Special Kinds of Colorable Complements in Graphs

B.Chaluvapaju

(Department of Studies and Research in Mathematics, B. H. Road, Tumkur University, Tumkur -572 103, India)

C.Nandeeshukumar and V.Chaitra

(Department of Mathematics, Bangalore University, Central College Campus, Bangalore -560 001, India)

E-mail: bchaluvaraju@gmail.com, cnkmys@gmail.com, chaitrashok@gmail.com

Abstract: Let G = (V, E) be a graph and $C = \{C_1, C_2, \dots, C_k\}$ be a partition of color classes of a vertex set V(G). Then the graph G is a k-colorable complement graph G_k^C (with respect to C) if for all C_i and C_j , $i \neq j$, remove the edges between C_i and C_j , and add the edges which are not in G between C_i and C_j . Similarly, the k(i)- colorable complement graph $G_{k(i)}^C$ of a graph G is obtained by removing the edges in $\langle C_i \rangle$ and $\langle C_j \rangle$ and adding the missing edges in them. This paper aims at the study of Special kinds of colorable complements of a graph and its relationship with other graph theoretic parameters are explored.

Key Words: Graph, complement, k-complement, k(i)-complement, colorable complement.

AMS(2010): 05C15, 05C70

§1. Introduction

All the graphs considered here are finite, undirected and connected with no loops and multiple edges. As usual n = |V| and m = |E| denote the number of vertices and edges at a graph G, respectively. For the open neighborhood of a vertex $v \in V$ is $N(v) = \{u \in V/uv \in E\}$, the set of vertices adjacent to v. The closed neighborhood is $N[v] = N(v) \bigcup \{v\}$. In general, we use $\langle X \rangle$ to denote the sub graph induced by the set of vertices X. If deg(v) is the degree of vertex v and usually, $\delta(G)$ is the minimum degree and $\Delta(G)$ is the maximum degree. The complement G_c of a graph G defined to be graph which has V as its sets of vertices and two vertices are adjacent in G_c if and only if they are not adjacent in G. Further, a graph G is said to be self-complementary (s.c), if $G \cong G_c$. For notation and graph theory terminology we generally follow [3], and [5].

Let G = (V, E) be a graph and $P = \{V_1, V_2, \dots, V_k\}$ be a partition of V. Then k-complement G_k^P and k(i)-complement $G_{k(i)}^P$ (with respect to P) are defined as follows: For all V_i and V_j , $i \neq j$, remove the edges between V_i and V_j , and add the edges which are not in G between V_i and V_j . The graph G_k^P thus obtained is called the k-complement of a graph G with respect to P. Similarly, the k(i)-complement of $G_{k(i)}^P$ of a graph G is obtained by removing the edges in $\langle V_l \rangle$ and $\langle V_j \rangle$ and adding the missing edges in them for $l \neq j$. This concept was first

¹Received June 13, 2013, Accepted August 10, 2013.

introduced by Sampathkumar et al. [9] and [10]. For more detail on complement graphs, we refer [1], [2], [4], [8], [11] and [12].

A graph is said to be k-vertex colorable (or k-colorable) if it is possible to assign one color from a set of k colors to each vertex such that no two adjacent vertices have the same color. The set of all vertices with any one color is independent and is called a color class. An k-coloring of a graph G uses k colors: it there by partitions V into k color classes. The chromatic number $\chi(G)$ is defined as the minimum k for which G has an k-coloring. Hence, graph G is a k-colorable if and only if $\chi(G) \leq k$, [7].

We make use of the following results in sequel [6].

Theorem 1.1 For any non-trivial graph G,

$$\sum_{x_i \in V} deg(x_i) = 2m.$$

Theorem 1.2(Konig's [5]) In a bipartite graph G, $\alpha_1(G) = \beta_0(G)$. Consequently, if a graph G has no vertex of degree 0, then $\alpha_0(G) = \beta_1(G)$.

