Some More 4-Prime Cordial Graphs

R.Ponraj

(Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India)

Rajpal Singh and R.Kala

(Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India)

E-mail: ponrajmaths@gmail.com, rajpalsingh@outlook.com; karthipyi91@yahoo.co.in

Abstract: Let G be a (p,q) graph, $H \prec G$ and $f:V(G) \to \{1,2,\cdots,k\}$ be a map. For each edge uv, assign the label $\gcd(f(u),f(v))$. Then, f is called Smarandachely k-prime cordial labeling on G to H if $|v_f^H(i) - v_f^H(j)| \le 1$, $i,j \in \{1,2,\cdots,k\}$ and $|e_f^H(0) - e_f^H(1)| \le 1$, but there exist integers $0 \le i \ne j \le k$ such that $\left|v_f^{G\backslash H}(i) - v_f^{G\backslash H}(j)\right| \ge 2$, or $\left|e_f^{G\backslash H}(0) - e_f^{G\backslash H}(1)\right| \ge 2$, where $v_f^H(x)$, $v_f^{G\backslash H}(x)$ respectively denotes the numbers of vertices of H, $G\backslash H$ labeled with x, $e_f^H(1)$, $e_f^H(0)$ and $e_f^{G\backslash H}(1)$, $e_f^{G\backslash H}(0)$ respectively denote the number of edges labeled with 1 and not labeled with 1 in H, $G\backslash H$. Particularly, a Smarandachely k-prime cordial labeling on G to G is called k-prime cordial labeling with $v_f(x)$, $e_f(1)$ and $e_f(0)$ replacing notations $v_f^H(x)$, $e_f^H(1)$ and $e_f(0)$ for abbreviation. A graph with a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate 4-prime cordial labeling behavior of lotus inside a circle, sunflower graph, $S(K_2 + mK_1)$, $S(P_n \odot K_1)$, dodecahedron, and some more graphs.

Key Words: Smarandachely k-prime labelling, k-prime labelling, cycle, wheel, join, sunflower graph, lotus inside a circle.

AMS(2010): 05C78.

§1. Introduction

In this paper graphs are finite, simple and undirected. Let G be a (p,q) graph where p refers the number of vertices of G and q refers the number of edge of G. The number of vertices of a graph G is called order of G, and the number of edges is called size of G. In 1987, Cahit introduced the concept of cordial labeling of graphs [1]. Sundaram, Ponraj, Somasundaram [5] have introduced the notion of prime cordial labeling of graphs. Also they discussed the prime cordial labeling behavior of various graphs. Recently Ponraj et al. [7], introduced k-prime cordial labeling of graphs. They have studied 3-prime cordiality of several graphs in [7, 8]. In [9, 10] Ponraj et al. studied the 4-prime cordial labeling behavior of complete graph,

¹Received September 8, 2016, Accepted May 26, 2017.

book, flower, mC_n , wheel, gear, double cone, helm, closed helm, butterfly graph, and friendship graph and some more graphs. In this paper we have studied about the 4-prime cordiality of lotus inside a circle, sunflower graph and some more graphs. Let x be any real number. Then $\lfloor x \rfloor$ stands for the largest integer less than or equal to x and $\lceil x \rceil$ stands for smallest integer greater than or equal to x. Terms not defined here follow from Harary [3] and Gallian [2].

§2. Preliminaries

Remark 2.1([6]) A 2-prime cordial labeling is a product cordial labeling.

Remark 2.2([5]) A p-prime cordial labeling is a prime cordial labeling.

Definition 2.3 The join of two graphs $G_1 + G_2$ is obtained from G_1 and G_2 and whose vertex set is $V(G_1 + G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1), v \in V(G_2)\}.$

Definition 2.4 The graph $C_n + K_1$ is called a wheel. In a wheel, the vertex of degree n is called the central vertex and the vertices on the cycle C_n are called rim vertices.

Definition 2.5 The sunflower graph SF_n is obtained by taking a wheel with central vertex u and the cycle $C_n : u_1u_2 \cdots u_nu_1$ and new vertices v_1, v_2, \ldots, v_n where v_i is joined by vertices $u_i, u_{i+1 \pmod{n}}$.

Definition 2.6 The lotus inside a circle LC_n is a graph obtained from the cycle $C_n : v_1v_2 \cdots v_nv_1$ and a star $K_{1,n}$ with central vertex u and the end vertices u_1, u_2, \cdots, u_n by joining each u_i to v_i and $v_{i+1 \pmod{n}}$.

