The Merrifield-Simmons Indices of Triangle-Trees with kPendant-Triangles

Xuezheng Lv, Zixu Yan and Erling Wei
(Department of Mathematics, Renmin University of China, Beijing 100872, P.R. China)

E-mail: werling@ruc.edu.cn

Abstract: Triangle-trees are a kind of graphs derived from Koch networks. The Merrifield-Simmons index of a graph is the total number of the independent sets of the graph. We prove that $P_{k,n-k}^{\Delta}$ is the triangle-tree with maximal Merrifield-Simmons index among all the triangle-trees with n triangles and k pendant triangles.

Key Words: Triangle-tree; Merrifield-Simmons index; pendant-triangle.

AMS(2010): 05C25.

§1. Introduction

The Koch networks (see [10], [13]) are derived from the Koch fractals (see [4], [9]) and are constructed iteratively. Let $K_{m,g}$ (m is a natural number) denote the Koch network after g iterations. Then, the family of Koch networks can be generated in the following way: initially (g = 0), $K_{m,0}$ consists of a triangle with three nodes labeled respectively by x, y, z, which have the highest degree among all nodes in the networks. For $g \ge 1$, $K_{m,g}$ is obtained from $K_{m,g-1}$ by performing the following operation. For each of the three nodes in every existing triangle in $K_{m,g-1}$, we add m groups of nodes. Each node group contains two nodes, both of which and their 'mother' node are connected to one another forming a new triangle. In other words, to get $K_{m,g}$ from $K_{m,g-1}$, we can replace each triangle in $K_{m,g-1}$ by a connected cluster on the right-hand side of the arrow in Fig.1.

Note that a Koch network does not have any cycle except for the triangles, we can call such a graph a triangle-tree.

Definition 1.1 Let T_n^{Δ} (n is a natural number) denote a triangle-tree with n triangles. The family of triangle-trees can be generated in the following way: initially n=1, T_1^{Δ} consists of a triangle with three vertices labeled respectively by x, y, z. For $n \geq 2$, T_n^{Δ} is obtained from T_{n-1}^{Δ} by adding a pair of new vertices u, v, both of them are joined to a vertex of T_{n-1}^{Δ} and the edge uv is also added to form a new triangle. In other words, to get T_n^{Δ} from T_{n-1}^{Δ} , we add a new triangle to T_{n-1}^{Δ} by identifying a vertex of the new triangle with a vertex of T_{n-1}^{Δ} .

¹Supported by National Natural Science Foundation of China, No. 11401576.

¹Received June 4, 2015, Accepted May 20, 2016.

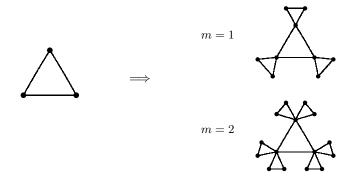


Fig.1

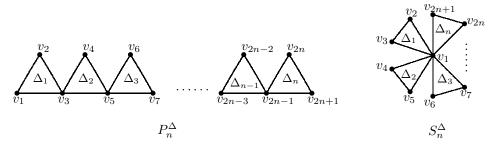


Fig.2

Obviously Koch networks are all triangle-trees. Suppose T^{Δ} is a triangle-tree, Δ is a triangle of T, if there are two vertices with degree two in Δ , we call the triangle Δ a pendant triangle of T^{Δ} . The triangle-path P_n^{Δ} (see Fig.2) is the only triangle-tree with only two pendant triangles and the triangle-star S_n^{Δ} (see Fig.2) is the only triangle-tree with n pendant triangles. For any two triangles Δ_1 and Δ_2 of T^{Δ} , if Δ_1 and Δ_2 have a common vertex, we say Δ_1 and Δ_2 are adjacent, and the distance between Δ_1 and Δ_2 is 1, denoted by $d(\Delta_1, \Delta_2) = 1$. If Δ_1 and Δ_2 do not have a common vertex, there is only one triangle-path between them. If the triangle-path between Δ_1 and Δ_2 contains d triangles, we say the distance between Δ_1 and Δ_2 is d-1, denoted by $d(\Delta_1, \Delta_2) = d-1$. The diameter of a triangle-tree is denoted by d^{Δ} , defined as

$$d^{\Delta}(T_n^{\Delta}) = \max\{d(\Delta,\Delta') \ | \ \Delta,\Delta' \text{are two triangles of } T_n^{\Delta}\}.$$

