Achromatic Coloring on Double Star Graph Families

Vernold Vivin J.

Department of Mathematics, Sri Shakthi Institute of Engineering and Technology, Coimbatore - 641 062, Tamil Nadu, India.

 $E\text{-mail: vernold_vivin@yahoo.com, vernoldvivin@yahoo.in}$

Venkatachalam M.

Department of Mathematics, SSK College of Engineering and Technology,

Coimbatore - 641 105, Tamil Nadu, India.

E-mail: venkatmaths@gmail.com

Akbar Ali M.M.

 $\label{eq:continuous} \mbox{Department of Mathematics, Sri Shakthi Institute of Engineering and Technology,}$

Coimbatore - 641 062, Tamil Nadu, India.

E-mail: $um_akbar@yahoo.co.in$

Abstract: The purpose of this article is to find the achromatic number, i.e., Smarandachely achromatic 1-coloring for the central graph, middle graph, total graph and line graph of double star graph $K_{1,n,n}$ denoted by $C(K_{1,n,n})$, $M(K_{1,n,n})$, $T(K_{1,n,n})$ and $L(K_{1,n,n})$ respectively.

Keywords: Smarandachely achromatic k-coloring, Smarandachely achromatic number, central graph, middle graph, total graph, line graph and achromatic coloring.

AMS(2000): 05C15

§1. Preliminaries

For a given graph G = (V, E) we do an operation on G, by subdividing each edge exactly once and joining all the non adjacent vertices of G. The graph obtained by this process is called central graph [10] of G denoted by C(G).

Let G be a graph with vertex set V(G) and edge set E(G). The middle graph [4] of G, denoted by M(G) is defined as follows. The vertex set of M(G) is $V(G) \cup E(G)$. Two vertices x, y in the vertex set of M(G) are adjacent in M(G) in case one of the following holds: (i) x, y are in E(G) and x, y are adjacent in G. (ii) X is in Y(G), Y is in Y(G), and Y are incident in G.

Let G be a graph with vertex set V(G) and edge set E(G). The total graph [1,5] of G, denoted by T(G) is defined as follows. The vertex set of T(G) is $V(G) \cup E(G)$. Two vertices

¹Received June 12, 2009. Accepted Aug.20, 2009.

x, y in the vertex set of T(G) are adjacent in T(G) in case one the following holds: (i) x, y are in V(G) and x is adjacent to y in G. (ii) x, y are in E(G) and x, y are adjacent in G. (iii) x is in V(G), y is in E(G), and x, y are incident in G.

The line graph [1,5] of G denoted by L(G) is the graph with vertices are the edges of G with two vertices of L(G) adjacent whenever the corresponding edges of G are adjacent.

Double star $K_{1,n,n}$ is a tree obtained from the star $K_{1,n}$ by adding a new pendant edge of the existing n pendant vertices. It has 2n + 1 vertices and 2n edges.

For given graph G, an integer $k \geq 1$, a Smarandachely achromatic k-coloring of G is a proper vertex coloring of G in which every pair of colors appears on at least k pairs of adjacent vertices. The Smarandachely achromatic number of G denoted $\chi_c^S(G)$, is the greatest number of colors in a Smarandachely achromatic k-coloring of G. Certainly, $\chi_c^S(G) \geq k$. Now if k = 1, i.e., a Smarandachely achromatic 1-coloring and $\chi_c^S(G)$ are usually abbreviated to achromatic coloring [2,3,6,7,8,9,11] and $\chi_c(G)$.

The achromatic number was introduced by Harary, Hedetniemi and Prins [6]. They considered homomorphisms from a graph G onto a complete graph K_n . A homomorphism from a graph G to a graph G' is a function $\phi: V(G) \to V(G')$ such that whenever u and v are adjacent in G, $u\phi$ and $v\phi$ are adjacent in G'. They show that, for every (complete) n-coloring τ of a graph G there exists a (complete) homomorphism ϕ of G onto K_n and conversely. They noted that the smallest n for which such a complete homomorphism exists is just the chromatic number $\chi = \chi(G)$ of G. They considered the largest n for which such a homomorphism exists. This was later named as the achromatic number $\psi(G)$ by Harary and Hedetniemi [6]. In the first paper [6] it is shown that there is a complete homomorphism from G onto K_n if and if only $\chi(G) \leq n \leq \psi(G)$.