Definition 2.7 The subdivision graph S(G) of a graph G is obtained by replacing each edge uv by a path uwv.

Definition 2.8 The graph P_n^2 is obtained from the path P_n by adding edges that joins all vertices u and v with d(u, v) = 2.

Definition 2.9 Let G_1 , G_2 respectively be (p_1, q_1) , (p_2, q_2) graphs. The corona of G_1 with G_2 , $G_1 \odot G_2$ is the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2 .

Definition 2.10 The one-point union of t copies of the cycle C_3 is called a friendship graph $C_3^{(t)}$.

Definition 2.11 The DH_n is a graph with vertex set $V(DH_n) = \{u_i, v_i, x_i, y_i : 1 \leq i \leq n\}$ and the edge set $E(DH_n) = \{uu_{i+1}, y_iv_{i+1}, x_ix_{i+1} : 1 \leq i \leq n-1\} \bigcup \{u_iv_i, v_iy_i, x_iy_i : 1 \leq i \leq n\} \bigcup \{u_1u_n, y_nv_1, x_1x_n\}$. DH_5 is called a Tetrahedron.

Definition 2.12 The Cartesian product graph $G_1 \square G_2$ is defined as follows: Consider any two points $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V = V_1 \times V_2$. Then u and v are adjacent in $G_1 \square G_2$

whenever $[u_1 = v_1 \text{ and } u_2v_2 \in E(G_2)]$ or $[u_2 = v_2 \text{ and } u_1v_1 \in E(G_1)]$.

Definition 2.13 A ladder L_n is the graph $P_n \times P_2$. Let $V(L_n) = \{u_i, v_i : 1 \le i \le n\}$ and $E(L_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \bigcup \{u_i v_i : 1 \le i \le n\} \bigcup \{u_1 u_n, v_1 v_n\}$.

The graph GL_n is obtained from the ladder L_n with $V(GL_n) = V(L_n)$ and $E(GL_n) = E(L_n) \cup \{u_i v_{i+1} : 1 \le i \le n-1\}.$

Theorem 2.14([7]) The cycle C_n , $n \neq 3$ is k-prime cordial where k is even.

§3. Main Results

3.1 Cycle Related Graphs

Theorem 3.1 The lotus inside a circle LC_n is 4-prime cordial if and only if n > 4.

Proof Note that the order and size of LC_n are 2n + 1 and 4n respectively. Suppose n = 3 or 4 then one can easily check that there does not exists a 4-prime cordial labeling and so we assume n > 4. Here we divide the proof into four cases.

Case 1. $n \equiv 0 \pmod{4}$.

We construct a labeling f as follows: assign the label 4 to the vertices $v_1, v_2, \cdots v_{\frac{n}{2}}$ then put the label 3 to the vertex $v_{\frac{n}{2}+1}$. The remaining vertices of the cycle, namely, $v_{\frac{n}{2}+2}, v_{\frac{n}{2}+3}, \cdots, v_n$ are labeled by 1. Now we consider the center of the star u. The vertex u is labeled by 2. For the vertices u_1, u_2, \cdots, u_n , first we consider the vertices u_{n-1} and u_n . Assign the labels 1, 2 respectively to the vertices u_{n-1} and u_n . Consider the vertices $u_1, u_2, \cdots u_{\frac{n}{2}-1}$. Fix the label 2 to this vertices. Then the vertices $u_{\frac{n}{2}}, u_{\frac{n}{2}+1}, \cdots, u_{n-2}$ are labeled by 3.

Case 2. $n \equiv 1 \pmod{4}$.

Assign the labels to the vertices $u, u_i, 1 \le i \le n-3, v_j, 1 \le j \le n-1$ as in case 1. The assign the labels 3, 1, 2 to the vertices u_{n-2}, u_{n-1}, u_n respectively. Finally we assign the label 4 to the vertex v_n .

Case 3. $n \equiv 2 \pmod{4}$.

Assign the label 4 to the vertices $v_1, v_2, \dots v_{\frac{n}{2}}$. For the vertex $v_{\frac{n}{2}+1}$ we assign the number 3. The remaining vertices of the cycle from $v_{\frac{n}{2}+2}, v_{\frac{n}{2}+3}, \dots, v_n$ receives the label 1. Put the label 2 to the vertex u. Now we consider the vertices $u_i, 1 \leq i \leq n$. Assign the label 2 to the vertices u_n, u_i where $1 \leq i \leq \frac{n}{2}-1$, then assign the integer 3 to the vertices $u_{\frac{n}{2}}, u_{\frac{n}{2}+1}, \dots, u_{n-2}$. Finally we assign the label 1 to the vertex u_{n-1} .