Throughout this paper G = (V, E) is a finite simple undirected graph with vertex set V = V(G) and edge set E = E(G). The neighborhood of a vertex $v \in V$ is the set $N_G(v) = \{w : w \in V, vw \in E\}$, $d_G(v) = |N_G(v)|$, and $N_G[v] = N_G(v) \cup \{v\}$. For $S \subseteq V$, we use G - S for the subgraph induced by $V(G) \setminus S$, G[S] for the subgraph of G induced by G and G induced by G is G.

Let G be a graph on n vertices. Two vertices of G are said to be independent if they are not adjacent in G. A k-independent set of G is a set of k-mutually independent vertices. Denote by $f_k(G)$ the number of the k-independent sets of G. For convenience, we regard the

empty vertex set as an independent set. Then $f_0(G) = 1$ for any graph G. Let $\alpha(G)$ denote the cardinality of a maximal independent set of G.

The Merrifield-Sommons index was introduced by Prodinger and Tichy in 1982, which is defined by

$$i(G) = \sum_{s=0}^{\alpha(G)} f_s(G),$$

although it is called Fibonacci number of a graph in [8]. It is one of the most popular topological indices in chemistry, which was extensively studied in monograph [7]. Now there have been many papers studying the Merrifield-Simmons index. In [8], Prodinger and Tichy showed that, for trees with order n, the star has the maximal Merrifield-Simmons index and the path has the minimal Merrifield-Simmons index. In [6], Li et al characterized the tree with the maximal Merrifield-Simmons index among the trees with given diameter. In [11], Yu and Lv characterized the trees with maximal Merrifield-Simmons indices, among the trees with given pendant vertices. For more results on Merrifield-Simmons index, see [1-3], [5] and [12].

Due to the similarity of triangle-trees and ordinary trees, it is very interesting to study the Merrifield-Simmons indices of triangle-trees. It is easy verify that, among all the triangle-trees with n triangles, S_n^{Δ} is the triangle-tree with maximal Merrifield-Simmons index and P_n^{Δ} is the triangle-tree with minimal Merrifield-Simmons index. As noting this result is similar to the result of ordinary trees, we consider all the triangle-trees with n triangles and k pendant triangles. It is very interesting to find that $P_{k,n-k}^{\Delta}$ (as shown in Fig. 3) is the triangle-tree with maximal Merrifield-Simmons index among all such triangle-trees, and this result is also similar to the result of ordinary trees.

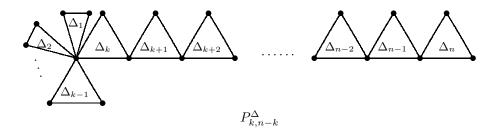


Fig.3

§2. Lemmas and Results

We first introduce the following lemma, which is obvious and well-known.

Lemma 2.1 For a graph G, we have

- (1) i(G) = i(G v) + i(G N[v]) for any $v \in V(G)$;
- (2) i(G) = i(G e) i(G N[e]) for any $e \in E(G)$;
- (3) If $G = G_1 \cup G_2$, then $i(G) = i(G_1)i(G_2)$.

Using the above lemma, we can derive some recursion formulas on the Merrifield-Simmons

index of the triangle-path P_n^{Δ} . Denote $a_n=i(P_n^{\Delta})$. It is easy to see that $a_1=4, a_2=10, a_3=24$. Let $Q_n=P_n^{\Delta}-v_1$, where v_1 is one of the vertices with degree two of the pendant-triangle of P_n^{Δ} (as shown in Fig 2) and $b_n=i(Q_n)$. It is easy to see that $b_1=3, b_2=7, b_3=17$. Let $R_n=Q_n-v_{2n+1}$, where v_{2n+1} is one of the vertices with degree two of another pendant-triangle of P_n^{Δ} (as shown in Fig.2). It is easy to see that $c_1=2, c_2=5, c_3=12$.

