such that

- (1) ij is an edge in (K_m) if and only if (\overline{ij}) is an edge in $\overline{K_m}$ and
- (2) $i\bar{j}$ is an edge in $(K_{m,m}+I)$ if and only if $j\bar{i}$ is an edge in $(K_{m,m}+I)$.

Thus a Hamilton cycle of $K_{2m}+I$ is symmetric if and only if it is invariant under the fixed point free involution ϕ of $K_{2m}+I$, where $\phi(a)=\bar{a}$ for all a in $\{1,2,\cdots,m\}\cup\{\bar{1},\bar{2},\cdots,\bar{m}\}$ and $\bar{a}=a$. A symmetric Hamilton cycle decomposition of $K_{2m}+I$ is a decomposition of $K_{2m}+I$ into m symmetric Hamilton cycles. Thus ϕ is a nontrivial automorphism of $K_{2m}+I$, which acts trivially on the cycles in a symmetric Hamilton cycle decomposition of $K_{2m}+I$.

A double cover of K_{2m} by Hamilton cycles is a collection $C_1, C_2, \dots, C_{2m-1}$ of 2m-1 Hamilton cycles such that each edge of K_{2m} occurs as an edge of exactly two of these Hamilton cycles. Note that the sum of the number edges in these Hamilton cycles equals

$$(2m-1)2m = 2\left(\begin{array}{c}2m\\2\end{array}\right),$$

twice the number of edges of K_{2m} , and this also equals half the number of edges of $K_{4m} - I$.

We use $K_n + I$ to denote the multigraph obtained by adding the edges of a 1-factor I to K_n , thus duplicating $\frac{n}{2}$ edges.

Let k be a positive integer and $L \subseteq \{1, 2, \dots, \lfloor \frac{k}{2} \rfloor \}$. A circulant graph X = X(k; L) is a graph with vertex set $V(X) = \{u_1, u_2, \dots, u_k\}$ and edge set E(X), where $E(X) = \{u_i u_{i+l} : i \in Z_k, l \in L - \{\frac{k}{2}\}\} \cup \{u_i u_{i+k} : i \in \{1, 2, \dots, \frac{k}{2}\}\}$ if $\frac{k}{2} \in L$, and $E(X) = \{u_i u_{i+l} : i \in Z_k, l \in L\}$ otherwise. An edge $u_i u_{i+l}$, where $l \in L$ is said to be of length l and L is called the edge length set of the circulant X.

Notice that K_n is isomorphic to the circulant $X(n; \{1, 2, \dots, \lfloor \frac{n}{2} \rfloor\})$. If n is even, $K_n - I$ is isomorphic to $X(n; \{1, 2, \dots, \frac{n}{2} - 1\})$ and $K_n + I$ is isomorphic to $X(n; \{1, 2, \dots, \frac{n}{2} - 1, \frac{n}{2}, \frac{n}{2}\})$. Let X = X(k; L) be a circulant graph with vertex set $\{u_1, u_2, \dots, u_k\}$. By the rotation ρ we mean the cyclic permutation $\{u_1, u_2, \dots, u_k\}$.

If $P = x_0 x_1 \cdots x_p$ is a path, \overleftarrow{P} denotes the path $x_p x_{p-1} \cdots x_1 x_0$, the reverse of P.

§2. Proof of the Result

In order that $K_n + I$ have a symmetric Hamilton cycle decomposition, it is necessary that n be even.

Theorem 2.1 Let $m \ge 2$ be an integer. There is a symmetric Hamilton cycle decomposition of $K_{2m} + I$.

Proof View the graph $K_{2m} + I$ as the circulant graph $X(2m; \{1, 2, \dots, m-1, m, m\})$ with vertex set $\{x_1, x_2, \dots, x_{2m}\}$. Let P be the zig-zag (m-1) path

$$P = x_1 x_{+1} x_{-1} x_{+2} x_{-2} \cdots x_A$$

where $A = 1 - 2 + 3 - \cdots + (-1)^m (m-1)$. Thus P has edge length set $L_p = \{1, 2, \cdots, m-1\}$. It is easy to see that

$$C = P \cup \rho^m(\overleftarrow{P})x_1$$

is an 2*m*-cycle and $\{\rho^i(C): i=0,1,\cdots,m-1\}$ is a Hamilton cycle decomposition of $K_{2m}+I$.

Next relabel the vertices of the graph $K_{2m}+I$ by defining a function f as follows: $f: x_i \to x_i$ for $1 \le i \le m$ and $f: x_i \to \bar{x}_{i-m}$ for $m \le i \le 2m$. Relabeling of the vertices of each Hamilton cycle C_{2m} with the new labels gives symmetric Hamilton cycle. Hence $K_{2m}+I$ can be decomposed into symmetric Hamilton cycle.

Lemma 2.2 Let $m \ge 2$ be an integer, and let C be a symmetric Hamilton cycle of $K_{2m} + I$. Then

- (1) If x is any vertex of $K_{2m} + I$, the distance between x and \bar{x} in C is odd;
- (2) *C* is of the form $x_1, x_2, \dots, x_m, \bar{x}_m, \bar{x}_{m-1}, \dots, \bar{x}_2, \bar{x}_1 x_1$ where $x_i \in \{1, 2, \dots, m, \bar{1}, \bar{2}, \dots, \bar{m}\};$
 - (3) The number of edges $x_i \bar{x}_i$ in each symmetric Hamilton cycle is $2, 1 \leq i \leq m$.