Case 4. $n \equiv 3 \pmod{4}$.

First we consider the vertices of the cycle. The label 4 is used to the vertices v_i , $1 \le i \le \frac{n+1}{2}$. Put the label 3 to the vertex $v_{\frac{n+3}{2}}$. The unlabeled vertices of the cycle are now labeled by 1. Then put the number 2 to the vertex u. If we consider the vertices u_i , $1 \le i \le n$, we assign the label 2 to the vertices u_j where $1 \le j \le \frac{n-1}{2}$ then assign 3 to the vertices $u_{\frac{n+1}{2}}, \dots, u_{n-1}$.

Finally put the number 1 to the vertex u_n .

The following Table 1 establish that the above mentioned labeling f is a 4-prime cordial labeling.

Values of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	$e_f(0)$	$e_f(1)$
$n \equiv 0 \pmod{4}$	$\lfloor \frac{2n+1}{4} \rfloor$	$\left\lceil \frac{2n+1}{4} \right\rceil$	$\lfloor \frac{2n+1}{4} \rfloor$	$\lfloor \frac{2n+1}{4} \rfloor$	2n	2n
$n \equiv 1 \pmod{4}$	$\lfloor \frac{2n+1}{4} \rfloor$	$\left\lceil \frac{2n+1}{4} \right\rceil$	$\left\lceil \frac{2n+1}{4} \right\rceil$	$\left\lceil \frac{2n+1}{4} \right\rceil$	2n	2n
$n \equiv 2 \pmod{4}$	$\lfloor \frac{2n+1}{4} \rfloor$	$\left\lceil \frac{2n+1}{4} \right\rceil$	$\lfloor \frac{2n+1}{4} \rfloor$	$\lfloor \frac{2n+1}{4} \rfloor$	2n	2n
$n \equiv 3 \pmod{4}$	$\lfloor \frac{2n+1}{4} \rfloor$	$\lceil \frac{2n+1}{4} \rceil$	$\left\lceil \frac{2n+1}{4} \right\rceil$	$\left\lceil \frac{2n+1}{4} \right\rceil$	2n	2n

Table 1

Theorem 3.2 The sunflower graph SF_n is 4-prime cordial for all n.

Proof First we observe that the order and size of SF_n are 2n + 1 and 4n respectively. We consider the following cases.

Case 1.
$$n \equiv 0 \pmod{4}$$
.

Assign the label 2 to the vertices $u_1, u_2, \cdots u_{\frac{n}{4}}$. Then put the number 4 to the next consecutive vertices $u_{\frac{n}{4}+1}, \cdots, u_{\frac{n}{2}+1}$. The next vertex $u_{\frac{n}{2}+2}$ is labeled by 3. Then the remaining vertices of the cycle, namely, $u_{\frac{n}{2}+3}, \cdots, u_n$ are labeled by 1. For the central vertex u, we use the label 2. We now move to the vertices v_i , $1 \le i \le n$. Assign the label 2 to the vertices $v_1, v_2, \cdots v_{\frac{n}{4}-1}$. Then assign the label 4 to the vertices $v_{\frac{n}{4}}, v_{\frac{n}{4}+1}, \cdots, v_{\frac{n}{2}-1}$. The next three vertices $v_{\frac{n}{2}}, v_{\frac{n}{2}+1}, v_{\frac{n}{4}+2}$ are labeled by 1,3,1 respectively. Finally the remaining unlabeled vertices received the integer 3.

Case 2. $n \equiv 1 \pmod{4}$.

First we consider the vertices of the cycle C_n . For the vertices $u_1, u_2, \cdots u_{\frac{n-5}{4}}$, we assign the label 2. The successive vertices $u_{\frac{n-1}{4}}, \cdots, u_{\frac{n-1}{2}}$ are labeled by 4. Put the label 3 to the vertex $u_{\frac{n+1}{2}}$. The vertices $u_{\frac{n+3}{2}}, \cdots, u_{n-1}$ are labeled by 1. Put the label 2 to the vertex u_n . Then assign the label 2 to the central vertex u. We now move to the vertices $v_i, 1 \le i \le n$. Assign the label 2 to the vertices $v_1, v_2, \cdots v_{\frac{n-5}{4}}$. Then put the number 4 to the vertices $v_{\frac{n-1}{4}}, \cdots, v_{\frac{n-3}{2}}$. Put the labels 33,1 respectively to the vertices $v_{\frac{n-1}{2}}, v_{\frac{n+1}{2}}$. Assign the label 3 to the vertices $v_{\frac{n-3}{2}}, \cdots, v_{n-1}$. Finally we assign the number 2 to v_n .

