Subclasses of Analytic Functions Associated with q-Derivative

N. Ravikumar

Department of Mathematics, JSS College of Arts, Commerce and Science, Mysuru-570024, India

P. Siva Kota Reddy

Department of Mathematics, Sri Jayachamarajendra College of Engineering

JSS Science and Technology University, Mysuru-570 006, India

E-mail: ravisn.kumar@gmail.com, pskreddy@sjce.ac.in

Abstract: In this paper, we define the classes $\mathcal{T}_q(A, B, \lambda)$ and $\mathcal{C}_q(A, B, \lambda)$ using Janowski class and q-derivative also we study coefficient estimates, extreme points and many more properties.

Key Words: Janowski class, extreme points, convex linear combination, q-derivative.

AMS(2010): 30C45.

§1. Introduction

Let \mathcal{A} denote the family of analytic functions defined in the open unit disc

$$\mathcal{U} = \{z : |z| < 1\},\$$

which are of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1.1)

Let \mathcal{T} denote the subclass of \mathcal{A} in \mathcal{U} , consisting of analytic functions whose non-zero coefficients from the second term onwards are negative. That is, an analytic function $f \in \mathcal{T}$ if it has a Taylor expansion of the form

$$f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n \tag{1.2}$$

which are univalent in the open unit disc \mathcal{U} .

The q-shifted factorial is defined for $\alpha, q \in \mathbb{C}$ as a product of n factors by

$$(\alpha, q)_n = \begin{cases} 1, & \text{n=0;} \\ (1-\alpha)(1-\alpha q)\cdots(1-\alpha q^{n-1}), & \text{n } \in \mathbb{N}, \end{cases}$$
 (1.3)

¹Received May 12, 2022, Accepted June 10, 2022.

and in terms of the basic analogue of the gamma function

$$(q^{\alpha};q)_n = \frac{\Gamma_q(\alpha+n)(1-q)^n}{\Gamma_q(\alpha)}, \quad (n>0), \tag{1.4}$$

where the q-gamma functions [2], [3] is defined by

$$\Gamma_q(x) = \frac{(q;q)_{\infty} (1-q)^{1-x}}{(q^x;q)_{\infty}}, \quad (0 < q < 1).$$
(1.5)

Note that, if |q| < 1, the q-shifted factorial (1.3), remains meaningful for $n = \infty$ as a convergent infinite product

$$(\alpha;q)_{\infty} = \prod_{m=0}^{\infty} (1 - \alpha q^m).$$

Now recall the following q-analogue definitions given by Gasper and Rahman [2]. The recurrence relation for q-gamma function is given by

$$\Gamma_q(x+1) = [x]_q \Gamma_q(x), \text{ where } [x]_q = \frac{(1-q^x)}{(1-q)}$$
 (1.6)

and called q-analogue of x.

Jackson's q-derivative and q-integral of a function f defined on a subset of \mathbb{C} are, respectively, given by (see Gasper and Rahman [2]

$$D_q f(z) = \frac{f(z) - f(zq)}{z(1-q)}, \quad (z \neq 0, \, q \neq 0). \tag{1.7}$$

$$\int_{0}^{z} f(t)d_{q}(t) = z(1-q)\sum_{m=0}^{\infty} q^{m}f(zq^{m}).$$
(1.8)

In view of the relation

$$\lim_{q \to 1^{-}} \frac{(q^{\alpha}; q)_n}{(1 - q)^n} = (\alpha)_n, \tag{1.9}$$

we observe that the q-shifted fractional (1.2) reduces to the familiar Pochhammer symbol $(\alpha)_n$, where $(\alpha)_n = \alpha(\alpha+1)\cdots(\alpha+n+1)$.

For $-1 \le A < B \le 1$, $\mathcal{P}_1(A,B)$ [4] denotes the class of analytic functions in \mathcal{U} which are of the form $\frac{1+A\omega(z)}{1+B\omega(z)}$, where ω is a bounded analytic function satisfying the conditions $\omega(0)=0$ and $|\omega(z)|<1$.

Now we define the subclass $\mathcal{T}_q(A, B, \lambda)$ consisting of functions $f \in \mathcal{T}$ such that

$$\frac{zD_q(f(z))}{\lambda zD_q(f(z)) + (1-\lambda)f(z)} = \frac{1 + A\omega(z)}{1 + B\omega(z)},\tag{1.10}$$

where, $-1 \le A < B \le 1$, 0 < q < 1, $\lambda > 0$, $z \in \mathcal{U}$.

Let $C_q(A, B, \lambda)$ denote the class of functions $f \in \mathcal{T}$ such that $zf' \in \mathcal{T}_q(A, B, \lambda)$. For $\lambda = 0$ and $q \to 1^-$ we get the well-known classes $\mathcal{T}^*(A, B)$ and C(A, B) studied by Ganesan in [1].

For parametric values $A = 2\alpha - 1$ and B = 1 and as $q \to 1^-$ we get the classes $\mathcal{T}(\lambda, \alpha)$ and $\mathcal{C}(\lambda, \alpha)$ studied by Mostafa [5]. In particular, if $q \to 1^-$ we get the classes studied by Ravikumar et al. [6].