By Lemma 2.1, we know

$$a_n = b_n + b_{n-1},$$

 $b_n = a_{n-1} + b_{n-1} = c_n + c_{n-1},$
 $c_n = b_{n-1} + c_{n-1}.$

So we have

$$b_{n+1} = 2b_n + b_{n-1},$$

$$a_{n+1} = 2a_n + a_{n-1},$$

$$c_{n+1} = 2c_n + c_{n-1}.$$

Let $P_k^{\Delta} = \Delta_1 \Delta_2 \cdots \Delta_k$ be a path of a triangle-tree T^{Δ} , where $\Delta_i = v_{2i-1}v_{2i}v_{2i+1}$. If $d_{T^{\Delta}}(v_1) \geq 6$, $d_{T^{\Delta}}(v_{2k+1}) \geq 6$, $d_{T^{\Delta}}(v_{2i}) = 2$ $(1 \leq i \leq k)$ and $d_{T^{\Delta}}(v_{2i+1}) = 4$ $(1 \leq i \leq k-1)$, we call P_k^{Δ} an internal triangle-path of T^{Δ} . If the triangle $\Delta_1 = v_1v_2v_3$ is a pendant triangle of T^{Δ} , $d_{T^{\Delta}}(v_{2k+1}) \geq 6$, $d_{T^{\Delta}}(v_{2i}) = 2$ $(1 \leq i \leq k)$ and $d_{T^{\Delta}}(v_{2i+1}) = 4$ $(1 \leq i \leq k-1)$, we call P^{Δ} a pendant triangle-path of T^{Δ} . Let $s(T^{\Delta})$ be the number of vertices in T^{Δ} with degree not less than 6 and $p(T^{\Delta})$ be the number of pendant triangle-paths in T^{Δ} with length not less than 1.

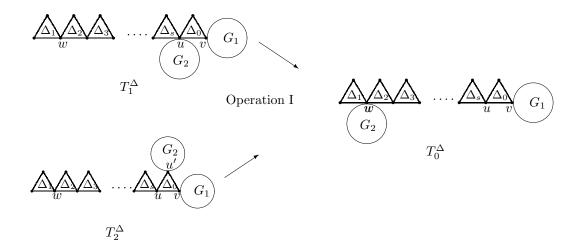


Fig.4

Denote $\mathcal{T}_{n,k}^{\Delta}$ $(3 \leq k \leq n-1)$ be the set of all triangle-trees with n triangles and k pendant

triangles. In the following, we shall define two kinds of operations of $T^{\Delta} \in \mathcal{T}_{n,k}^{\Delta}$ and show that these two kinds of operations make the Merrifield-Simmons indices of the triangle-tree increase strictly.

If $T^{\Delta} \in \mathcal{T}_{n,k}^{\Delta}, T^{\Delta} \ncong P_{k,n-k}^{\Delta}$ and $p(T^{\Delta}) \neq 0$, then T^{Δ} can be seen as the triangle-trees T_1^{Δ} or T_2^{Δ} as shown in Fig.4, where $\Delta_1 \Delta_2 \cdots \Delta_s$ $(s \geq 2)$ is a pendant path of T^{Δ} with s triangles, G_1 and G_2 are two subtriangle-trees of T^{Δ} and $|V(G_1)| \geq 3$, $|V(G_2)| \geq 3$. If T_0^{Δ} is obtained from T_1^{Δ} or T_2^{Δ} by Operation I (as shown in Fig.4), it is easy to see that $T_0^{\Delta} \in \mathcal{T}_{n,k}^{\Delta}$.

Now we show that operation I makes the Merrifield-Simmons indices of the triangle-trees increase strictly.

Lemma 2.2 If T_0^{Δ} is obtained from T_1^{Δ} or T_2^{Δ} by operation I, then $i(T_0^{\Delta}) > i(T_1^{\Delta})$ and $i(T_0^{\Delta}) > i(T_2^{\Delta})$.