§2. k-Colorable Complement

Let G = (V, E) be a graph. If there exists a k-coloring of a graph G if and only if V(G) can be partitioned into k subsets C_1, C_2, \dots, C_k such that no two vertices in color classes of $C_i, i = 1, 2, \dots, k$, are adjacent. Then, we have the following definitions.

Definition 2.1 The k-colorable complement graph G_k^C (with respect to C) of a graph G is obtained by for every C_i and C_j , $i \neq j$, remove the edges between C_i and C_j in G, and add the edges which are not in a graph G.

Definition 2.2 The graph G is k-self colorable complement graph, if $G \cong G_k^C$.

Definition 2.3 The graph G is k-co-self colorable complement graph, if $G_c \cong G_k^C$.

Lemma 2.1 Let G be a k-colorable graph. Then in any k-coloring of G, the subgraph induced by the union of any two color classes is connected.

Proof If possible, let C_1 and C_2 be two color classes of vertex set V(G) such that the subgraph induced by $C_1 \cup C_2$ is disconnected. Let G_1 be a component of the subgraph induced by $C_1 \cup C_2$. Obviously, no vertex of G_1 is adjacent to a vertex in $V(G) - V(G_1)$, which is assign the color either C_1 or C_2 . Thus interchanging the colors of the vertices in G_1 and retaining the original colors for all other vertices, we gets a different k-coloring of a graph G, which is a contradiction.

Theorem 2.1 Let G be a (n, m)-graph. If for every C_l and C_j , $l \neq j$, and each vertex of C_l is adjacent to each vertex of C_j , then $m(G_k^C) = \emptyset$.

Proof If for every C_l and C_j , $l \neq j$ in a (n, m)-graph with $\langle C_k \rangle$ is totally disconnected,

where C_k is the partition of color classes of vertex set V(G), then by the definition of k-colorable complement, $m(G_k^C) = \emptyset$ follows. Conversely, suppose the given condition is not satisfied, then there exist at least two vertices u and v such that $u \in C_l$ is not adjacent to vertex $u \in C_j$ with $l \neq j$. Thus by above lemma, this implies that $m(G_k^C) \geq 1$, which is a contradiction.

A graph that can be decomposed into two partite sets but not fewer is bipartite; three sets but not fewer, tripartite; k sets but not fewer, k-partite; and an unknown number of sets, multipartite. An 1-partite graph is the same as an independent set, or an empty graph. A 2-partite graph is the same as a bipartite graph. A graph that can be decomposed into k partite sets is also said to be k-colorable. That is $\chi(K_n) = n$, but the chromatic number of complete k- partite graph $\chi(K_{r_1,r_2,r_3,\cdots,r_k}) = k < n$ for $r_i > 2$, where $i = 1, 2, \cdots, k$. By virtue of the facts, we have following corollaries.

Corollary 2.1 Let G be a complete graph K_n ; $n \ge 1$ vertices and $m = \frac{n(n-1)}{2}$ edges with $\chi(K_n) = n$. Then $m(G_n^C) = \varnothing$.

Corollary 2.2 Let G be a complete bipartite graph K_{r_1,r_2} ; $1 \le r_1 \le r_2$, with $\chi(K_{r_1,r_2}) = 2$ for $n = (r_1 + r_2)$ - vertices and $m = (r_1 \cdot r_2)$ edges. Then $m(G_2^C) = \emptyset$.

Theorem 2.2 Let G be a path P_n with $\chi(P_n) = 2$; $n \ge 2$ vertices. Then

$$m(G_2^C) = \begin{cases} \frac{1}{4}(n-2)^2 & \text{if } n \text{ is even} \\ \frac{1}{4}(n-1)(n-3) & \text{if } n \text{ is odd.} \end{cases}$$

Proof Let G be a path P_n with $\chi(P_n) = 2$; $n \ge 2$ vertices, and $C = \{C_1, C_2\}$ be a partition of colorable class of vertex set of P_n . We have the following cases.

