A Note on Detour Radial Signed Graphs

K. V. Madhusudhan

(Department of Mathematics, ATME College of Engineering, Mysore-570 028, India)

S. Vijay

(Department of Mathematics, Government Science College, Hassan-573 201, India)

 $E-mail:\ kvmadhu13@gmail.com,\ vijayshivanna82@gmail.com$

Abstract: In this paper we introduced a new notion detour radial signed graph of a signed graph and its properties are obtained. Also, we obtained the structural characterization of detour radial signed graphs. Further, we presented some switching equivalent characterizations.

Key Words: Signed graphs, balance, switching, detour radial signed graph, radial signed graph.

AMS(2010): 05C22.

§1. Introduction

For standard terminology and notion in graph theory, we refer the reader to the text-book of Harary [2]. The non-standard will be given in this paper as and when required.

Let G = (V, E) be a connected graph. For any two vertices $u, v \in V(G)$, the detour distance D(u, v) is the length of the longest u - v path in G. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from u. The radius r(G) of G is defined by

$$r(G) = \min\{e(u) : u \in G\}.$$

For any vertex u in G, the detour eccentricity $D_e(u)$ of u is the detour distance to a vertex farthest from u. The detour radius $D_r(G)$ of G is defined by $D_r(G) = \min\{D_e(u) : u \in G\}$. The diameter d(G) of G is defined by $d(G) = \max\{e(u) : u \in G\}$ and the detour diameter $D_d(G)$ of G is $\max\{D_e(u) : u \in G\}$.

The detour radial graph $\mathcal{DR}(G)$ of G = (V, E) is a graph with $V(\mathcal{DR}(G)) = V(G)$ and any two vertices u and v in $\mathcal{DR}(G)$ are joined by an edge if and only if $D(u, v) = D_r(G)$. This concept were introduced by Ganeshwari and Pethanachi Selvam [1].

To model individuals' preferences towards each other in a group, Harary [3] introduced the concept of signed graphs in 1953. A signed graph $S = (G, \sigma)$ is a graph G = (V, E) whose edges are labeled with positive and negative signs (i.e., $\sigma : E(G) \to \{+, -\}$). The vertexes of a graph represent people and an edge connecting two nodes signifies a relationship between individuals. The signed graph captures the attitudes between people, where a positive (negative edge) represents liking (disliking). An unsigned graph is a signed graph with the signs removed. Similar to an unsigned graph, there are many active

¹Received August 27, 2018, Accepted June 6, 2019.

areas of research for signed graphs. For more new notions on signed graphs refer the papers.

The sign of a cycle (this is the edge set of a simple cycle) is defined to be the product of the signs of its edges; in other words, a cycle is positive if it contains an even number of negative edges and negative if it contains an odd number of negative edges. A signed graph S is said to be balanced if every cycle in it is positive. A signed graph S is called totally unbalanced if every cycle in S is negative. A chord is an edge joining two non adjacent vertices in a cycle.

A marking of S is a function $\zeta:V(G)\to\{+,-\}$. Given a signed graph S one can easily define a marking ζ of S as follows:

For any vertex $v \in V(S)$,

$$\zeta(v) = \prod_{uv \in E(S)} \sigma(uv),$$

the marking ζ of S is called canonical marking of S.

The following are the fundamental results about balance, the second being a more advanced form of the first. Note that in a bipartition of a set, $V = V_1 \cup V_2$, the disjoint subsets may be empty.

Theorem 1.1 A signed graph S is balanced if and only if either of the following equivalent conditions is satisfied:

- (i) Its vertex set has a bipartition $V = V_1 \cup V_2$ such that every positive edge joins vertices in V_1 or in V_2 , and every negative edge joins a vertex in V_1 and a vertex in V_2 ; (Harary [3])
- (ii) There exists a marking μ of its vertices such that each edge uv in Γ satisfies $\sigma(uv) = \zeta(u)\zeta(v)$. (Sampathkumar [4])

Switching S with respect to a marking ζ is the operation of changing the sign of every edge of S to its opposite whenever its end vertices are of opposite signs. The resulting signed graph $S_{\zeta}(S)$ is said switched signed graph. A signed graph S is called to switch to another signed graph S' written $S \sim S'$, whenever their exists a marking ζ such that $S_{\zeta}(S) \cong S'$, where \cong denotes the usual equivalence relation of isomorphism in the class of signed graphs. Hence, if $S \sim S'$, we shall say that S and S' are switching equivalent. Two signed graphs S_1 and S_2 are signed isomorphic (written $S_1 \cong S_2$) if there is a one-to-one correspondence between their vertex sets which preserve adjacency as well as sign.

Two signed graphs $S_1 = (G_1, \sigma_1)$ and $S_2 = (G_2, \sigma_2)$ are said to be weakly isomorphic (see [21]) or cycle isomorphic (see [22]) if there exists an isomorphism $\phi : G_1 \to G_2$ such that the sign of every cycle Z in S_1 equals to the sign of $\phi(Z)$ in S_2 . More results on signed graphs can be found in references [4-22]. For example, the following result is well known.