Proof Let x be a vertex of $K_{2m}+I$ and let the distance between x and \bar{x} in C be k. Then there is a path $x=x_1,\cdots,x_{\frac{k+1}{2}},\bar{x}_{\frac{k+1}{2}},\cdots,\bar{x}_2\bar{x}_1=\bar{x}$ in C. Since for each $x_i,i\in N$ we have

 $k, \frac{k+1}{2} \in N$. Suppose k is even, then $\frac{k+1}{2} \notin N$. Therefore k is odd which proves (1). Assertion (2) is now an immediate consequence. Since the cycle C is given as in (2), we have edges $\{x_1\bar{x}_1\}$ and $\{x_m\bar{x}_m\}$ which proves (3).

Theorem 2.3 Let m be an even integer, then the graph $K_m + I[2]$ has a symmetric Hamilton cycle decomposition.

Proof From the definition of the graph $K_m + I[2]$, each vertex x in $K_m + I$ is replaced by a pair of two independent vertices x, \bar{x} and each edge xy is replaced by four edges $xy, x\bar{y}, \bar{x}y, \bar{x}\bar{y}$. Also note that if the graph H decomposes the graph G, then H[2] decomposes G[2].

By [3], cycle C_m decomposes $K_m + I$, then we have

$$K_m + I[2] = C_m[2] \oplus C_m[2] \oplus \cdots \oplus C_m[2]$$

Now label the vertices of each graph $C_m[2]$ as $x_i\bar{x}_i$, where $i=1,2,\cdots,m$. By [2], each graph $C_m[2]$ decomposes into symmetric Hamilton cycle C_{2m} . Therefore $K_m+I[2]$ decomposes into symmetric Hamilton cycles.

Theorem 2.4 Let $m \ge 4$ be an even integer. From a symmetric Hamilton cycle decomposition of $K_m + I[2]$ we can construct a double cover of $K_m + I$ by Hamilton cycles.

Proof By Theorem 2.3, a symmetric Hamilton cycle of $K_m+I[2]$ is of the form x_1, x_2, \dots, x_m , $\bar{x}_m, \bar{x}_{m-1}, \dots, \bar{x}_2, \bar{x}_1x_1$ where $x_i \in \{1, 2, \dots, m, \bar{1}, \bar{2}, \dots, \bar{m}\}$. Thus $x_1x_2...x_m$ is a path of length m-1 in $K_m+I[2]$ and $\bar{x}_m\bar{x}_{m-1}\dots\bar{x}_2\bar{x}_1$ is its mirror image. Let

$$b_i = \begin{cases} x_i & \text{if } x_i \in \{1, 2, \cdots, m\} \\ \bar{x_i} & \text{if } x_i \in \{\bar{1}, \bar{2}, \cdots, \bar{m}\} \end{cases}$$

Then $b_1, b_2, \dots, b_m, b_1$ is a Hamilton cycle in $K_m + I$, the projection of C on $K_m + I$. Now assume we have a symmetric Hamilton cycle decomposition of $K_m + I[2]$. Then for each edge $x_i x_j$ in $K_m + I$, there are distinct symmetric Hamilton cycles C and C' in our decomposition such that $x_i x_j$ and $\bar{x}_i \bar{x}_j$ are edges of C and $x_i \bar{x}_j$ are edges of C'. Hence from a symmetric Hamilton cycle decomposition of $K_m + I[2]$, we get a double cover of $K_m + I$ from the projections of each symmetric Hamilton cycle.

Theorem 2.5 Let $m \ge 4$ be even integer. Then $K_{2m} + I$ has a double cover by Hamilton cycles.

Proof There is a Hamilton cycle C in $K_{2m}+I$, and there exists disjoint 1-factor I_1 and I_2 whose union is the set of edges of C. The vertices of the graphs $K_{2m}+I_1$ and $K_{2m}-I_2$ have degrees equal to the even number. The graphs $K_{2m}+I_1$ and $K_{2m}-I_2$ have decompositions into Hamilton cycles C_1, C_2, \cdots, C_m and $D_1, D_2, \cdots, D_{m-1}$ respectively. Then C, C_1, C_2, \cdots, C_m , $D_1, D_2, \cdots, D_{m-1}$ is a double cover of $K_{2m}+I$ by Hamilton cycles .

Theorem 2.6 For each integer $m \ge 1$, there exist a symmetric Hamilton cycle decomposition of $K_{2m+1,2m+1} + I$.

Proof Let n=2m+1, we consider the complete bipartite graph $K_{n,n}$ with vertex bipartition $\{1,2,3,\cdots,n\}$ and $\{\bar{1},\bar{2},\cdots,\bar{n}\}$. Let I be $\{\{1,\bar{n}\},\{2,n-1\},\{3,n-2\},\cdots,\{n,\bar{1}\}\}$ in $K_{n,n}+I$.

Let the sum of edge $a\bar{b}$ be $a+b \mod n$. Let S_k be the set of edges whose sum is k. Let i be an integer with $1 \le i \le m+1$. Consider the union $S_{2i-1} \cup S_{2i}$, 2i is calculated modulo n. observe that this collection of edges yields the following symmetric Hamilton cycle of $K_{n,n} + I$;

$$n, 2i - 1, 1, 2i - 2, 2, 2i - 3, 3, \dots, \bar{2i}, n$$

For each i, let H_i equal $S_{2i-1} \cup S_{2i}$. Then H_1, H_2, \dots, H_{m+1} is a symmetric Hamilton cycle decomposition of $K_{n,n} + I$.

References

- [1] J.Akiyama, M.Kobayashi, G.Nakamura, Symmetric Hamilton cycle decompositions of the complete graph, *J. Combin. Des.*, 12 (2004), 39-45.
- [2] R.Laskar, Decomposition of some composite graphs into Hamiltonian cycles, in: *Proc. 5th Hungarian Coll. Keszthely*, North Holland, 1978, 705-716.
- [3] M.Sajna, Decomposition of the complete graph plus a 1-factor into cycles of equal length, J. Combin. Des., 11 (2003), 170-207.