Case 1 If $\{u_1, u_2, \dots, u_{t-1}, u_t\} \in C_1$ and $\{v_1, v_2, \dots, v_{t-1}, v_t\} \in C_2$ with $v_1 - v_t$ is path of even length. Then u_1, u_2, \dots, u_{t-1} are adjacent (t-2)-vertices, that is $deg(u_i) = (t-2)$ if $1 \le i \le t-1$. Similarly, v_1, v_2, \dots, v_t are adjacent to (t-2)- vertices that is $deg(u_i) = (t-2)$ if $2 \le i \le t-1$, and v_1 and v_1 are adjacent to (t-1)- vertices in G_2^C . Thus, $2(t-1) + (n-2)(t-2) = 2m(G_2^C)$. By Theorem 1.1, with the fact that $v_1 = v_2 = v_3 = v_1$. Hence $v_1 = v_2 = v_3 = v_3 = v_3 = v_2$.

Case 2 If $\{u_1, u_2, \cdots, u_{t-1}, u_t\} \in C_1$ and $\{v_1, v_2, \cdots, v_t, v_{t+1}\} \in C_2$ with $v_1 - v_{t+1}$ is path of even length. Then u_1, u_2, \cdots, u_t are adjacent (t-1)-vertices, v_2, v_3, \cdots, v_t are adjacent to (t-2)- vertices and, v_1 and u_{t-1} are adjacent to (t-1) - vertices in G_2^C . Thus, $t(t-1) + (t-1)(t-2) + 2(t-1) = 2m(G_2^C)$. By theorem 1.1, with the fact that n = 2t+1 and m(G) = n-1. Hence $m(G_2^C) = \frac{1}{4}(n-1)(n-3)$.

Theorem 2.3 Let G be a cycle C_n ; $n \ge 3$ vertices. Then

- (i) $m(G_2^C) = \frac{(n-4)n}{4}$, if $\chi(C_n) = 2$ and n is even.
- (ii) $m(G_3^C) = \frac{(n+1)(n-3)}{4}$, if $\chi(C_n) = 3$ and exactly one vertex is contain in any one colorable class of a vertex partition set of an odd cycle C_n .

Proof The proof follows from Theorem 2.2, with even cycle of C_n and exactly one vertex is contain in any one colorable class of a vertex partition set of an odd cycle C_n .

Theorem 2.4 Let G be a Wheel W_n ; $n \ge 4$ vertices and m = 2(n-1) edges. Then

- $(i) \ \ m(G_4^C) = \frac{(n-4)n}{4}, \ if \ \chi(C_n) = 4 \ and \ n \ is \ even.$ $(ii) \ \ m(G_3^C) = \frac{(n+1)(n-3)}{4} \ , \ if \ \chi(W_n) = 3 \ and \ exactly \ one \ vertex \ is \ contain \ in \ any \ one$ colorable class of a vertex partition set of an odd cycle C_{n-1} of W_n .

Proof By Theorem 2.3 and $m(K_1) = 0$ due to the fact of $W_n = K_1 + C_{n-1}$, the result follows.

Theorem 2.5 Let T be a nontrivial tree with $\chi(T) = 2$. Then

$$m(G_2^C) = (r_1.r_2) - n(T) + 1.$$

Proof Let $C = \{C_1, C_2\}$ be a partition of colorable class of a tree T with $n \geq 2$ vertices and m(T) = n(T) - 1. If every vertex in C_1 is adjacent to every vertex in C_2 , that is K_{r_1,r_2} with $m(K_{r_1,r_2}) = r_1.r_2$. By definition of G_k^C with $\chi(T) = 2$, we have $m(G_2^C) = m(K_{r_1,r_2}) - m(T)$. Thus the results follows.

Theorem 2.6 For any non trivial graph G is k - self colorable complement if and only if $G \cong P_7$ or $2K_2$.

Proof By definition of k-self colorable complement. It is clear that both G and G_2^C are isomorphic to P_7 or $2K_2$ with $\chi(P_7) = \chi(2K_2) = 2$. On the other hand, suppose G is k-self colorable complement, when G is not isomorphic with P_7 or $2K_2$. Then there exist at least two adjacent vertices u and v in G such that $u \in C_1$ and $v \in C_2$ are in disjoint color classes of $C = \{C_1, C_2\}$ with $\chi(P_7) = \chi(2K_2) = 2$. This implies that, u and v are not adjacent in G_2^C or they are in one color classes in G_1^C , that is totally disconnected graph. Thus the graph Gand its colorable complements G_k^C are not isomorphic to each other, which is a contradiction. Hence the results follows.