Theorem 1.2 (T. Zaslavsky, [22]) Given a graph G, any two signed graphs in $\psi(G)$, where $\psi(G)$ denotes the set of all the signed graphs possible for a graph G, are switching equivalent if and only if they are cycle isomorphic.

§2. Detour Radial Signed Graphs

Motivated by the existing definition of complement of a signed graph, we now extend the notion of detour radial graphs to signed graphs as follows: The detour radial signed graph $\mathcal{DR}(S)$ of a signed graph $S = (G, \sigma)$ is a signed graph whose underlying graph is $\mathcal{DR}(G)$ and sign of any edge uv is $\mathcal{DR}(S)$ is $\zeta(u)\zeta(v)$, where ζ is the canonical marking of S. Further, a signed graph $S = (G, \sigma)$ is called detour radial signed graph, if $S \cong \mathcal{DR}(S')$ for some signed graph S'. The following result restricts the class of detour radial graphs.

Theorem 2.1 For any signed graph $S = (G, \sigma)$, its detour radial signed graph $\mathcal{DR}(S)$ is balanced.

Proof Since sign of any edge e = uv in $\mathcal{DR}(S)$ is $\zeta(u)\zeta(v)$, where ζ is the canonical marking of S, by Theorem 1.1, $\mathcal{DR}(S)$ is balanced.

For any positive integer k, the k^{th} iterated detour radial signed graph, $\mathcal{DK}^k(S)$ of S is defined as follows:

$$\mathcal{DR}^{0}(S) = S, \, \mathcal{DR}^{k}(S) = \mathcal{DR}(\mathcal{DR}^{k-1}(S)).$$

Corollary 2.2 For any signed graph $S = (G, \sigma)$ and for any positive integer k, $\mathcal{DR}^k(S)$ is balanced.

The following result characterize signed graphs which are detour radial signed graphs.

Theorem 2.3 A signed graph $S = (G, \sigma)$ is a detour radial signed graph if, and only if, S is balanced signed graph and its underlying graph G is a detour radial graph.

Proof Suppose that S is balanced and G is a detour radial graph. Then there exists a graph G' such that $\mathcal{DR}(G') \cong G$. Since S is balanced, by Theorem 1.1, there exists a marking ζ of G such that each edge uv in S satisfies $\sigma(uv) = \zeta(u)\zeta(v)$. Now consider the signed graph $S' = (G', \sigma')$, where for any edge e in G', $\sigma'(e)$ is the marking of the corresponding vertex in G. Then clearly, $\mathcal{DR}(S') \cong S$. Hence S is a detour radial signed graph.

Conversely, suppose that $S = (G, \sigma)$ is a detour radial signed graph. Then there exists a signed graph $S' = (G', \sigma')$ such that $\mathcal{DR}(S') \cong S$. Hence, G is the detour radial graph of G' and by Theorem 2.1, S is balanced.

In [1], the authors characterizes the graphs G = (V, E) such that $G \cong \mathcal{DR}(G)$.

Theorem 2.4 Let G = (V, E) be a graph with atleast one cycle which covers all the vertices of G. Then G and the detour radial graph $\mathcal{DR}(G)$ are isomorphic if and only if G is isomorphic to either K_n or C_n or $K_{m,n}$ with m = n.

In view of the above result, we now characterize the signed graphs such that the detour radial signed graph and its corresponding signed graph are switching equivalent.

Theorem 2.5 For any signed graph $S = (G, \sigma)$ and its underlying graph G contains at least one cycle which covers all the vertices. Then S and the detour radial signed graph $\mathcal{DR}(S)$ are cycle isomorphic if and only if the underlying of S satisfies the conditions of Theorem 2.4 and S is balanced.

Proof Suppose $\mathcal{RD}(S) \sim S$. This implies, $\mathcal{DR}(G) \cong G$ and hence by Theorem 2.4, we see that the graph G satisfies the conditions in Theorem 2.4. Now, if S is any signed graph with underlying graph contains at least one Hamilton cycle and satisfies the conditions of Theorem 2.4. Then $\mathcal{DR}(S)$ is balanced and hence if S is unbalanced and its detour radial signed graph $\mathcal{DR}(S)$ being balanced can not be switching equivalent to S in accordance with Theorem 1.2. Therefore, S must be balanced.

Conversely, suppose that S balanced signed graph with the underlying graph G satisfies the conditions of Theorem 2.4. Then, since $\mathcal{DR}(S)$ is balanced as per Theorem 2.1 and since $\mathcal{DR}(G) \cong G$ by Theorem 2.4, the result follows from Theorem 1.2 again.

In [5], P.S.K.Reddy introduced the notion radial signed graph of a signed graph and proved some results.

Theorem 2.6 For any signed graph $S = (G, \sigma)$, its radial signed graph $\mathcal{R}(S)$ is balanced.

