Different Labelings on Parallel Transformations of a Class of Trees

Teena Liza John and Mathew Varkey T.K.

(Department of Mathematics, T.K.M.College of Engineering, Kollam-691005, Kerala, India)

 $E-mail:\ teen a vinu@gmail.com,\ mathew varkeytk@gmail.com$

Abstract: A graph G = (V, E) with p vertices and q edges is said to be a mean graph if there exists an injective function $f: V \to \{0, 1, \dots, q\}$ that induces an edge labeling $f^*: E \to \{1, 2, \dots, q\}$ defined by

$$f^*(uv) = \frac{f(u) + f(v)}{2} \text{ if } f(u) + f(v) \text{ is even}$$
$$= \frac{f(u) + f(v) + 1}{2} \text{ if } f(u) + f(v) \text{ is odd}$$

for every edge uv of G.Further f is called a super-mean labeling if $f(V(G)) \cup \{f^*(e) : e \in E(G)\} = \{1, 2, \cdots, p+q\}$. If the vertex labels are all even numbers in $\{2, 4, \cdots, 2q\}$ so that $f^*(e) = \frac{f(u) + f(v)}{2}$ then f is an even mean labeling of G and if the vertex labels are in $\{1, 3, \cdots, 2q-1\}$ so that $f^*(e) = \frac{f(u) + f(v) + 1}{2}$, then G is an odd-mean graph. In this paper, we investigate a typical class of trees based on this definition.

Key Words: Mean labeling, super-mean labeling, even-mean labeling, odd-mean labeling, parallel transformation of trees.

AMS(2010): 05C78.

§1. Introduction

Throughout this paper ,by a graph we mean a simple finite undirected graph without isolated vertices. For basic notations and terminology in graph theory we follow [1]. The concept of mean labeling was introduced in [5], super-mean labeling in [4] and odd-mean labeling in [2].

$\S 2.$ T_n Class of Trees

In [3], T_n class of trees are defined as follows.

Definition 2.1 Let T be a tree and x and y be two adjacent vertices in T.Let there be two end vertices (non-adjacent vertices of degree 1)x' and y' in T such that the length of x - x' is equal to the length of the path y - y'. If the edge xy is deleted and x', y' are joined by an edge x'y',

¹Received April 24, 2015, Accepted May 31, 2016.

then such a transformation of edges from xy to x'y' is called a parallel transformation of an edge in T.

Definition 2.2 A tree is said to be a T_n tree if and only if a resultant parallel transformation of edges reduce T into a Hamiltonian path. Such Hamiltonian path is denoted as P_T .

 T_{27} is given below in figure 2.1(a). Here e_1, e_2, e_3, e_4 and e_5 are the edges to be deleted and e'_i ; $i = 1, \dots, 5$ (shown in broken lines) the corresponding edges to be added to generate P_T from T_{27} (Figure 2.1(b)).

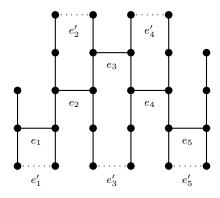


Fig 2.1 (a)

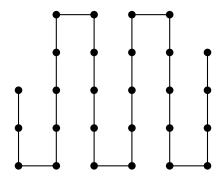


Fig 2.1 (b)

Theorem 2.1 T_n is a mean graph.

Proof Let T_n be a tree on n vertices and by definition there exist a path P_T corresponding to T_n . Let $E = \{e_1, e_2, \cdots, e_{n-1}\}$ be the edges of T_n . Let $E_S = \{e_1, e_2, \cdots, e_s\}$ be the set of edges to be deleted from and $E'_s = \{e'_1, e'_2, \cdots, e'_s\}$ be the edges to be added to T_n so as to obtain a Hamiltonian path P_T with $V(P_T) = V(T_n)$ and $E(P_T) = \{E(T_n) - E_S\} \cup E'_S$. Label the vertices of P_T as x_1, x_2, \cdots, x_n starting from the initial pendant vertex.