§2. Achromatic Coloring on central graph of double star graph

Algorithm 2.1

```
Input: The number n of K_{1,n,n}.

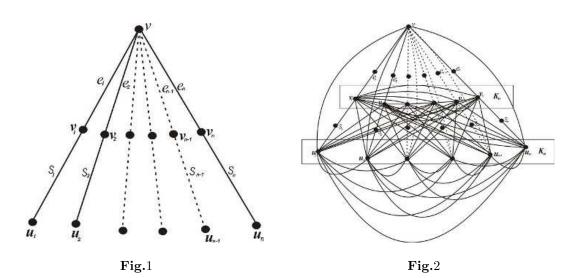
Output: Assigning achromatic coloring for the vertices in C(K_{1,n,n}). begin for i=1 to n {
V_1 = \{u_i\};
C(u_i) = i;
V_2 = \{s_i\};
C(s_i) = n+1;
V_3 = \{e_i\};
C(e_i) = i;
V_4 = \{v_i\};
C(v_i) = n+1+i;
}
```

$$V_4 = \{v\};$$

 $C(v) = n + 1;$
 $V = V_1 \cup V_2 \cup V_3 \cup V_4;$
end

Theorem 2.1 For any double star graph $K_{1,n,n}$, the achromatic number,

$$\chi_c[C(K_{1,n,n})] = 2n + 1.$$



Double star graph $K_{1,n,n}$

Central graph of double star graph $C(K_{1,n,n})$

Proof Let v, v_1, v_2, \cdots, v_n and u_1, u_2, \dots, u_n be the vertices in $K_{1,n,n}$, the vertex v be adjacent to $v_i (1 \leq i \leq n)$. The vertices $v_i (1 \leq i \leq n)$ be adjacent to $u_i (1 \leq i \leq n)$. Let the edge vv_i and uu_i $(1 \leq i \leq n)$ be subdivided by the vertices $e_i (1 \leq i \leq n)$ and $s_i (1 \leq i \leq n)$ in $C(K_{1,n,n})$. Clearly $V[C(K_{1,n,n})] = \{v\} \cup \{v_i/1 \leq i \leq n\} \cup \{u_i/1 \leq i \leq n\} \cup \{e_i/1 \leq i \leq n\}$ $\cup \{s_i/1 \leq i \leq n\}$. The vertices $v_i (1 \leq i \leq n)$ induce a clique of order n (say K_n) and the vertices $v_i u_i (1 \leq i \leq n)$ induce a clique of order n+1 (say K_{n+1}) in $C(K_{1,n,n})$ respectively. Now consider the vertex set $V[C(K_{1,n,n})]$ and the color classes $C_1 = \{c_1, c_2, c_3, \dots, c_n, c_{n+1}\}$, assign a proper coloring to $C(K_{1,n,n})$ by Algorithm 2.1.

To prove the above said coloring is achromatic, we consider any pair (c_i, c_j) .

Step 1

If i = 1, j = 2, 3..., n. The edges joining the vertices (e_i, e_j) , (e_i, v) , (e_i, s_j) , (e_i, v_i) , (e_i, s_i) , (s_j, u_j) and (u_n, s_n) , will accommodate the color pair (c_i, c_j) .

Step 2

If i = 2, j = 1, 2, 3, ..., n. The edges joining the vertices (u_i, u_j) , (u_i, v) , (u_i, v_j) , (e_i, v_i) , (u_i, s_i) and (v_i, s_i) , will accommodate the color pair (c_i, c_j) .