In [1], the authors remarked that $\mathcal{DR}(G)$ and $\mathcal{R}(G)$ are isomorphic, if G is any cycle of odd length. We now characterize the signed graphs S such that $\mathcal{DR}(S) \sim \mathcal{R}(S)$.

Theorem 2.7 For any signed graph $S = (G, \sigma)$, $\mathcal{DR}(S) \sim \mathcal{R}(S)$ if, and only if, $G \cong C_n$, where n is odd.

Proof Suppose that $\mathcal{DR}(S) \sim \mathcal{R}(S)$. Then clearly, $\mathcal{DR}(G) \sim \mathcal{R}(G)$. Hence, G is any cycle of odd length.

Conversely, suppose that S is a signed graph whose underlying graph G is C_n , where n is odd. Then, $\mathcal{DR}(G) \cong \mathcal{R}(G)$. Since for any signed graph S, both $\mathcal{DR}(S)$ and $\mathcal{R}(S)$ are balanced, the result follows by Theorem 1.2.

Acknowledgment

The authors would like to extend their gratitude to the referee for the valuable suggestions.

References

- [1] T.Ganeshwari and Pethanachi Selvam, Some Results on Detour Radial Graph, *International Journal of Research in Engineering and Applied Sciences*, 5(12) (2015), 16-23.
- [2] F. Harary, Graph Theory, Addison Wesley, Reading, Mass, (1972).
- [3] F. Harary, On the notion of balance of a sigraph, Michigan Math. J., 2(1953), 143-146.
- [4] E. Sampathkumar, Point signed and line signed graphs, Nat. Acad. Sci. Letters, 7(3) (1984), 91-93.
- [5] P. Siva Kota Reddy and M. S. Subramanya, Signed graph equation $L^k(S) \sim \overline{S}$, International J. Math. Combin., 4 (2009), 84-88.
- [6] P. Siva Kota Reddy, S. Vijay and V. Lokesha, nth Power signed graphs, Proceedings of the Jangjeon Math. Soc., 12(3) (2009), 307-313.
- [7] P. Siva Kota Reddy, S. Vijay and H. C. Savithri, A note on path signed digraphs, *International J. Math. Combin.*, 1 (2010), 42-46.
- [8] P. Siva Kota Reddy, S. Vijay and V. Lokesha, nth Power signed graphs-II, International J. Math. Combin., 1 (2010), 74-79.
- [9] P. Siva Kota Reddy, E. Sampathkumar and M. S. Subramanya, Common-edge signed graph of a signed graph, *J. Indones. Math. Soc.*, 16(2) (2010), 105-112.
- [10] P. Siva Kota Reddy, t-Path Sigraphs, Tamsui Oxford J. of Math. Sciences, 26(4) (2010), 433-441.
- [11] P. Siva Kota Reddy, B. Prashanth and Kavita. S. Permi, A Note on Antipodal Signed Graphs, *International J. Math. Combin.*, 1 (2011), 107-112.
- [12] P. Siva Kota Reddy, R. Rangarajan and M. S. Subramanya, Switching invariant Neighborhood signed graphs, *Proceedings of the Jangieon Math. Soc.*, 14(2) (2011), 249-258.
- [13] P. Siva Kota Reddy, B. Prashanth, and T. R. Vasanth Kumar, Antipodal Signed Directed Graphs, Advn. Stud. Contemp. Math., 21(4) (2011), 355-360.
- [14] P. Siva Kota Reddy and U. K. Misra, The Equitable Associate Signed Graphs, Bull. Int. Math. Virtual Inst., 3(1) (2013), 15-20.

- [15] P. Siva Kota Reddy and U. K. Misra, Graphoidal Signed Graphs, Advn. Stud. Contemp. Math., 23(3) (2013), 451-460.
- [16] P. Siva Kota Reddy and B. Prashanth, Note on minimal dominating signed graphs, *International J. Math. Combin.*, 4 (2013), 96-102.
- [17] P. Siva Kota Reddy and U. K. Misra, Edge neighborhood signed graphs, Applied Mathematical Sciences, 8(30) (2014), 1473-1482.
- [18] P. Siva Kota Reddy, P. S. Hemavathi and R. Rajendra, Radial signed directed graphs, *Math. Aeterna*, 4(2) (2014), 191-196.
- [19] P. Siva Kota Reddy, K. M. Nagaraja and V. M. Siddalingaswamy, Edge C_k signed graphs, Int. J. Pure Appl. Math., 98(2) (2015), 231-238.
- [20] P. Siva Kota Reddy, Radial signed graphs, International J. Math. Combin., 4 (2016), 128-134.
- [21] T. Sozánsky, Enueration of weak isomorphism classes of signed graphs, J. Graph Theory, 4(2)(1980), 127-144.
- [22] T. Zaslavsky, Signed graphs, Discrete Appl. Math., 4 (1982), 47–74.