Case 3. $n \equiv 2 \pmod{4}$.

We first consider the vertex u. Label it by 2. Then we consider the vertices of the cycle C_n . Assign the label 2 to the vertices $u_1, u_2, \cdots u_{\frac{n+2}{4}}$. Then put the integer 4 to the vertices $u_{\frac{n+6}{4}}, \cdots, u_{\frac{n+2}{2}}$. The next vertex $u_{\frac{n+4}{2}}$ is labeled by 3. The remaining vertices of the cycle are labeled by 1. Then consider the vertices v_i , $1 \le i \le n$. Assign the label 2 to the vertices v_i where $1 \le i \le \frac{n-2}{4}$ then the vertices $v_{\frac{n-2}{4}+i}$ where $1 \le i \le \frac{n-2}{4}$ are labeled with 4. Put the labels 1, 3, 1 to the next consecutive vertices $v_{\frac{n}{2}}, v_{\frac{n+2}{2}}, v_{\frac{n+4}{2}}$. Finally put the number 3 for the unlabeled vertices.

Case 4. $n \equiv 3 \pmod{4}$.

Assign the label 2 to the vertices u_i , where $1 \leq i \leq \frac{n+1}{4}$, then assign 4 to the vertices $u_{\frac{n+1}{4}+i}$ where $1 \leq i \leq \frac{n+1}{4}$. The next vertex $u_{\frac{n+3}{2}}$ received the label 3. Then assign the label 1 to the remaining vertices of the cycle. Put the integer 2 to the vertex u. Then we consider the vertices v_i , $1 \leq i \leq n$. Assign the number 2 to the vertices $v_1, v_2, \cdots v_{\frac{n-3}{4}}$. Then assign 4 to the vertices $v_{\frac{n+1}{4}}, \cdots, v_{\frac{n-1}{2}}$. The next two consecutive vertices $v_{\frac{n+1}{2}}, v_{\frac{n+3}{2}}$ are labeled by 3, 1 respectively. The rest of the unlabeled vertices are labeled by 3.

The Table 2 shows that the ab	ove labeling f is a requ	ired 4-prime cordial	labeling.
THE TUDIC 2 BHOWS UNGUING UNCOUN	ove labelling / ib a requ	anca i prime coraiar	1000011115. —

Values of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	$e_f(0)$	$e_f(1)$
$n \equiv 0 \pmod{4}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n}{2} + 1$	2n	2n
$n \equiv 1 \pmod{4}$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	2n	2n
$n \equiv 2 \pmod{4}$	$\frac{n}{2}$	$\frac{n}{2} + 1$	$\frac{n}{2}$	$\frac{n}{2}$	2n	2n
$n \equiv 3 \pmod{4}$	$\frac{n-1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	2n	2n

Table 2

A 4-prime cordial labeling of SF_8 is given in Figure 1.

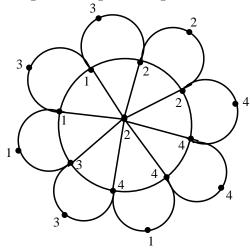


Figure 1

Theorem 3.3 DH_n is 4-prime cordial.

Proof Clearly DH_n consists of 4n vertices and 6n edges. We now give the label to the vertices of DH_n as follows: Assign the label 2 to the vertices u_i , $1 \le i \le n$ and assign the label 4 to the vertices v_i , $1 \le i \le n$. Now we move to the vertices y_i . Assign the label 1 to the vertices y_1, y_2, \dots, y_n . Finally assign the label 3 to the vertices x_1, x_2, \dots, x_n . This vertex labeling f is obviously a 4-prime cordial labeling of DH_n . Since, $v_f(1) = v_f(2) = v_f(3) = v_f(4) = n$ and $e_f(0) = e_f(1) = 3n$.

Theorem 3.4 Let C_n be the cycle $u_1u_2\cdots u_nu_1$. Let G_n be the graph with $V(G_n)=V(C_n\bigcup\{v_i:$

 $1 \le i \le n$ } and $E(G_n) = E(C_n) \bigcup \{u_i v_i : 1 \le i \le n\} \cup \{u_{i+1} v_i : 1 \le i \le n-1\}$. Then G_n is 4-prime cordial for all $n \ne 4$.