Define an injective mapping $f: V(P_T) \to \{0, 1, \dots, n-1\}$, as $f(x_i) = i-1$ for all i. Now f induces edge labeling f^* on $E(P_T)$ as

$$f^*(xy) = \frac{f(x) + f(y)}{2}$$
 if $f(x)$ and $f(y)$ are of same parity
$$= \frac{f(x) + f(y) + 1}{2}$$
 otherwise

where $xy \in E(P_T)$.

Since P_T is a path, every edge of P_T is of the form $x_i x_{i+1}$.

$$f^*(x_i x_{i+1}) = \frac{f(x_i) + f(x_{i+1}) + 1}{2}$$
, since $f(x_i)$ and $f(x_{i+1})$ are of different parity
$$= \frac{i - 1 + i + 1}{2} = i \text{ for } i = 1, 2, \dots, n-1$$

Obviously f is injective and $f^*(G) = \{1, 2, \dots, n-1\}$. So it is proved that f is a mean labeling on P_T . We have to prove that f is a mean labeling on T_n .

For this, it is enough to prove that $f^*(e_s) = f^*(e'_s)$ where $e_s = x_i x_j \in E(T_n)$ and $e'_s = x_{i+r} x_{j-r} \in E(T_n)$.

Now, e'_s must be of the form $x_{i+r}x_{i+r+1}$, since it is an edge of a path P_T . So

$$(x_{i+r}, x_{j-r}) = (x_{i+r}, x_{i+r+1})$$

$$\frac{f(x_{i+r}) + f(x_{j-r}) + 1}{2} = \frac{f(x_{i+r}) + f(x_{i+r+1}) + 1}{2}$$

Therefore

$$j = i + 2r + 1$$

So

$$f^*(e_s) = \frac{f(x_i) + f(x_{i+2r+1}) + 1}{2} = i + r$$

and

$$f^*(e'_s) = f^*(x_{i+r}, x_{i+r+1})$$
$$= \frac{f(x_{i+r}) + f(x_{i+r+1}) + 1}{2} = i + r$$

Therefore,

$$f^*(e_s) = f^*(e'_s).$$

Thus, f admits mean labeling on T_n . Hence we get the theorem.

Definition 2.3 A graph with p vertices and q edges is said to be odd mean if there exists a function $f: V(G) \to \{0, 1, \dots, 2q-1\}$ which is one-one and the induced map $f^*: E(G) \to \{1, 3, \dots, 2q-1\}$ defined by $f^*(uv) = \frac{f(u)+f(v)}{2}$, if f(u)+f(v) is even or $\frac{f(u)+f(v)+1}{2}$ if f(u)+f(v) is odd, is a bijection. If a graph has an odd mean labeling, then we say that G is an odd mean graph.

Definition 2.4 A function f is called an even-mean labeling of a graph G with p vertices and q edges if f is an injection from the vertices of G to $\{2,4,\cdots,2q\}$ such that when each edge uv is assigned the label $\frac{f(u)+f(v)}{2}$, then the resulting edge labels are distinct. A graph which admits an even mean labeling is said to be an even-mean graph.

Theorem 2.2 T_n satisfies both even and odd mean labeling.

Proof To prove T_n is an even-mean graph, we consider $f_e:V(G)\to\{2,4,\cdots,2q\}$ such that $f_e(x_i)=2i$ for $i=1,2,\cdots,n$.

Now, to show T_n is odd-mean, we take another injective mapping $f_o: V(G) \to \{1, 3, \dots, 2q+1\}$ as $f_o(x_i) = 2i - 1$ for $i = 1, 2, \dots, n$.

Theorem 2.3 Parallel transformation of trees generate a class of super-mean graphs.

