Uni-Distance Domination of Square of Paths

Kishori P. Narayankar, Denzil Jason Saldanha

(Department of Mathematics, Mangalore University, Mangalagangothri, Mangalore-574199, India)

John Sherra

(St Aloysius College (Autonomous), Mangalore-575003, India)

E-mail: kishori_pn@yahoo.co.in, denzil53@gmail.com, johnsherra@gmail.com

Abstract: A dominating set D of G which is also a resolving set of G is called a *metro* dominating set. A metro dominating set D of a graph G(V, E) is a uni-distance dominating set (in short an UDD-set) if $|N(v) \cap D| = 1$ for each vertex $v \in V - D$ and the minimum of cardinalities of an UDD-set of G is the uni-distance domination number of G denoted by $\gamma_{\mu\beta}(G)$. In this paper we determine unique distance domination number of P_n^2 graphs.

Key Words: Domination, metric dimension, metro domination, uni-distance domination, Smarandachely distance k dominating set.

AMS(2010): 05C69.

§1. Introduction

All the graphs considered in this paper are simple, connected and undirected. The length of a shortest path between two vertices u and v in a graph G is called the distance between u and v and is denoted by d(u,v). For a vertex v of a graph, N(v) denote the set of all vertices adjacent to v and is called open neighborhood of v. Similarly, the closed neighborhood of v is defined as $N[v] = N(v) \cup \{v\}$.

Let G(V, E) be a graph. For each ordered subset $S = \{v_1, v_2, v_3, \cdots, v_k\}$ of V, each vertex $v \in V$ can be associated with a vector of distances denoted by $\Gamma(v/S) = (d(v_1, v), d(v_2, v), \cdots, d(v_k, v))$. The set S is said to be a resolving set of G, if $\Gamma(v/S) \neq \Gamma(u/S)$, for every $u, v \in V - S$. A resolving set of minimum cardinality is a metric basis and cardinality of a metric basis is the metric dimension of G. The k-tuple, $\Gamma(v/S)$ associated to the vertex $v \in V$ with respect to a metric basis S, is referred as a code generated by S for that vertex v. If $\Gamma(v/S) = (c_1, c_2, \cdots, c_k)$, then $c_1, c_2, c_3, \cdots, c_k$ are called components of the code of v generated by S and in particular $c_i, 1 \leq i \leq k$, is called i^{th} -component of the code of v generated by S.

A dominating set D of a graph G(V, E) is the subset of V having the property that for each vertex $v \in V - D$, there exists a vertex $u \in D$ such that uv is in E. A dominating set D of G which is also a resolving set of G is called a *metro dominating set*.

A metro dominating set D of a graph G(V, E) is a uni-distance dominating set (in short an UDD-set) if $|N(v) \cap D| = 1$ for each vertex $v \in V - D$. Generally, if $|N(v) \cap D| = k$

¹Received November 14, 2019, Accepted June 14, 2020.

for each vertex $v \in V - D$, $k \ge 1$, such a metro dominating set D is called a *Smarandachely distance* k dominating set (Smarandachely k DD-sets of G) and the minimum of cardinalities of the Smarandachely DD-sets of G is the number of Smarandachely k UDD-sets of G, denoted by $\gamma_{S\mu\beta}^k(G)$. Particularly, if k = 1, i.e., the uni-distance domination number of G denoted by $\gamma_{\mu\beta}(G)$. For an integer $n \ge 3$, we determine the uni-distance domination number $\gamma_{\mu\beta}(P_n^2)$ of P_n^2 in this paper.

§2. Main Results

Consider P_n , $n \geq 3$. Join v_i to v_{i+2} for $1 \leq i \leq n-2$. The resulting graph is denoted by P_n^2 .

Lemma 2.1 For any positive integer n, $\gamma_{\mu\beta}(P_n^2) \geq \left\lceil \frac{n}{5} \right\rceil$.

Proof A vertex v_i dominates five vertices $v_i, v_{i-1}, v_{i-2}, v_{i+1}, v_{i+2}$. Therefore, if D is minimal dominating set then $|D| \ge \frac{n}{5}$. Hence we have $\gamma(P_n^2) \ge \left\lceil \frac{n}{5} \right\rceil$.

End vertex v_1 of P_n^2 can dominate only 3 vertices v_1, v_2 and v_3 . As we have to minimize |D|, we include v_3 in D, which dominates v_1, v_2, v_3, v_4 and v_5 .

Lemma 2.2 If
$$n = 5k$$
, $k \in \mathbb{N}$ then $\gamma_{\mu\beta}\left(P_n^2\right) = k = \left\lceil \frac{n}{5} \right\rceil$.

Proof When $k=1, v_3$ dominates all vertices of P_5^2 . Hence $\gamma(P_5^2)=1$.