Proof Clearly for any vertex labeling of G_4 , the maximum possible edges with label 0 is 4. Hence G_4 is not 4-prime cordial.

Case 1. $n \equiv 0 \pmod{4}, n \neq 4$.

Let n=4t. Assign the label 2 to the vertices u_1, u_2, \dots, u_{2t} and 4 to the vertices v_1, v_2, \dots, v_{2t} . Next assign the label 3 to the vertices u_{2t+1}, u_{2t+2} and u_{2t+3} . Next assign the label 1 to the cycle vertices $u_{2t+4}, u_{2t+6}, \dots, u_{4t}$ and 3 to the vertices $v_{2t+4}, v_{2t+5}, \dots, v_{4t-1}, v_{4t}$. Finally assign the remaining non labeled vertices by 1.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1. In this case, assign the label 2 to the vertices $u_1, u_2, \dots, u_{2t+1}$ and 4 to the vertices $v_1, v_2, \dots, v_{2t+1}$. Next assign the label 1 to the cycle vertices $u_{2t+2}, u_{2t+3}, \dots$ and u_{4t+1} . Finally assign the label 3 to the non labeled vertices $v_{2t+2}, v_{2t+3}, \dots, v_{4t+1}$.

Case 3. $n \equiv 2 \pmod{4}$.

Let n=4t+2. In this case we assign the label 2 to the vertices u_i $(1 \le i \le 2t+1)$ and 4 to the vertices v_i $(1 \le i \le 2t+1)$. Next assign the label 3 to the cycle vertices u_{2t+2}, u_{2t+3} and u_{2t+4} . Now we assign the label 1 to the vertices $u_{2t+5}, u_{2t+6}, \dots, u_{4t+2}$. Next assign the label 3 to the vertices $v_{4t+2}, v_{4t+1}, \dots, v_{2t+4}$. Finally assign the label to the non labeled vertices by

Case 4. $n \equiv 3 \pmod{4}$.

Let n=4t+3. Assign the label 2 to the vertices $u_1, u_2, \dots, u_{2t+2}$ and 4 to the vertices $v_1, v_2, \dots, v_{2t+2}$. Next assign the label 1 to the vertices $u_{2t+3}, u_{2t+4}, \dots, u_{4t+3}$. Finally assign the label to the vertices $v_{2t+3}, v_{2t+4}, \dots, v_{4t+3}$.

Hence the vertex labeling given above is obviously a 4-prime cordial labeling of G_n .

3.2 Subdivided Graphs

Theorem 3.5 $S(K_2 + mK_1)$ is 4-prime cordial.

Proof Let $V(S(K_2 + mK_1)) = \{u, v, w, u_i, v_i, w_i : 1 \le i \le m\}$ and $E(S(K_2 + mK_1)) = \{uv, vw, uu_i, u_iw_i, w_iv_i, v_iu : 1 \le i \le m\}$. Note that $S(K_2 + mK_1)$ has 3m + 3 vertices and 4m + 2 edges. The proof is divided into four cases depending upon the nature of n.

Case 1. n = 4t.

Assign the label 2 to the vertex u. Next assign the label 2 to the vertices $u_1, u_2, \dots u_{3t}$. We now assign the label 4 to the vertices $u_{3t+1}, u_{3t+2}, \dots, u_{4t}$. Next we move to the vertices w_i . Assign the label 4 to the vertices w_1, w_2, \dots, w_{2t} . Next assign 3 to the vertices $w_{3t+1}, w_{3t+2}, \dots, w_{4t}$. Next assign the label 3 to the vertices $v_{4t}, v_{4-1}, \dots, v_{3t+1}$. We now assign the labels 4, 3 respectively to the vertices w, v. Finally, assign 1 to all the remaining non labeled vertices.

Case 2. n = 4t + 1.

Assign the labels to the vertices $u_i, v_i, w_i, 1 \le i \le 4t+1, u, v, w$ as in case 1. Finally assign 2, 4 and 1 respectively to the vertices u_{4t+1}, w_{4t+1} and v_{4t+1} .

Case 3. n = 4t + 2.

As in Case 2, assign the labels to the vertices $u_i, v_i, w_i, 1 \le i \le 4t + 1, u, v, w$. Next assign the labels 2, 1, 3 to the vertices u_{4t+2}, w_{4t+2} and v_{4t+2} respectively.

Case 4. n = 4t + 3.