Step 3

If i=3, j=1,2,..n. The edges joining the vertices $(u_i,u_j), (u_i,v), (u_i,v_j), (e_i,v_i), (u_i,s_i)$ and (v_i,s_i) , will accommodate the color pair (c_i,c_j) . Similarly if i=n, j=1,2,..n-1, then the edges joining the vertex pair $(u_i,u_j), (u_i,v), (u_i,v_j), (e_i,v_i), (u_i,s_i)$ and (v_i,s_i) , will stand for the color pair (c_i,c_j) . Now this coloring will accommodate all the pairs of the color class. Thus we have $\chi_c[C(K_{1,n,n})] \geq 2n+1$. The number of edges of

$$C[K_{1,n,n}] = \left\{5n + 2\frac{n(n-1)}{2} + n(n-1)\right\} = 4n + 2n^2 < \binom{2n+1}{2}.$$

Therefore, $\chi_c[C(K_{1,n,n})] \leq 2n + 1$. Hence $\chi_c[C(K_{1,n,n})] = 2n + 1$.

Example 2.3

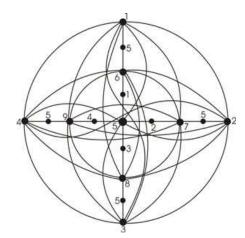


Fig.3
Central graph of $C(K_{1,4,4})$ $\chi_c[C(K_{1,4,4})] = 9$

§3. Achromatic coloring on middle graph of double star graph

Algorithm 3.1

Input: The number n of $K_{1,n,n}$.

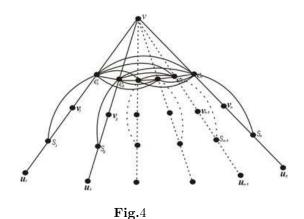
Output: Assigning achromatic coloring for vertices in $M(K_{1,n,n})$.

```
begin
for i = 1 to n
{
V_1 = \{e_i\};
C(e_i) = i;
}
V_2 = \{v\};
C(v) = n + 1;
for i = 1 to n
```

```
 \{ \\ V_3 = \{v_i\}; \\ C(v_i) = n+2; \\ \} \\ \text{for } i = 2 \text{ to } n \\ \{ \\ V_4 = \{s_i\}; \\ C(s_i) = n+3; \\ \} \\ C(s_1) = n+1; \\ \text{for } i = 1 \text{ to } n-1 \\ \{ \\ V_5 = \{u_i\}; \\ C(u_i) = 1; \\ \} \\ C(u_n) = C(v); \\ V = V_1 \cup V_2 \cup V_3 \cup V_4 \cup V_5; \\ \text{end}
```

Theorem 3.1 For any double star graph $K_{1,n,n}$, the achromatic number,

$$\chi_c[M(K_{1,n,n})] = n + 3.$$



Middle graph of double star graph $M(K_{1,n,n})$

Proof Let $V(K_{1,n,n}) = \{v\} \cup \{v_i/1 \le i \le n\} \cup \{u_i/1 \le i \le n\}$. By definition of middle graph, each edge vv_i and $v_iu_i(1 \le i \le n)$ in $K_{1,n,n}$ are subdivided by the vertices u_i and s_i in $M(K_{1,n,n})$ and the vertices $v,e_1,e_2,...,e_n$ induce a clique of order n+1(say K_{n+1})

in $M(K_{1,n,n})$. i.e., $V[M(K_{1,n,n})] = \{v\} \cup \{v_i/1 \le i \le n\} \cup \{u_i/1 \le i \le n\} \cup \{e_i/1 \le i \le n\} \cup \{s_i/1 \le i \le n\}$. Now consider the vertex set $V[M(K_{1,n,n})]$ and colour class $C = \{c_1, c_2, c_3, ..., c_n, c_{n+1}, c_{n+2}, c_{n+3}\}$, assign a proper coloring to $M(K_{1,n,n})$ by Algorithm 3.1.