Theorem 2.7 Let G be a k-self colorable complement graph. Then G has a vertex of degree at least $\frac{n(\chi(G)-1)}{2\chi(G)}$.

Proof Let G be a (n,m)- graph with $G \cong G_k^C$ and $C = \{C_1, C_2, \cdots, C_k\}$ be a partition of color classes of a vertex set V(G). Suppose, if $\chi(G) = k$ and V(G) is partitioned into k independent sets C_1, C_2, \cdots, C_k . Thus, $n = |V(G)| = |C_1, C_2, \cdots, C_k| = \sum_{i=1}^k |V(G)| \le k$ $k\beta(G)$, where $\beta(G)$ is the independence number of a graph G. There fore $\chi(G) = k = n/\beta(G)$. Also, suppose $v \in C_i$, where C_i is a colorable set in C with at most $n/\chi(G)$. Then the sum of the degree of v in G and G_k^C is greater than $\frac{n(\chi(G)-1)}{\chi(G)}$. This implies that the degree of v is at least $\frac{1}{2}(n-\frac{n}{\chi(G)})$. Hence the result follows. **Theorem** 2.8 Let G be a k-self colorable complement graph. Then

$$\frac{(k-1)(2n-k)}{4} \le m(G) \le \frac{2n(n-k) + k(k-1)}{4}.$$

Proof Let G be a k-self colorable complement graph and $C = \{C_1, C_2, \dots, C_k\}$ be a partition of color classes of a vertex set V(G). If $|C_t| = n_t$ for $1 \le t \le k$, then the total number of edges between C_l and C_j in C, $l \ne j$, in both the graph G and its colorable complement graph G_k^C is $\sum_{l \ne j} n_l n_j$. Since the graph G is k-self colorable complement graph G_k^C , half of these

edges are not there in G. Hence $m(G) \leq \binom{n}{2} - \sum_{l \neq j} n_l n_j$. Clearly, $\sum_{l \neq j} n_l n_j$ is minimum, when $n_t = 1$ for k-1 of the indices. Thus, we have

$$m(G) \le \binom{n}{2} - \frac{1}{2} \left[\binom{k-1}{2} + (k-1)(n-k+1) \right].$$

Hence the upper bound follow. To establish the lower bound, the graph G being k-self colorable complement has at least $\sum_{l\neq j} n_l n_{j^-}$ edges. So, $\frac{1}{2} \begin{bmatrix} k-1 \\ 2 \end{bmatrix} + (k-1)(n-k+1) \end{bmatrix} \leq m(G)$ and the result follows.

Theorem 2.9 For any non trivial graph G is k - co - self colorable complement if and only if $G \cong K_n$.

Proof On contrary, suppose given condition is not satisfied, then there exists at least three vertices u, v and w such that v is adjacent to both u and w, and u is not adjacent to w. This implies that an edge $e = uw \in G_c$ and induced subgraph $\langle u, v, w \rangle$ in G_2^C is totally disconnected. Thus $E(G_2^C) \subset E(G_c)$, which is a contradiction to the fact of $G_c \cong G_n^C$ with $\chi(K_n) = n$. Converse is obvious.

§3. k(i)-Colorable Complement

Let G = (V, E) be a graph and $C = \{C_1, C_2, \dots, C_k\}$ be a partition of color classes of a vertex set V(G). Then, we have the following definitions.

Definition 3.1 The k(i) - colorable complement graph $G_{k(i)}^C$ (with respect to C) of a graph G is obtained by removing the edges in $\langle C_l \rangle$ and $\langle C_j \rangle$ and adding the missing edges in them for $l \neq j$.

Definition 3.2 The graph G is k(i)-self colorable complement graph, if $G \cong G_{k(i)}^C$.