Proof Let $N_{G_1}[v] = V_1$, $N_{G_2}[u] = V_2$ in T_1^{Δ} , $N_{G_2}[u'] = V_2'$ in T_2^{Δ} and $N_{G_2}[w] = V_3$ in T_0^{Δ} .

If $s \geq 3$, by Lemma 2.1, we have

$$\begin{array}{lcl} i(T_1^\Delta) & = & i(T_1^\Delta - v) + i(T_1^\Delta - N_{T_1^\Delta}[v]) \\ & = & i(G_1 - v)(2i(G_2 - u)b_s + i(G_2 - V_2)b_{s-1}) + i(G_1 - V_1)i(G_2 - u)b_s, \end{array}$$

$$\begin{array}{lcl} i(T_2^\Delta) & = & i(T_2^\Delta - v) + i(T_2^\Delta - N_{T_2^\Delta}[v]) \\ & = & i(G_1 - v)(i(G_2 - u')a_s + i(G_2 - V_2')b_s) + i(G_1 - V_1)i(G_2 - u')b_s, \end{array}$$

$$i(T_0^{\Delta}) = i(T_0^{\Delta} - v) + i(T_0^{\Delta} - N_{T_0^{\Delta}}[v])$$

$$= i(G_1 - v)(3i(G_2 - w)c_s + i(G_2 - V_3)c_{s-1})$$

$$+i(G_1 - V_1)(3i(G_2 - w)c_{s-1} + i(G_2 - V_3)c_{s-2}).$$

Obviously, $i(G_2 - w) = i(G_2 - u') = i(G_2 - u)$ and $i(G_2 - V_3) = i(G_2 - V_2') = i(G_2 - V_2)$, so we have

$$\begin{split} &i(T_0^{\Delta}) - i(T_1^{\Delta}) \\ &= i(G_1 - v)i(G_2 - u)(3c_s - 2b_s) + i(G_1 - v)i(G_2 - V_2)(c_{s-1} - b_{s-1}) \\ &+ i(G_1 - V_1)i(G_2 - u)(3c_{s-1} - b_s) + i(G_1 - V_1)i(G_2 - V_2)c_{s-2} \\ &= i(G_1 - v)i(G_2 - u)c_{s-2} - i(G_1 - v)i(G_2 - V_2)c_{s-2} \\ &- i(G_1 - V_1)i(G_2 - u)c_{s-2} + i(G_1 - V_1)i(G_2 - V_2)c_{s-2} \\ &= c_{s-2}(i(G_1 - v) - i(G_1 - V_1))(i(G_2 - u) - i(G_2 - V_2)). \end{split}$$

Since $s \ge 3$, $c_{s-2} > 0$, $i(G_1 - v) - i(G_1 - V_1) > 0$ and $i(G_2 - u) - i(G_2 - V_2) > 0$, we know $i(T_0^{\Delta}) - i(T_1^{\Delta}) > 0$ when $s \ge 3$.

Similarly,

$$\begin{split} &i(T_0^\Delta) - i(T_2^\Delta) \\ &= i(G_1 - v)i(G_2 - u')(3c_s - a_s) + i(G_1 - v)i(G_2 - V_2')(c_{s-1} - b_s) \\ &+ i(G_1 - V_1)i(G_2 - u')(3c_{s-1} - b_s) + i(G_1 - V_1)i(G_2 - V_2')c_{s-2} \\ &= i(G_1 - v)i(G_2 - u')(c_{s-2} + 2c_{s-1}) + i(G_1 - v)i(G_2 - V_2')(-c_{s-2} - 2c_{s-1}) \\ &+ i(G_1 - V_1)i(G_2 - u')(-c_{s-2}) + i(G_1 - V_1)i(G_2 - V_2')c_{s-2} \\ &= c_{s-2}(i(G_1 - v) - i(G_1 - V_1))(i(G_2 - u') - i(G_2 - V_2')) \\ &+ 2c_{s-1}i(G_1 - v)(i(G_2 - u') - i(G_2 - V_2')) > 0. \end{split}$$