To prove the above said coloring is achromatic, we consider any pair (c_i, c_j)

Step 1

If i = 1, j = 2, 3, ..., n. The edges joining the vertices (e_i, e_j) , (e_i, v) , (e_i, s_j) , (e_i, v_i) , (e_i, s_i) , (s_j, u_j) and (u_n, s_n) , will accommodate the color pair (c_i, c_j) .

Step 2

If i = 2, j = 1, 2, 3, ..., n. The edges joining the vertices (e_i, e_j) , (e_i, v) , (e_i, s_j) , (e_i, v_i) , (e_i, s_i) , (s_j, u_j) and (u_n, s_n) , will accommodate the color pair (c_i, c_j) .

Step 3

If i = 3, j = 1, 2, ..., n. The edges joining the vertices (e_i, e_j) , (e_i, v) , (e_i, s_j) , (e_i, v_i) , (e_i, s_i) , (s_j, u_j) and (u_n, s_n) , will accommodate the color pair (c_i, c_j) . Similarly if i = n, j = 1, 2, ..., n - 1, then the edges joining the vertex pair (e_i, e_j) , (e_i, v) , (e_i, s_j) , (e_i, v_i) , (e_i, s_i) , (s_j, u_j) and (u_n, s_n) , will stand for the color pair (c_i, c_j) . Now this coloring will accommodate all the pairs of the color class.

Thus we have $\chi_c[M(K_{1,n,n})] \ge n+3$. The number of edges in $M[K_{1,n,n}] = \frac{n^2+9n}{2} < \binom{n+4}{2}$. Therefore, $\chi_c[M(K_{1,n,n})] \le n+3$. Hence $\chi_c[M(K_{1,n,n})] = n+3$.

Example 3.3

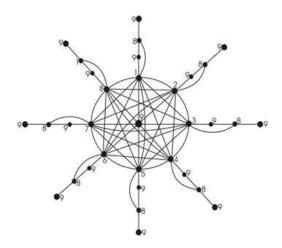


Fig.5

Middle graph of $M(K_{1,8,8})$

$$\chi_c[M(K_{1,8,8})] = 11$$

§4. Achromatic Coloring on Total Graph of Double Star Graph

Algorithm 4.1

```
Input: The number "n" of K_{1,n,n}.

Output: Assigning achromatic coloring for vertices in T(K_{1,n,n}). begin for i=1 to n {
V_1=\{e_i\};
C(e_i)=i;
V_2=\{v_i\};
C(v_i)=n+2;
V_3=\{s_i\};
C(s_i)=n+3;
V_4=\{u_i\};
C(u_i)=n+1;
}
V_5=\{v\};
C(v)=n+1;
V=V_1\cup V_2\cup V_3\cup V_4\cup V_5;
end
```

Theorem 4.1 For any double star graph $K_{1,n,n}$, the achromatic number,

$$\chi_c[T(K_{1,n,n})] = n + 3.$$

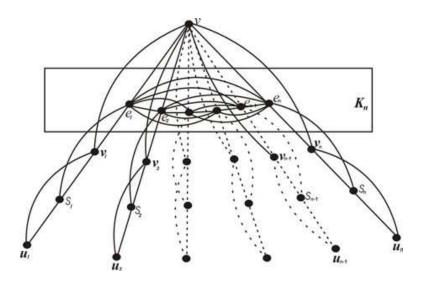


Fig.6

Total graph of double star graph $T(K_{1,n,n})$

Proof Let $V(K_{1,n,n}) = \{v, v_1, v_2, ..., v_n\} \cup \{u_1, u_2, ..., u_n\}$ and $E(K_{1,n,n}) = \{e_1, e_2, ..., e_n\} \cup \{s_1, s_2, s_3, ..., s_n\}$. By the definition of total graph, we have $V[T(K_{1,n,n})] = \{v\} \cup \{v_i/1 \le i \le n\} \cup \{u_i/1 \le i \le n\} \cup \{e_i/1 \le i \le n\} \cup \{s_i/1 \le i \le n\}$, in which the vertices $v, e_1, e_2, ..., e_n$ induce a clique of order n+1 (say K_{n+1}). Now consider the vertex set $V[T(K_{1,n,n})]$ and colour class $C = \{c_1, c_2, c_3, ..., c_n, c_{n+1}, c_{n+2}, c_{n+3}\}$, assign a proper coloring to $T(K_{1,n,n})$ by Algorithm 4.1.