Definition 3.3 The graph G is k(i)-co-self colorable complement graph, if $G_c \cong G_{k(i)}^C$.

Theorem 3.1 For any graph G, $m(G_{k(i)}^C) = \frac{n(n-1)}{2}$ if and only if the graph G is isomorphic with complete n- partite graph $K_{r_1,r_2,r_3,\cdots,r_n}$ or $(K_n)_c$.

Proof To prove the necessity, we use the mathematical induction. Let G be a graph with n=1 vertex. Then $\chi(G)=1$ and $m(G_{1(i)}^C)=\varnothing$. Hence the result follows. Suppose the graph G with n>1 vertices. Then the following cases are arises.

Case 1 If the graph G is totally disconnected, that is $(K_n)_c$, complement of a complete graph K_n , then G has a only one color class C_1 with $\chi((K_n)_c) = 1$. By the definition of $G_{1(i)}^C$, the induced subgraph of $\langle C_1 \rangle$ is complete, which form a $\frac{n(n-1)}{2}$ - edges.

Case 2. If the graph G is complete n- partite graph $K_{r_1,r_2,r_3,...,r_n}$, then for every two color classes C_l and C_j for $l \neq j$, and each vertex C_l adjacent to each vertex of C_j in complete n-partite graph $K_{r_1,r_2,r_3,...,r_n}$ with $m(K_{r_1,r_2,r_3,...,r_n}) = r_1r_2r_3...r_n$. By the definition of $G_{n(i)}^C$ with $G = K_{r_1,r_2,r_3,...,r_n}$, we have

$$m(G_{n(i)}^C) = \begin{pmatrix} r_1 \\ 2 \end{pmatrix} + \begin{pmatrix} r_2 \\ 2 \end{pmatrix} + \ldots + \begin{pmatrix} r_n \\ 2 \end{pmatrix} + r_1 r_2 r_3 \ldots r_n,$$

where $\begin{pmatrix} r_t \\ 2 \end{pmatrix}$ is the maximum number edges of induced subgraph $\langle C_t \rangle$ if $t = 1, 2, \dots, n$, which

are complete. This forms $\frac{n(n-1)}{2}$ edges.

Conversely, suppose the graph G is not isomorphic to complete n- partite graph $K_{r_1,r_2,r_3,...,r_n}$ or $(K_n)_c$. Then there exist at least three vertices $\{a,b,c\}$ such that at least two adjacent vertices a and b are not adjacent to isolated vertex c. By the definition of $G_{k(i)}^C$ with $\chi(G) = k \geq 2$, which form a path (a-b-c) or (b-a-c) of length 2, which is not a complete, a contradiction. This proves the sufficiency.

Theorem 3.2 Let G be a path P_n with $\chi(P_n) = 2$ and $n \ge 2$ vertices. Then

$$m(G_{2(i)}^C) = \begin{cases} \frac{1}{4}[n^2 + 2n - 4]^2 & \text{if } n \text{ is even} \\ \frac{1}{4}(n - 1)(n + 3) & \text{if } n \text{ is odd} \end{cases}$$

Proof Let G be a path P_n with $\chi(P_n) = 2$; $n \ge 2$ vertices, and $C = \{C_1, C_2\}$ be a partition of colorable class of vertex set of P_n . We have the following cases.

Case 1 Let $C = \{C_1, C_2\}$ be a partition of colorable class of P_n . If $\{u_1, u_2, \cdots, u_{t-1}, u_t\} \in C_1$ and $\{v_1, v_2, \cdots, v_{t-1}, v_t\} \in C_2$ with $v_1 - u_t$ is path of even length. Then $\langle C_1 \rangle$ and $\langle C_2 \rangle$ are complete in $G_{2(i)}^C$ and also $v_1 - u_t$ path have (n-1) - edges in both the graph G and its k(i)-colorable complement graph $G_{2(i)}^C$. Thus, $m(G) + t(t-1) = (n-1) + n(n-2)/4 = m(G_{2(i)}^C)$ and this implies $m(G_{2(i)}^C) = \frac{1}{4}[n^2 + 2n - 4]^2$.