Therefore, $i(T_0^{\Delta}) - i(T_2^{\Delta}) > 0$ when $s \geq 3$. If s = 2, similarly, we have

$$\begin{split} &i(T_0^{\Delta}) - i(T_1^{\Delta}) \\ &= i(G_1 - v)i(G_2 - u)(3c_2 - 2b_2) + i(G_1 - v)i(G_2 - V_2)(c_1 - b_1) \\ &+ i(G_1 - V_1)i(G_2 - u)(3c_1 - b_2) + i(G_1 - V_1)i(G_2 - V_2) \\ &= (i(G_1 - v) - i(G_1 - V_1))(i(G_2 - u) - i(G_2 - V_2)). \end{split}$$

$$\begin{split} &i(T_0^\Delta) - i(T_2^\Delta) \\ &= i(G_1 - v)i(G_2 - u')(3c_2 - a_2) + i(G_1 - v)i(G_2 - V_2')(c_1 - b_2) \\ &+ i(G_1 - V_1)i(G_2 - u')(3c_1 - b_2) + i(G_1 - V_1)i(G_2 - V_2') \\ &= (i(G_1 - v) - i(G_1 - V_1))(i(G_2 - u') - i(G_2 - V_2')) \\ &+ 4i(G_1 - v)(i(G_2 - u') - i(G_2 - V_2')) > 0. \end{split}$$

Therefore,
$$i(T_0^{\Delta}) - i(T_1^{\Delta}) > 0$$
 and $i(T_0^{\Delta}) - i(T_2^{\Delta}) > 0$ when $s = 2$.

From Lemma 2.2, we can immediately get the following result.

 $\mathbf{Lemma} \ \ 2.3 \quad Let \ T^{\Delta} \in \mathcal{T}^{\Delta}_{n,k} (3 \leq k \leq n-1), \ T^{\Delta} \not\cong P^{\Delta}_{k,n-k} \ \ and \ p(T^{\Delta}) \geq 1.$

- (1) If $s(T^{\Delta}) = 1$, we can finally get a triangle-tree T'^{Δ} by operation I with $i(T'^{\Delta}) > i(T^{\Delta})$, and $p(T'^{\Delta}) = 1$; it is easy to see that $T'^{\Delta} \cong P_{k,n-k}^{\Delta}$;
- (2) If $s(T^{\Delta}) > 1$, we can finally get a triangle-tree T'^{Δ} by operation I with $i(T'^{\Delta}) > i(T^{\Delta})$ and $p(T'^{\Delta}) = 0$.

If $T^{\Delta} \in \mathcal{T}_{n,k}^{\Delta}(3 \leq k \leq n-1), T^{\Delta} \ncong P_{n,k}^{\Delta}$ and $p(T^{\Delta}) = 0$, then we can find two pendant triangles Δ_1 and Δ_1' of T^{Δ} such that $d(\Delta_1, \Delta_1') = d^{\Delta}(T^{\Delta})$. Suppose $\Delta_1 = uu_1u_1'$ and $\Delta_1' = vv_1v_1'$, where u_1, u_1', v_1, v_1' are the vertices with degree 2 and $d(u) \geq 6$, $d(v) \geq 6$. Then the triangle-tree can be seen as the triangle-tree T^{Δ} shown in Fig 5, where $\Delta_1, \Delta_2, \cdots, \Delta_s$ are pendant triangles with common vertex $u, \Delta_1', \Delta_2', \cdots, \Delta_t'$ are pendant triangles with common vertex v, G_1 is the subgraph of T^{Δ} induced by $V(T^{\Delta}) \setminus \bigcup_{i=1}^s V(\Delta_i) \cup \bigcup_{i=1}^t V(\Delta_i')$.