In the next section we obtain the characterization properties for the classes $\mathcal{T}_q(A, B, \lambda)$ and $\mathcal{C}_q(A, B, \lambda)$.

§2. Main Results

Theorem 2.1 A function $f \in \mathcal{T}_q(A, B, \lambda)$ if and only if

$$\sum_{n=2}^{\infty} \{ [n]_q (1+B) - (1+A)[\lambda([n]_q - 1) + 1] \} a_n \le B - A$$
 (2.1)

for $-1 \le A < B \le 1$, 0 < q < 1, $\lambda > 0$ and $z \in \mathcal{U}$.

Proof Suppose $f \in \mathcal{T}_q(A, B, \lambda)$. Then

$$\Re\left\{\frac{zD_{q}(f(z))}{\lambda zD_{q}(f(z)) + (1-\lambda)f(z)}\right\} > \frac{1+A}{1+B},$$

$$\Re\left\{\frac{z - \sum_{n=2}^{\infty} [n]_{q} a_{n} z^{n}}{z - \sum_{n=2}^{\infty} [\lambda([n]_{q} - 1) + 1] a_{n} z^{n}}\right\} > \frac{1+A}{1+B}.$$

Letting $z \to 1$, then we get,

$$\left[1 - \sum_{n=2}^{\infty} [n]_q a_n z^n\right] (1+B) > (1+A) \left[1 - \sum_{n=2}^{\infty} [\lambda([n]_q - 1) + 1] a_n\right].$$

Hence

$$\sum_{n=2}^{\infty} \{ [n]_q (1+B) - (1+A)[\lambda([n]_q - 1) + 1] \} a_n \le B - A.$$

Conversely, if (2.1) holds, it suffices to show that $|\omega(z)| < 1$. From (1.10), we have

$$|\omega(z)| = \left| \frac{\sum_{n=2}^{\infty} [(\lambda - 1)([n]_q - 1)] a_n z^n}{(B - A)z - \sum_{n=2}^{\infty} [[n]_q B - A(\lambda - 1 - [n]_q \lambda)] a_n z^n} \right|$$

$$\leq \frac{\sum_{n=2}^{\infty} [(\lambda - 1)([n]_q - 1)] a_n}{(B - A) - \sum_{n=2}^{\infty} [[n]_q B - A(\lambda - 1 - [n]_q \lambda)] a_n}.$$

The last expression is bounded by 1 if

$$\sum_{n=2}^{\infty} [(\lambda - 1)([n]_q - 1)]a_n \le (B - A) - \sum_{n=2}^{\infty} [[n]_q B - A(\lambda - 1 - [n]_q \lambda)]a_n$$

which is equivalent to (2.1). Hence the proof.

Analogous to Theorem 2.1 we get the following result.

Theorem 2.2 A function $f \in C_q(A, B, \lambda)$ if and only if

$$\sum_{n=2}^{\infty} [n]_q \left\{ [n]_q (1+B) - (1+A)[\lambda([n]_q - 1) + 1] \right\} a_n \le B - A. \tag{2.2}$$

Corollary 2.3 If function $f(z) \in \mathcal{T}_j$ is in the class $\mathcal{T}_q(A, B, \lambda)$ then

$$|a_n| \le \frac{(B-A)}{\{[n]_q(1+B) - (1+A)[\lambda([n]_q-1)+1]\}}$$

for some $-1 \le A < B \le 1$, $\lambda > 0$, 0 < q < 1, and $z \in \mathcal{U}$.

Now we determine extreme points for the class $\mathcal{T}_q(A, B, \lambda)$.

Theorem 2.4 Let $f(z) \in \mathcal{T}_q(A, B, \lambda)$. Define $f_1(z) = z$ and

$$f_n(z) = z - \frac{B - A}{\{[n]_q(1+B) - (1+A)[\lambda([n]_q - 1) + 1]\}} z^n, \quad n \ge 2$$

for some $-1 \le A < B \le 1$, $\lambda > 0$, 0 < q < 1, and $z \in \mathcal{U}$. Then $f \in \mathcal{T}_q(A, B, \lambda)$ if and only if f can be expressed as

$$f(z) = \sum_{n=2}^{\infty} \mu_n f_n(z),$$

where $\mu_n \ge 0$ and $\sum_{n=1}^{\infty} \mu_n = 1$.

Proof If

$$f(z) = \sum_{n=2}^{\infty} \mu_n f_n(z)$$
 with $\sum_{n=1}^{\infty} \mu_n = 1$, $\mu_n \ge 0$,

then

$$\sum_{n=2}^{\infty} \frac{\{[n]_q(1+B) - (1+A)[\lambda([n]_q - 1) + 1]\}}{\{[n]_q(1+B) - (1+A)[\lambda([n]_q - 1) + 1]\}} \mu_n(B-A)$$

$$= \sum_{n=2}^{\infty} \mu_n(B-A) = (1-\mu_j)(B-A) \le (B-A).$$

Hence, $f(z) \in \mathcal{T}_q(A, B, \lambda)$.