Case 2 Let $C = \{C_1, C_2\}$ be a partition of colorable class of P_n . If $\{u_1, u_2, \cdots, u_{t-1}, u_t\} \in C_1$ and $\{v_1, v_2, \cdots, v_{t-1}, v_t\} \in C_2$ with $v_1 - u_{t+1}$ is path of odd length. Then $\langle C_1 \rangle$ and $\langle C_2 \rangle$ are complete in $G_{2(i)}^C$ and also $v_1 - u_{t+1}$ path have (n-1) - edges in both the graph G and its 2(i)-colorable complement graph $G_{2(i)}^C$. Thus, $m(G) + t(t-1)/2 + t(t+1)/2 = (n-1)[1 + (n-3)/8 + (n+1)/8] = m(G_{2(i)}^C)$ and this implies $m(G_{2(i)}^C) = \frac{1}{4}(n-1)(n+3)$.

Theorem 3.3 Let G be a cycle C_n ; $n \ge 3$ vertices. Then

- (i) $m(G_{2(i)}^C) = \frac{1}{4}[n(n+2)]$, if $\chi(C_n) = 2$ and n is even.
- (ii) $m(G_{3(i)}^C) = \frac{1}{4}(n^2 + 3)$, if $\chi(C_n) = 3$ and exactly one vertex is contain in any one colorable class of a vertex partition set of an odd cycle C_n .

Proof The proof follows from Theorem 3.2, with even cycle of C_n and exactly one vertex is contain in any one colorable class of a vertex partition set of an odd cycle C_n .

Theorem 3.4 Let T be a nontrivial tree with $\chi(T) = 2$. If $C = \{C_1, C_2\}$ be a partition of colorable class of a tree T, then

$$m(G_{2(i)}^C) = \frac{1}{2}[r^2 + s^2 + n - 2],$$

where $|C_1| = r$ and $|C_2| = s$.

Proof Let $C = \{C_1, C_2\}$ be a partition of colorable class of a tree T with $\chi(T) = 2$ and m(T) = n(T) - 1 = r + s + 1. Then by definition of $G_{k(i)}^C$, we have $\langle C_1 \rangle$ and $\langle C_2 \rangle$ are complete.

There fore,
$$m(C_1) = \begin{pmatrix} r \\ 2 \end{pmatrix}$$
 and $m(C_2) = \begin{pmatrix} s \\ 2 \end{pmatrix}$.

Thus, we have

$$m(G_{2(i)}^C) = \begin{pmatrix} r \\ 2 \end{pmatrix} + \begin{pmatrix} s \\ 2 \end{pmatrix} + m(T) = \frac{1}{2}[r(r+1) + s(s+1) - 2].$$

Hence the result follows.

Theorem 3.5 For any non trivial graph G is k(i) - self colorable complement if and only if G is isomorphic with K_n .

Proof Let $G = K_n$ be a complete graph with $\chi(G) = n$. Then by the definition of $G_{k(i)}^C$, the induced subgraph $\langle C_t \rangle$ for t = 1, 2, ..., n are connected and $|C_t| = 1$ for t = 1, 2, ..., n. Thus $G_{n(i)}^C \cong K_n$ and the result follows. Conversely, suppose given condition is not satisfied, then there exists at least two non adjacent vertices u and v in a graph G such that $\chi(G) = 1$ and $m(G) = \emptyset$. By the definition of $G_{k(i)}^C$, we have $\chi(G_{1(i)}^C) = 2$ with an induced subgraph $\langle u, v \rangle$ in $G_{1(i)}^C$ is connected. Thus $m(G) < m(G_{1(i)}^C)$, which is a contradiction to the fact of $G \cong G_{k(i)}^C$.

§4. $\{G, G_k^p, G_{k(i)}^p\}$ - Realizability

Here, we show the $G, G_k^p, G_{k(i)}^p$ - Realizability for some graph theoretic parameter.