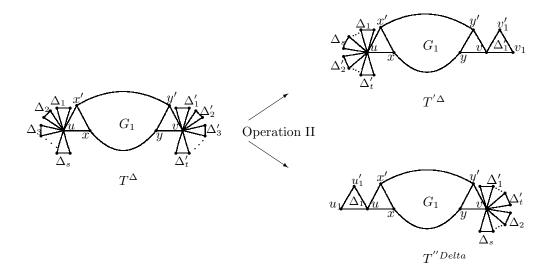


Fig.5

Note that if $d(\Delta_1, \Delta_2) = 3$, then x = y; if $d(\Delta_1, \Delta_2) \geq 4$, then $|V(G_1)| \geq 5$. $T^{'\Delta}$ is a triangle-tree got from T^{Δ} by moving the pendant triangles $\Delta'_2, \Delta'_3, \cdots, \Delta'_t$ from v to u, and $T^{''\Delta}$ is a triangle-tree got from T^{Δ} by moving the pendant triangles $\Delta_2, \Delta_3, \cdots, \Delta_s$ from u to v. We say both of $T^{'\Delta}$ and $T^{''\Delta}$ are obtained from T^{Δ} by Operation II. It is easy to see that $T^{'\Delta}, T^{''\Delta} \in \Gamma^{\Delta}_{n,k}$ $p(T^{'\Delta}) = p(T^{''\Delta}) = 1$ and $s(T^{'\Delta}) = s(T^{''\Delta}) = s(T^{\Delta}) - 1$.

Lemma 2.4 If $T^{'\Delta}$ and $T^{''\Delta}$ are obtained from T^{Δ} by Operation II, then either $i(T^{'\Delta}) > i(T^{\Delta})$ or $i(T^{''\Delta}) > i(T^{\Delta})$.

Proof If $d(\Delta_1, \Delta'_1) \geq 3$, then $N_{G_1}(u) = \{x, x'\}$ and $N_{G_1}[v] = \{y, y'\}$. Note that if $d(\Delta_1, \Delta'_1) = 3$, then x = y. By Lemma 2.2, we have

$$i(T^{\Delta}) = i(T^{\Delta} - u) + i(T^{\Delta} - N_{T^{\Delta}}[u])$$

= $3^{s}(3^{t}i(G_{1}) + i(G_{1} - \{y, y'\})) + 3^{t}i(G_{1} - \{x, x'\}\}) + i(G_{1} - \{x, x', y, y'\}),$

$$i(T^{'\Delta}) = i(T^{'\Delta} - u) + i(T^{'\Delta} - N_{T^{'\Delta}}[u])$$

= $3^{s+t-1}(3i(G_1) + i(G_1 - \{y, y'\})) + 3i(G_1 - \{x, x'\}) + i(G_1 - \{x, x', y, y'\}),$

$$\begin{split} i(T^{''\Delta}) &= i(T^{''\Delta} - u) + i(T^{''\Delta} - N_{T^{''\Delta}}[u]) \\ &= 3(3^{s+t-1}i(G_1) + i(G_1 - \{y, y'\})) + 3^{s+t-1}i(G_1 - \{x, x'\}) + i(G_1 - \{x, x', y, y'\}). \end{split}$$

It is easy to see that

$$i(T^{'\Delta}) - i(T^{\Delta}) = 3(3^{t-1} - 1)(3^{s-1}i(G_1 - \{y, y'\}) - i(G_1 - \{x, x'\})),$$

$$i(T^{''\Delta}) - i(T^{\Delta}) = 3(3^{s-1} - 1)(3^{t-1}i(G_1 - \{x, x'\}) - i(G_1 - \{y, y'\})).$$

Note that $s, t \geq 2$. If $i(T'^{\Delta}) - i(T^{\Delta}) \leq 0$, we have $3^{s-1}i(G_1 - \{y, y'\}) \leq i(G_1 - \{x, x'\})$. Then we have

$$i(T^{\prime\prime\Delta}) - i(T^{\Delta}) \ge 3(3^{s-1} - 1)(3^{s-1}3^{t-1} - 1)i(G_1 - \{y, y'\}) > 0.$$

If $d(\Delta_1, \Delta_1') = 2$, we have $T^{'\Delta} \cong T^{''\Delta}$. Suppose $N_{G_2}(u) = \{v, w\}, N_{G_2}(v) = \{u, w\}$, then

$$i(T^{'\Delta}) - i(T^{\Delta}) = 3(3^{t-1} - 1)(3^{s-1} - 1)i(G_1 - w) > 0.$$

Therefore, if $T^{'\Delta}$ and $T^{''\Delta}$ are obtained from T^{Δ} by operation II, then either $i(T^{'\Delta}) > i(T^{\Delta})$ or $i(T^{''\Delta}) > i(T^{\Delta})$.