To prove the above said coloring is achromatic, we consider any pair (c_i, c_j) .

Step 1

If i = 1, j = 1, 2, 3, ..., n. The edges joining the vertices (e_i, e_j) , (e_i, v) , (e_i, s_j) , and (e_i, v_i) will accommodate the color pair (c_i, c_j) .

Step 2

If i = 2, j = 1, 2, ...n. The edges joining the vertices (e_i, e_j) , (e_i, v) , (e_i, s_j) , and (e_i, v_i) will accommodate the color pair (c_i, c_j) .

Step 3

If i = 3, j = 1, 2, ..., n. The edges joining the vertices (e_i, e_j) , (e_i, v) , (e_i, s_j) , and (e_i, v_i) will accommodate the color pair (c_i, c_j) . Similarly if i = n, j = 1, 2, ..., n - 1, then the edges joining the vertex pair (e_i, e_j) , (e_i, v) , (e_i, s_j) , and (e_i, v_i) will stand for the color pair (c_i, c_j) .

Thus any pair in the color class is adjacent by at least one edge. Thus we have $\chi_c[T(K_{1,n,n})] \ge n+3$. The number of edges of $T[K_{1,n,n}] = \frac{n^2+13n}{2} < \binom{n+4}{2}$. Therefore, $\chi_c[(K_{1,n,n})] \le n+3$. Hence $\chi_c[T(K_{1,n,n})] = n+3$.

Example 4.3

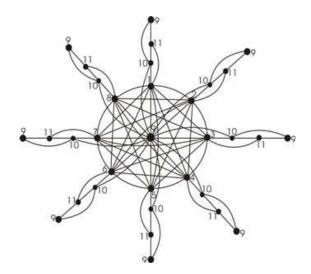


Fig.7

Total graph of $T(K_{1,8,8})$ $\chi_c[T(K_{1,8,8})] = 11$

§5. Achromatic Coloring on Line Graph of Double Star Graphs

Algorithm 5.1

end

Input: The number n of $K_{1,n,n}$. Output: Assigning achromatic coloring for vertices in $L(K_{1,n,n})$. begin for i=1 to n $\{V_1=\{e_i\};\ C(e_i)=i;\ V_2=\{s_i\};\ C(s_i)=n+1;\ \}$ $V=V_1\cup V_2;$

Theorem 5.1 For any double star graph $K_{1,n,n}$, the achromatic number,

$$\chi_c[L(K_{1,n,n})] = n + 1.$$

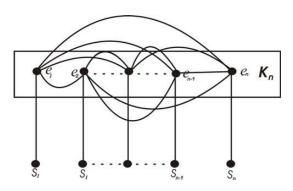


Fig.8

Line graph of double star graph $L(K_{1,n,n})$

Proof Let $V(K_{1,n,n}) = \{v\} \cup \{v_i/1 \leq i \leq n\} \cup \{u_i/1 \leq i \leq n\}$ and $E(K_{1,n,n}) = \{e_1, e_2, ...e_n\} \cup \{s_1, s_2, s_3, ..., s_n\}$ By the definition of Line graph, each edge of $K_{1,n,n}$ taken to be as vertex in $L(K_{1,n,n})$. The vertices $e_1, e_2, ..., e_n$ induce a clique of order n in $L(K_{1,n,n})$.i.e., $V[L(K_{1,n,n})] = \{e_i/1 \leq i \leq n\} \cup \{s_i/1 \leq i \leq n\}$. Now consider the vertex set $V[L(K_{1,n,n})]$ and colour class $C = \{c_1, c_2, c_3, ...c_n, c_{n+1}\}$, assigned a proper coloring to $L(K_{1,n,n})$ by Algorithm 5.1.