Let G be a graph. Then $S \subseteq V(G)$ is a separating set if G-S has more than one component. The connectivity $\kappa(G)$ of G is the minimum size of $S \subseteq V(G)$ such that G-S is disconnected or a single vertex. For any $k \leq \kappa(G)$, we say that G is k-connected. Then, we have

Theorem 4.1 Let G be a graph with $C = \{C_1, C_2\}$ be a partition of colorable class of a vertex set V. If $\langle C_1 \rangle$ and $\langle C_2 \rangle$ are (t-1) -colorable with Max. $\{\chi(G_k^C), \chi(G_{k_i}^C)\} \geq t$, then Min. $\{k(G), k(G_k^C), k(G_{k_i}^C)\}$ has at least (t-1) -edges.

Theorem 4.2 Let G be a (n, m)- graph. Then

- (i) $\chi(G_k^C) = 1$ if and only if G is isomorphic with K_n or $(K_n)_c$ or $K_{r_1, r_2, r_3, \cdots, r_k}$.
- (ii) $\chi(G_{k(i)}^C) = n$ if and only if G is isomorphic with K_n or $(K_n)_c$ or $K_{r_1,r_2,r_3,\cdots,r_k}$.

Proof By the definition of G_k^C and Theorem 2.1, (i) follows. Also by the definition of $G_{k(i)}^C$ and Theorem 3.1, (ii) follows.

A set M of vertices in a graph G is independent if no two vertices of M are adjacent. The number of vertices in a maximum independent set of G is denoted by $\beta(G)$. Opposite to an independent set of vertices in a graph is a clique. A clique in a graph G is a complete subgraph of G. The order of the largest clique in a graph G and its clique number, which is denoted by $\omega(G)$. In fact $\beta(G) = k$ if and only if $\omega(\overline{G}) = k$. Then, we have

Theorem 4.3 Let G be a nontrivial (n, m)- graph. Then

- (i) $\beta(G_{k(i)}^C) \leq \beta(G) \leq \beta(G_k^C)$.
- (ii) $\omega(G_k^C) \le \omega(G) \le \omega(G_{k_i}^C)$.

Acknowledgement

Thanks are due to Prof. E.Sampathkumar for his help and valuable suggestions in the preparation of this paper.

References

- [1] Acharya B.D., On Characterizing graphs switching equivalent to acyclic graphs, *Indian J. Pure Appl. Math.*, 12 (10)(1981), 1187-1191.
- [2] Chaluvaraju B., 2-global and 2(i)-global dominating sets in graphs, *Intenat. J. of Phy. Sc.* 20(2)(2008)M, 481-488.
- [3] Chartrand G and Lesniak L., *Graphs and Digraphs*, Fourth Edition, Chapman and Hall/CRC Press 2004.
- [4] Gangopadhyay T., Hebbare and Rao S. P., Paths in r-partite self-complementary graphs, *Discrete Math.*, 32(1980), 229-243.
- [5] Harary F., Graph Theory, Addison-Wesley, Reading Mass, 1969.
- [6] Harary F., Proof Techniques in Graph Theory, Academic Press, New York, 1969.
- [7] Jensen T.R. and Toft B, *Graph Coloring Problem*, John Wiley & Sons, Inc, New York, 1995.
- [8] Sampathkumar E. and Bhave V. N., Partition graphs and coloring numbers of a gra.ph, *Discrete Math.*, 6(1)(1976), 57-60.

- [9] Sampathkumar E and Pushpalatha L., Complement of a graph: A generalization, *Graphs and Combinatorics*, 14(4)(1998), 377-392.
- [10] Sampathkumar E., Pushpalatha L., Venkatachalam C.V. and Pradeep Bhat, Generalized complements of a graph, *Indian J. Pure Appl. Math.*, 29 (6)(1998), 625-639.
- [11] Sampathkumar E. and Venkatachalam C.V., Chromatic partition of a graph, *Disc. Math.*, 74 (1989), 227-239.
- [12] Soner N. D., Janakiram B., and Chaluvaraju B., Domination in 2-complement (2(i)-complement) of a graph, *Advanced Studies in Contemporary Mathematics*, South Korea, 7(2003), 145-154.