Theorem 2.5 Let $T^{\Delta} \in \mathcal{T}_{n,k}^{\Delta}$. Then $i(T^{\Delta}) \leq 3^{k-1}b_{n-k+1} + b_{n-k}$, the equality holds if and only if $T^{\Delta} \cong P_{k,n-k}^{\Delta}$.

Proof By Lemma 2.1, it is easy to see that

$$i(P_{k,n-k}^{\Delta}) = 3^{k-1}b_{n-k+1} + b_{n-k}.$$

Since $\mathcal{T}_{n,2}^{\Delta}=\{P_n^{\Delta}\}$ and $P_n^{\Delta}\cong P_{n,0}^{\Delta}, \mathcal{T}_{n,n}^{\Delta}=\{S_n^{\Delta}\}$ and $S_n^{\Delta}\cong P_{2,n-2}^{\Delta}$, we may assume $3\leq k\leq n-1$. It is sufficient to show that $i(T^{\Delta})< i(P_{k,n-k}^{\Delta})$ for any $T^{\Delta}\in \mathcal{T}_{n,k}^{\Delta}$ and $T^{\Delta}\not\cong P_{k,n-k}^{\Delta}$.

For $T^{\Delta} \in \mathcal{T}_{n,k}^{\Delta}(3 \leq k \leq n-1)$ and $T^{\Delta} \ncong P_{k,n-k}^{\Delta}$, we know $1 \leq s(T^{\Delta}) \leq n-k$, we shall show $i(T^{\Delta}) \leq i(P_{k,n-k}^{\Delta})$ by induction on $s(T^{\Delta})$. When $s(T^{\Delta}) = 1$, since $T^{\Delta} \ncong P_{k,n-k}^{\Delta}$, we have $p(T^{\Delta}) \geq 2$. By (1) of Lemma 2.3, we have $i(T^{\Delta}) < i(P_{k,n-k}^{\Delta})$. Suppose the result holds for any triangle-tree $T^{'\Delta}$ with $s(T^{'\Delta}) = s-1$. Let $s(T^{\Delta}) = s \geq 2$. If $p(T^{\Delta}) \neq 0$, by (2) of Lemma 2.3, we can get a triangle-tree $T_1^{\Delta} \in \mathcal{T}_{n,k}^{\Delta}$ such that $p(T_1^{\Delta}) = 0$, $s(T_1^{\Delta}) = s$ and $i(T_1^{\Delta}) > i(T^{\Delta})$. Then by Lemma 2.4, we can get a triangle-tree $T_2^{\Delta} \in \mathcal{T}_{n,k}^{\Delta}$ from T_1^{Δ} such that $p(T_2^{\Delta}) = 1$, $s(T_2^{\Delta}) = s-1$ and $i(T_2^{\Delta}) > i(T_1^{\Delta})$. By the induction hypothesis, we have

$$i(T^\Delta) < i(T_1^\Delta) < i(T_2^\Delta) < i(P_{k,n-k}^\Delta).$$

Therefore, if $T^{\Delta} \in \mathcal{T}_{n,k}^{\Delta}$, then $i(T^{\Delta}) \leq 3^{k-1}b_{n-k+1} + b_{n-k} = i(P_{k,n-k}^{\Delta})$ and the equality holds if and only if $T^{\Delta} \cong P_{k,n-k}^{\Delta}$.

Lemma 2.6 For $3 \le k \le n$, $i(P_{n-k+2,k-2}^{\Delta}) > i(P_{n-k+3,k-3}^{\Delta})$.