Proof Consider a T_n tree on n vertices. By definition there exist a P_T corresponding to T_n . Let $E = \{e_1, \dots, e_{n-1}\}$ be the edges of T_n . Let $E_r = \{e_1, e_2, \dots, e_r\}$ be the edges to be deleted from $T_n, E_r \subset E$ and $E'_r = \{e'_1, \dots, e'_r\}$ be the set of edges to be added to T_n to make a path P_T , such that if e_n is the deleted edge, e'_n is the corresponding edge added at a distance d_n by parallel transformation. Now we have $V(P_T) = V(T_n)$ and $E(P_T) = \{E(T_n) - E_r\} \cup E'_r$.

Now we label the vertices of P_T by x_1, x_2, \dots, x_n successively starting at one end vertex of the path P_T . Define a mapping $f: V(P_T) \to \{1, 2, \dots, 2n-1\}$ such that $f(x_i) = 2i-1$ for all $i = 1, \dots, n$. Now, by the definition itself, f is one-one. Let f^* be the induced mapping defined on the edge set of P_T such that

$$f \cup f^* = \{1, 2, \cdots, 2n - 1\}$$
 as

$$f^*(xy) = \frac{f(x) + f(y)}{2} \text{ if } f(x) + f(y) \text{ is even}$$
$$= \frac{f(x) + f(y) + 1}{2} \text{ if } f(x) + f(y) \text{ is odd}$$

where $xy \in E(P_T)$.

Since P_T is a path, every edge of P_T is of the form $x_i x_{i+1}$ for $i = 1, 2, \dots, n-1$

$$f^*(x_i x_{i+1}) = \frac{f(x_i) + f(x_{i+1})}{2}$$

= $2i$; $i = 1, 2, \dots, n-1$

Hence it is clear that f^* is one one and $f(G) \cup f^*(G) = \{1, 2, \dots, 2n-1\}$. Hence f is a super mean labeling on P_T . Now it is to show f is super mean on T_n . It is enough to show that $f^*(e_k) = f^*(e'_k)$.

Let $e_k = x_i x_j$ where $x_i x_j \in E(T_n)$. To get P_T , we have to delete e_k and adjoin e'_k at a distance d from x_i such that $e'_k = x_{i+r} x_{j-r}$. Since e'_k is an edge of P_T , it must be of the form $e'_k = x_{i+r} x_{i+r+1}$.

Hence

$$\frac{f(x_{i+r}, x_{j-r})}{2} = \frac{(x_{i+r}, x_{i+r+1})}{2}
\frac{f(x_{i+r}) + f(x_{j-r})}{2} = \frac{f(x_{i+r}) + f(x_{i+r+1})}{2}
\implies j = i + 2r + 1
f^*(e_k) = f^*(x_i x_j)
= \frac{f(x_i) + f(x_j)}{2}
= \frac{f(x_i) + f(x_{i+2r+1})}{2} = 2(i+r)
f^*(e'_k) = f^*(x_{i+r}, x_{i+r+1})
= \frac{f(x_{i+r}) + f(x_{i+r+1})}{2} = 2(i+r)$$

Therefore,

$$f^*(e_k) = f^*(e'_k).$$

Thus, f is super mean on T_n also. Hence, T_n is a super mean graph.

Example 2.1 In Figure 2.2, we show a super-mean labeling on tree T_{20} .

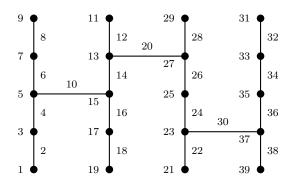


Fig 2.2

References

- [1] F.Harary, Graph Theory, Addison-Wesley Publishing Company, 1972.
- [2] K.Manickam and M.Marudai, Odd-mean labelings of graphs, Bulletin of Pure and Applied Sciences, 25E(1)(2006), 149-153.
- [3] Mathew Varkey T.K. and Shajahan A., On labeling of parallel transformation of a class of trees, *Bulletin of Kerala Mathematics Association*, Vol.5, No.1(2009), 49-60.
- [4] R.Ponraj and D.Ramya, Super mean labeling of graphs, Preprint.
- [5] S.Somasundaram and R.Ponraj, Mean labelings of graphs, *National Academy Science Letter*, Vol.26(2003), 210-213.