Assign the labels to the vertices $u_i, v_i, w_i, 1 \le i \le 4t + 2, u, v, w$ as in case 3. Finally assign 4, 1, 3 respectively to the vertices u_{4t+3}, w_{4t+3} and v_{4t+3} .

Clearly, the above labeling is a 4-prime cordial labeling of $S(K_2 + mK_1)$.

Theorem 3.6 $S(P_n \odot K_1)$ is 4-prime cordial.

Proof Let P_n be the path $u_1u_2..._n$ and $V(P_n \odot K_1) = V(P_n) \bigcup \{v_i : 1 \leq i \leq n\}$, $E(P_n \odot K_1) = E(P_n) \bigcup \{u_iv_i : 1 \leq i \leq n\}$. The graph $S(P_n \odot K_1)$ is obtained by subdividing the edge u_iu_{i+1} with w_i and the edge u_iv_i with x_i . Note that $S(P_n \odot K_1)$ has 4n-1 vertices and 4n-2 edges. The proof is divided into four cases.

Case 1. $n \equiv 0 \pmod{4}$.

Let n=4t. Assign the label 2 to the vertices u_1, u_2, \dots, u_{4t} and 4 to the vertices $w_1, w_2, \dots, w_{4t-1}$ and x_1 . We now assign the label 1 to the vertices x_2, x_3, \dots, x_{4t} . Finally assign the label 3 to the pendent vertices v_1, v_2, \dots, v_{4t} .

Case 2. $n \equiv 1 \pmod{4}$.

Assign the label to the vertices u_i, v_i, x_i $(1 \le i \le n-1)$ and w_i $(1 \le i \le n-2)$ as in Case 1. Finally assign the labels 2, 4, 3 and 1 respectively to the vertices w_{n-1}, u_n, x_n, v_n .

Case 3. $n \equiv 2 \pmod{4}$.

As in Case 2, assign the label to the vertices u_i, v_i, x_i $(1 \le i \le n-1)$ and w_i $(1 \le i \le n-2)$. Next assign the labels 2, 4, 3 and 1 to the vertices w_{n-1}, u_n, x_n, v_n respectively.

Case 4. $n \equiv 3 \pmod{4}$.

In this case also assign labels to the vertices except w_{n-1}, u_n, x_n, v_n as in case 3. Then assign the labels 2, 4, 3 and 1 to the vertices w_{n-1}, u_n, x_n, v_n respectively.

Clearly, the vertex labeling given in all cases is a 4-prime cordial labeling of $S(P_n \odot K_1)$.

Theorem 3.7 $S(C_3^{(t)})$ is 4-prime cordial.

Proof Note that $S(C_3^{(t)}) \equiv C_6^{(t)}$. Let the i^{th} copy of the C_6 be $u_1^i u_2^i u_3^i u_4^i u_5^i u_6^i$, where $1 \leq i \leq t$ and $u_1^1 = u_1^2 = u_1^3 = u_1^4 = u_1^5 = u_1^6$.

Case 1. t is even, $t \geq 4$.

Assign the label 2 to the central vertex.

Subcase 1.1 $t \equiv 0 \pmod{4}$.

Assign the label 2 to all the vertices of first $\frac{t}{4}$ copies of the cycle C_5 . Next we move to the $(\frac{t}{4}+1)^{th}$ copy. Assign the label 4 to all the vertices of the $(\frac{t}{4}+1)^{th}$, $(\frac{t}{4}+2)^{th}$, ..., $(\frac{t}{2})^{th}$ copies of the cycle C_5 . We now consider the $(\frac{t}{2}+1)^{th}$ copy. Assign the label 1 and 3 alternatively to the vertices of the $(\frac{t}{2}+1)^{th}$ copy of the cycle. In a similar fashion assign the label 1 and 3 alternatively to the vertices of the $(\frac{t}{2}+2)^{th}$, ..., t^{th} copy of the cycle C_5 .

Subcase 1.2 $t \equiv 2 \pmod{4}$.

In this case assign the label 2 to all the vertices of first $\frac{t-2}{4}$ copies of the cycle C_5 . Now consider the $(\frac{t+2}{4})^{th}$ copy. Assign the label 4 to all the vertices of the cycle $(\frac{t+2}{4})^{th}$ copy. Similarly assign the label 4 to the $(\frac{t+6}{4})^{th}$, ..., $(\frac{t-2}{2})^{th}$ copies of the cycle C_5 . We now move to the $(\frac{t}{2})^{th}$ copy. In this copy, assign the label 2 to the vertices u_2^t , u_3^t and 4 to the vertices u_4^t , u_5^t , u_6^t . Next assign 1, 3 alternatively to the vertices of the $(\frac{t}{2}+1)^{th}$, ..., t^{th} copies of the cycle.