Conversely, let

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \in \mathcal{T}_q(A, B, \lambda),$$

define

$$\mu_n = \frac{\{[n]_q(1+B) - (1+A)[\lambda([n]_q - 1) + 1]\}|a_k|}{(B-A)}, \quad n \ge 2$$

and

$$\mu_n = 1 - \sum_{n=2}^{\infty} \mu_n.$$

From Theorem 2.1, $\sum_{n=2}^{\infty} \mu_n \leq 1$ and hence $\mu_1 \geq 0$.

Since $\mu_n f_n(z) = \mu_n f(z) + a_n z^n$, we get that

$$\sum_{n=1}^{\infty} \mu_n f_n(z) = z - \sum_{n=2}^{\infty} a_n z^n = f(z).$$

Theorem 2.5 The class $\mathcal{T}_q(A, B, \lambda)$ is closed under convex linear combination.

Proof Let $f(z), g(z) \in \mathcal{T}_q(A, B, \lambda)$ and let

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n$$
, $g(z) = z - \sum_{n=2}^{\infty} b_n z^n$.

For a number η such that $0 \le \eta \le 1$, it suffices to show that the function defined by $h(z) = (1 - \eta)f(z) + \eta g(z), z \in \mathcal{U}$ belongs to $\mathcal{T}_q(A, B, \lambda)$. Now

$$h(z) = z - \sum_{n=2}^{\infty} [(1 - \eta)a_n + \eta b_n]z^n.$$

Applying Theorem 2.1 to f(z), $g(z) \in \mathcal{T}_q(A, B, \lambda)$, we have

$$\sum_{n=2}^{\infty} \left\{ [n]_q (1+B) - (1+A)[\lambda([n]_q - 1) + 1] \right\} [(1-\eta)a_n + \eta b_n]$$

$$= (1-\eta) \sum_{n=2}^{\infty} \left\{ [n]_q (1+B) - (1+A)[\lambda([n]_q - 1) + 1] \right\} a_n$$

$$+ \eta \sum_{n=2}^{\infty} \left\{ [n]_q (1+B) - (1+A)[\lambda([n]_q - 1) + 1] \right\} b_n$$

$$\leq (1-\eta)(B-A) + \eta(B-A) = (B-A).$$

This implies that $h(z) \in \mathcal{T}_q(A, B, \lambda)$.

Theorem 2.6 For integers
$$i=1,2,\cdots,n$$
, let $f_i(z)=z-\sum_{n=2}^{\infty}a_{n,i}z^n\in\mathcal{T}_q(A,B,\lambda)$ and

 $0 < \beta_i < 1$ such that $\sum_{i=1}^n \beta_i = 1$, then the function F(z) defined by

$$F(z) = \sum_{i=1}^{n} \beta_i f_i(z)$$

is also in $\mathcal{T}_q(A, B, \lambda)$.

Proof For each integer $i \in \{1, 2, 3, \dots, n\}$, we obtain

$$\sum_{n=2}^{\infty} \{ [n]_q (1+B) - (1+A)[\lambda([n]_q - 1) + 1] \} |a_{n,i}| < (B-A).$$

Since

$$F(z) = \sum_{i=1}^{n} \beta_i (z - \sum_{n=2}^{\infty} a_{n,i} z^n) = z - \sum_{n=2}^{\infty} (\sum_{i=1}^{n} \beta_i a_{n,i}) z^n$$

and

$$\sum_{n=2}^{\infty} \{ [n]_q (1+B) - (1+A)[\lambda([n]_q - 1) + 1] \} \left[\sum_{i=1}^n \beta_i a_{n,i} \right]$$

$$= \sum_{i=1}^n \beta_i \left[\sum_{n=2}^{\infty} \{ [n]_q (1+B) - (1+A)[\lambda([n]_q - 1) + 1] \} \right]$$

$$< \sum_{i=1}^n \beta_i (B-A) < (B-A),$$

we therefore know that $F(z) \in \mathcal{T}_q(A, B, \lambda)$.

Acknowledgement

The authors would like to thank the referee for his valuable comments which helped to improve the manuscript.

References

- M. S. Ganesan, Convolutions of Analytic Functions, Ph.D. Thesis., University of Madras, Madras, 41-46, 1983.
- [2] G. Gasper and M. Rahman, Basic Hypergeometric Series, Vol. 35 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, Mass, USA, 1990.
- [3] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46(2) (1909), 253-281.
- [4] W. Janowski, Some extremal problems for certain families of analytic functions, I. Ann.

- Polon. Math., 28 (1973), 298-326.
- [5] A. O. Mostafa, A study of starlike and convex properties for hypergeomtric function, *J. Inequal. Pure and Appl. Math.*, 10(3) (2009), Art. 87, 8 pages.
- [6] N. Ravikumar, L. Dileep and S. Latha, Subclasses of Analytic Functions Associated with Hypergeometric Functions, *International Journal of Mathematics Trends and Technology*, 30(1) (2016), 16-22.