Proof By Lemma 2.1, it is easy to see that

$$i(P_{n-k+2,k-2}^{\Delta}) = 3^{k-1}b_{n-k+1} + b_{n-k},$$

$$i(P_{n-k+3,k-3}^{\Delta}) = 3^{k-2}b_{n-k+2} + b_{n-k+1}.$$

Since $b_{n+1} = 2b_n + b_{n-1}$, we have

$$\begin{array}{lcl} i(P^{\Delta}_{k,n-k}) - i(P^{\Delta}_{n-k+3,k-3}) & = & 3^{k-1}b_{n-k+1} + b_{n-k} - 3^{k-2}b_{n-k+2} + b_{n-k+1} \\ & = & (3^{k-2} - 1)(b_{n-k+1} - b_{n-k}) > 0. \end{array}$$

Hence
$$i(P_{n-k+2,k-2}^{\Delta}) > i(P_{n-k+3,k-3}^{\Delta})$$
 for $3 \le k \le n$.

From Theorem 2.5 and Lemma 2.6, we can immediately get the following result.

Corollary 2.7 Let T^{Δ} be a triangle-tree with 2n+1 vertices and n triangles. Then

- (1) $i(T^{\Delta}) \leq 3^n + 1$ and the equality holds if and only if $T^{\Delta} \cong S_n^{\Delta}$;
- $(2) \ \textit{If} \ T^{\Delta} \not\cong S_n^{\Delta}, \ then \ i(T^{\Delta}) \leq 7 \times 3^{n-2} + 3 \ \ and \ the \ \ equality \ \ holds \ \ if \ \ and \ \ only \ \ if \ T^{\Delta} \cong P_{3,n-3}^{\Delta}.$

References

- [1] I.Gutman, Extremal Hexagonal Chains, J. Math. Chem. 12(1993) 197-210.
- [2] I.Gutman, B. Furtula, D. Vidovic and H. Hosoya, A concealed property of the topological index, Z. Bull. Chem. Soc. Jpn. 77(2004), 491-496.
- [3] I.Gutman and S. Wagner, Maximal and Minimal of the Hosoya index and the Merrifield-Simmons index: A survey of results and techniques, Acta. Appl. Math. 112(2010), 323-346.
- [4] A.Lakhtakia, V.K. Varadan, R. Messier and V.V. Varadan, Generalisations and randaomisation of the plane Koch curve, J. Phys. A 20(1987), no. 11, 3537-3541.
- [5] X.L.Li, Z.M.Li and L.S.Wang, The inverse problem for some topological indices in combinatorial chemistry, *J. Comput. Bio.* 10(2003), 47-55.
- [6] X.L.Li, H.X.Zhao and I.Gutman, On the Merrifield-Simmons index of trees, MATCH Commun. Math. Comput. Chem. 54(2005) 389-402.
- [7] R.E.Merrifield and H.E. Simmons, *Topological Methods in Chemistry* (Wiley, New York, 1989).
- [8] H.Prodinger and R.F.Tichy, Fibonacci numbers of graphs, *Fibonacci Quart.* 20(1982) 16-21.
- [9] J.E.Schneider, A generalization of the von Koch curve, Math. Maq. 38(1965), 144-147.
- [10] B.Wu, Z.Zhang and G.Chen, Properties and applications of Laplacian spectra for Koch networks, *J. Phy. A: Math. Theor.* 45(2012) no. 2, 025102, 11 pp.
- [11] A. Yu and X.Lv, The Merrifield-Simmons indices and Hosoya indices of trees with k-pendant vertices, *Journal of Mathematical Chemistry*, 41(2007), 33-43.
- [12] A.Yu and F.Tian, A kind of graphs with minimal Hosoya indices and maximal Merrifield-Simmons indices, MATCH Commun. Comput. Chem. 55(2006) 103-118.
- [13] Z.Zhang, S.Gao, L.Chen, S.Zhou, H.Zhang and J.Guan, Mapping Koch curves into scale-free small-world networks, *J. Phy. A: Math. Theor.* 39(2010) 395101, 16 pp.