Case 2. t is odd.

Subcase 2.1 $t \equiv 1 \pmod{4}$.

As in subcase 1a, assign the label to the vertices of all the i^{th} , $1 \le i \le t-1$ copies of C_5 . In the last copy, assign the labels 2, 4, 4, 1 and 3 respectively to the vertices $u_2^t, u_3^t, u_4^t, u_5^t$ and u_6^t .

Subcase 2.2 $t \equiv 3 \pmod{4}$.

Assign the label to the vertices of (t-1) copies of the cycle as in subcase 1b. Finally, assign the labels 2, 4, 3, 3 and 1 to the vertices u_2^t , u_3^t , u_4^t , u_5^t and u_6^t respectively.

The Table 3 establish that the above vertex labeling f is a 4-prime cordial labeling of $S(C_3^{(t)}), t \ge 4$.

Nature of t	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	$e_f(0)$	$e_f(1)$
$t \equiv 0 \pmod{4}$	$\frac{5t}{4}$	$\frac{5t}{4} + 1$	$\frac{5t}{4}$	$\frac{5t}{4}$	3t	3t
$t \equiv 1 \pmod{4}$	$\frac{5t-1}{4}$	$\frac{5t+3}{4}$	$\frac{5t-1}{4}$	$\frac{5t+3}{4}$	3t	3t
$t \equiv 2 \pmod{4}$	$\frac{5t+2}{4}$	$\frac{5t+2}{4}$	$\frac{5t-2}{4}$	$\frac{5t+2}{4}$	3t	3t
$t \equiv 3 \pmod{4}$	$\frac{5t+1}{4}$	$\frac{5t+1}{4}$	$\frac{5t+1}{4}$	$\frac{5t+1}{4}$	3t	3t

Table 3

 $S(C_3^{(1)})\cong C_6$ is 4-prime cordial follows from Theorem 2.14. The 4-prime cordial labelings of $S(C_3^{(2)})$ and $S(C_3^{(3)})$ are given in Figure 2.

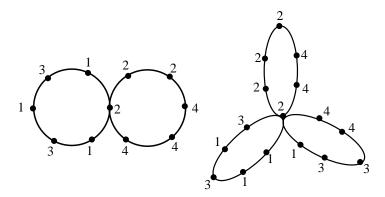


Figure 2

3.3 Miscellaneous Graphs

Theorem 3.8 P_n^2 is 4-prime cordial if and only if $n \neq 4$.

Proof Let P_n be the path u_1, u_2, \dots, u_n . Clearly, the order and size of P_n^2 are n and 2n-3 respectively. It is easy to verify that P_4^2 does not admits a 4-rime cordial labeling. Let us assume that $n \neq 4$.

Case 1. $n \equiv 0 \pmod{4}$.

Let n=4t. Assign the label 1 to the vertices u_1,u_3,\cdots,u_{2t-1} . Next assign the label 3 to the vertices u_2,u_4,\cdots,u_{2t} . Assign the label 2 to the next t vertices u_{2t+1},\cdots,u_{3t} . Finally, assign the label 4 to the next t non labeled vertices u_{3t+1},\cdots,u_{4t} .

Case 2. $n \equiv 1 \pmod{4}$.

Subcase 2.1 $n \equiv 1 \pmod{8}$.

Assign the labels to the vertices of u_i , $1 \le i \le n-1$ as in Case 1. Finally, assign the label 2 to the vertex u_n .

Subcase 2.1 $n \equiv 5 \pmod{8}$.

As in Case 1, assign the labels to the vertices u_i , $1 \le i \le n-1$. Then assign the label 1 to the vertex u_n .

Case 3. $n \equiv 2 \pmod{4}$.

Subcase 3.1 $n \equiv 2 \pmod{8}$.

Assign the labels to the vertices of u_i , $1 \le i \le n-1$ as in Subcase 2.1. Then assign the label 1 to the vertex u_n .

Subcase 3.2 $n \equiv 6 \pmod{8}$.

As in Case 1, assign the labels to the vertices u_i , $1 \le i \le n-2$. Then assign the labels 2 and 1 respectively to the vertices u_{n-1} and u_n .

Case 4. $n \equiv 3 \pmod{4}$.