To prove the above said coloring is achromatic, we consider any pair (c_i, c_j) .

Step 1

If i = 1, j = 1, 2, 3, ..., n. The edges joining the vertices (e_i, e_j) , and (e_i, s_i) will accommodate the color pair (c_i, c_j) .

Step 2

If i = 2, j = 1, 2, ...n. The edges joining the vertices (e_i, e_j) , and (e_i, s_i) , will accommodate the color pair (c_i, c_j) .

Step 3

If i = 3, j = 1, 2, ..., n. The edges joining the vertices (e_i, e_j) , (e_i, s_i) will accommodate the color pair (c_i, c_j) . Similarly if i = n, j = 1, 2, ..., n - 1, then the edges joining the vertex pair (e_i, e_j) , (e_i, s_i) will stand for the color pair (c_i, c_j) .

Thus any pair in the color class is adjacent by at least one edge we have $\chi_c[L[K_{1,n,n})] \ge n+1$. The number of edges of edges of $L[K_{1,n,n}] = \frac{n^2+n}{2} < \binom{n+2}{2}$. Therefore, $\chi_c[L(K_{1,n,n})] \le n+1$. Hence $\chi_c[L(K_{1,n,n})] = n+1$.

Example 5.3

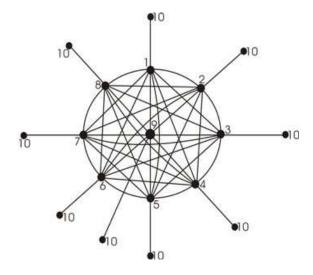


Fig.9

Line graph of
$$L(K_{1,9,9})$$

 $\chi_c[L(K_{1,9,9})] = 10$

§6. Main Theorems

Theorem 6.1 For any double star graph $K_{1,n,n}$, the achromatic number,

$$\chi_c[L(K_{1,n,n})] = \chi[M(K_{1,n,n})] = \chi[T(K_{1,n,n})] = n+1.$$

Theorem 6.2 For any double star graph $K_{1,n,n}$, the achromatic number,

$$\chi_c[M(K_{1,n,n})] = \chi_c[T(K_{1,n,n})] = n + 3.$$

References

- [1] J. A. Bondy and U.S.R. Murty, Graph theory with Applications, London, MacMillan 1976.
- [2] N.Cairnie and K.J.Edwards, Some results on the achromatic number, *Journal of Graph Theory*, **26** (1997), 129-136.
- [3] N.Cairnie and K.J.Edwards, The achromatic number of bounded degree trees, *Discrete Mathematics*, **188** (1998), 87–97.
- [4] Danuta Michalak, On middle and total graphs with coarseness number equal 1, Springer Verlag Graph Theory, Lagow Proceedings, Berlin Heidelberg, New York, Tokyo, (1981), 139-150.
- [5] Frank Harary, Graph Theory, Narosa Publishing Home 1969.
- [6] F.Harary and S.T.Hedetniemi, The achromatic number of a graph, *Journal of Combinato*rial Theory, 8 (1970), 154-161.
- [7] P.Hell and D.J.Miller, Graph with given achromatic number, *Discrete Mathematics*, **16** (1976), 195-207.
- [8] P.Hell and D.J.Miller, Achromatic numbers and graph operations, *Discrete Mathematics*, 108 (1992), 297-305.
- [9] M.Hornak, Achromatic index of $K_{1,2}$, Ars Combinatoria, 45 (1997), 271–275.
- [10] Vernold Vivin.J, Harmonious coloring of total graphs, n-leaf, central graphs and circumdetic graphs, Ph.D Thesis, Bharathiar University, (2007), Coimbatore, India.
- [11] Vernold Vivin.J, Venkatachalam.M and Akbar Ali.M.M, A note on achromatic number on star graph families, Filomat (to appear).