Let n=5k. Then $D=\{v_3,v_8,v_{13},\cdots,v_{5k-2}\}$ and |D|=k. When n=5(k+1), take $D'=D\cup\{v_{5k+3}\}$. Observe that |D'|=k+1 and D' dominates all vertices. From Lemma 2.1, we have

$$\gamma(P_{5(k+1)}^2) \ge \left\lceil \frac{5(k+1)}{5} \right\rceil = k+1$$

and |D'| = k + 1. Therefore we conclude that $\gamma(P_5(k+1))^2 = k + 1$. Thus by induction

$$\gamma\left(P_n^2\right) = k = \left\lceil \frac{n}{5} \right\rceil.$$

In P_n^2 , consider any v_j and v_{j+5} in D. Vertex v_j dominates $v_{j-2}, v_{j-1}, v_{j+1}, v_{j+2}$. Vertex v_{j+5} dominates $v_{j+3}, v_{j+4}, v_{j+6}$ and v_{j+7} . These vertices are uniquely dominated by v_j and v_{j+5} . The vertices v_1 and v_2 are uniquely dominated by v_3 . The vertex v_{5k} and v_{5k-1} are uniquely dominated by v_{5k-2} .

In P_n^2 , we observe that

$$d(v_i, v_j) = d(v_i, v_{j-1}) = \frac{j-i}{2}$$

where i and j are both even and $j \ge i$. When i is odd and j is even

$$d(v_i, v_{j+1}) = d(v_i, v_j) = \frac{j - i + 1}{2}.$$

We take $D = \{v_3, v_8, v_{13}, \dots\}$. Note that $d(v_3, v_{j+1}) = d(v_3, v_j), j \ge 3$ and j even. Also $d(v_3, v_2) = d(v_3, v_1)$. Now when $j \ge 8$ and j is even,

$$d(v_8, v_j) = \frac{j-8}{2}$$
 and $d(v_8, v_{j+1}) = \frac{(j+2)-8}{2}$.

Hence $d(v_8, v_j) \neq d(v_8, v_{j+1})$. Therefore $\{v_3, v_8\}$ resolve all vertices $v_j, j \geq 8$, Now $d(v_3, v_1) = 1$ but $d(v_8, v_1) = 4$ and $d(v_3, v_2) = 1$ but $d(v_8, v_2) = 3$. Hence $\{v_3, v_8\}$ resolve v_1 and v_2 .

If $3 \leq j \leq 8$ then $\{v_3, v_8\}$ generate the same code (1,2) for v_4 and v_5 . Also $\{v_3, v_8\}$ generate the same code (2,1) for v_6 and v_7 . We have $d(v_{13}, v_4) = 5$ and $d(v_{13}, v_5) = 4$. Also $d(v_{13}, v_6) = 4$ and $d(v_{13}, v_7) = 3$. Hence $\{v_3, v_8, v_{13}\}$ resolves all vertices of P_n^2 . Therefore to resolve all vertices of P_n^2 we take $n \geq 11$. We observe that $\{v_3, v_8, \cdots, v_{5k-2}\}$ uniquely dominates all vertices in V - D. Hence we have the conclusion.

If n=5k+1, n=5k+2, n=5k+3, $D=\{v_1,v_6,v_{11},\cdots,v_{5k-4},v_{5k+1}\}$ is a UDD set. Therefore $\gamma_{\mu\beta}\left(P_n^2\right)=k+1$. If n=5k+4, $D=\{v_2,v_7,v_{12},\cdots,v_{5k-3},v_{5k+2}\}$ is a UDD set and we have $\gamma_{\mu\beta}\left(P_n^2\right)=k+1=\left\lceil\frac{n}{5}\right\rceil$. Thus we obtain $\gamma_{\mu\beta}\left(P_n^2\right)=\left\lceil\frac{n}{5}\right\rceil$ for $\forall n\geq 11$. If n<11, then we observe that $\gamma_{\mu\beta}(P_n^2)=n$. Hence, we have

Theorem 2.3 For an integer $n \geq 3$,

$$\gamma_{\mu\beta}(P_n^2) = \begin{cases} \left\lceil \frac{n}{5} \right\rceil, & \text{for } n \ge 11 \\ n, & \text{for } n < 11. \end{cases}$$

References

- [1] E. J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, *NetWorks*, 7: 247 261, (1977).
- [2] Gary Chartrand, Linda Eroh, Mark A. Johnson and Ortrud R.Oellermann, Resolvability in graphs and the metric dimension of a graph, *Discrete Appl. Math.*, 105(1-3)(2000),99-113.
- [3] Harary F, Melter R.A., On the metric dimension of a graph $Ars\ Combinatoria\ ,2(1976),191-195$.
- [4] S.Kuller, B.Raghavachari and A.Rosenfied, Land marks in graphs, *Disc. Appl. Math.*,70 (1996), 217-229.
- [5] C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, *J. Comb. Math Comb. Compu.*, 40(2002), 17-32.
- [6] P. J. Slater, Domination and location in acyclic graphs, Networks, 17(1987), 55-64.
- [7] P. J. Slater, Locating dominating sets, in Y. Alavi and A. Schwenk ed., *Graph Theory*, *Combinatorics*, and *Applications*, Proc. Seventh Quad International Conference on the theory and applications of Graphs. John Wiley and Sons, Inc. (1995), 1073-1079.
- [8] B. Sooryanarayana and John Sherra, Unique metro domination in graphs, Adv Appl Discrete Math., Vol 14(2), (2014), 125-149.
- [9] H.B.Walikar, Kishori P. Narayankar and Shailaja S. Shirakol, The number of minimum dominating sets in $P_n \times P_2$, International J.Math. Combin. Vol.3 (2010), 17-21.
- [10] B. Sooryanarayana and John Sherra, Unique metro domination number of circulant graphs, *International J.Math. Combin.*, Vol.1(2019), 53-61.