Subcase 4.1 $n \equiv 3 \pmod{8}$.

As in Subcase 3.1, assign the labels to the vertices of u_i , $1 \le i \le n-1$. Finally, assign the label 4 to the last vertex u_n .

Subcase 4b. $n \equiv 7 \pmod{8}$.

Assign the labels to the vertices u_i , $1 \le i \le n-1$ as in Subcase 3.2. Finally, assign the label 4 to the vertex u_n .

It is easy to verify that the above vertex labeling pattern is 4-prime cordial labeling. \Box

The following Figure 3 is an example of a 4-prime cordial labeling of P_{10}^2 .

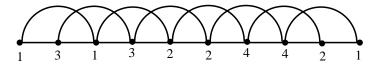


Figure 3

Theorem 3.9 The graph GL_n is 4-prime cordial for n > 2.

Proof Here we consider the following cases.

Case 1. $n \equiv 0 \pmod{4}$.

Clearly GL_n has 2n vertices and 4n-3 edges. Let n=4t. Assign the label 2 to the vertices u_1, u_2, \dots, u_{2t} and assign the label 4 to the vertices $v_2, v_3, \dots, v_{2t+1}$. Next assign the label the labels 3,1 alternatively to the vertices to the vertices $u_{2t+1}, u_{2t+2}, \dots, u_{4t}$. Assign the label 1 to the vertices $v_{4t}, v_{4t-2}, v_{4t-4}, \dots, v_{2t+5}$ and assign the label 3 to the vertices $v_{4t-1}, v_{4t-3}, v_{4t-5}, \dots, v_{2t+4}$. Finally assign the labels 1, 1, 3 and 3 respectively to the vertices $v_{2t+3}, v_{2t+2}, v_{2t+1}$ and v_1 .

Case 2. $n \equiv 1 \pmod{4}$.

Assign the label to the vertices $u_i, v_i, 1 \le i \le n-1$ as in case 1. Next assign the labels 2, 4 to the vertices u_n, v_n respectively.

Case 3. $n \equiv 2 \pmod{4}$.

As in Case 2, assign the label to the vertices $u_i, v_i, 1 \le i \le n-1$. Next assign the labels 1,3 respectively to the vertices u_n, v_n . Finally interchange the labels of u_{2t+2} and u_{2t+3} , that is the label of u_{2t+2} is 3 and the label of u_{2t+3} is 1.

Case 4. $n \equiv 3 \pmod{4}$.

As in Case 3, assign the label to the vertices $u_i, v_i, 1 \le i \le n-1$. Then assign the labels 2,4 to the vertices u_n, v_n respectively. Clearly the above vertex labeling is a 4 prime cordial labeling of GL_n for all $n \ge 4$ and $n \ne 2$. A 4-prime cordial labeling of GL_3 is shown in the following Figure 4.

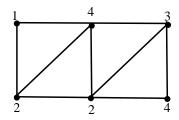


Figure 4

References

- [1] I.Cahit, Cordial Graphs: A weaker version of graceful and harmonious graphs, *Ars combin.*, 23 (1987) 201-207.
- [2] J.A.Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 17 (2015) #Ds6.
- [3] F.Harary, Graph Theory, Addision Wesley, New Delhi (1969).
- [4] M.A.Seoud and M.A.Salim, Two upper bounds of prime cordial graphs, *JCMCC*, 75(2010) 95-103.
- [5] M.Sundaram, R.Ponraj and S.Somasundaram, Prime cordial labeling of graphs, J. Indian Acad. Math., 27(2005) 373-390.
- [6] M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, *Bull. Pure and Appl. Sci. (Math. & Stat.)*, 23E (2004) 155-163.
- [7] R.Ponraj, Rajpal singh, R.Kala and S. Sathish Narayanan, k-prime cordial graphs, J. Appl. Math. & Informatics, 34 (3-4) (2016) 227 237.
- [8] R.Ponraj, Rajpal Singh, and S.Sathish Narayanan, A note on 3-Prime cordial graphs, Journal of Algorithms and Computation, 48(1)(2016), 45-55.
- [9] R.Ponraj, Rajpal singh and S. Sathish Narayanan, 4-prime coordiality of some classes of graphs, *Journal of algorithms and computation*, 48(1)(2016), 69-79.
- [10] R.Ponraj, Rajpal singh and S. Sathish Narayanan, 4-prime cordiality of some cycle related graphs, Applications and Applied Mathematics: an international journal, 12(1)(2017), 230-240.