Laplacian Energy of Binary Labeled Graph

Pradeep G.Bhat, Sabitha D'Souza and Swati S.Nayak (Department of Mathematics, Manipal University, PIN 576104, Manipal, India)

E-mail: pg.bhat@manipal.edu, sabitha.dsouza@manipal.edu, swati.nayak@manipal.edu

Abstract: Let G be a binary labeled graph and $A_l(G) = (l_{ij})$ be its label adjacency matrix. For a vertex v_i , we define label degree as $L_i = \sum_{j=1}^n l_{ij}$. In this paper, we define label Laplacian energy $LE_l(G)$. It depends on the underlying graph G and labels of the vertices. We compute label Laplacian spectrum of families of graph. We also obtain some bounds for label Laplacian energy.

Key Words: Label Laplacian matrix, label Laplacian eigenvalues, label Laplacian energy.

AMS(2010): 05C50, 15A15, 15A18.

§1. Introduction

For an n-vertex graph G with adjacency matrix A whose eigenvalues are $\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n$, the energy of the graph G is defined as $E(G) = \sum_{i=1}^n |\lambda_i|$. The concept of Energy of graph was introduced by Ivan Gutman, in connection with the π -molecular energy. The matrix L(G) = D(G) - A(G) is the Laplacian matrix of (n, m) graph G. If $\mu_1 \geqslant \mu_2 \geqslant \ldots \geqslant \mu_n = 0$ are the eigenvalues of L(G), then the Laplacian energy of G is defined as

$$LE(G) = \sum_{i=1}^{n} |\mu_i - \frac{2m}{n}|$$

However, in the last few years, research on graph energy has much intensified, resulting in a very large number of publications which can be found in the literature [4, 5, 6, 7, 9, 16]. In spectral graph theory, the eigenvalues of several matrices like adjacency matrix, Laplacian matrix [8], distance matrix [10] etc. are studied extensively for more than 50 years. Recently minimum covering matrix, color matrix, maximum degree etc are introduced and studied in [1,2,3].

Motivated by this, P.G. Bhat and S. D'Souza have introduced a new matrix $A_l(G)$ called label matrix [14] of a binary labeled graph G = (V, X), whose elements are defined as follows:

¹Received December 15, 2014, Accepted May 20, 2015.

$$l_{ij} = \begin{cases} a, & \text{if } v_i v_j \in X(G) \text{ and } l(v_i) = l(v_j) = 0, \\ b, & \text{if } v_i v_j \in X(G) \text{ and } l(v_i) = l(v_j) = 1, \\ c, & \text{if } v_i v_j \in X(G) \text{ and } l(v_i) = 0, l(v_j) = 1 \text{ or vice-versa,} \\ 0, & \text{otherwise.} \end{cases}$$

where a, b, and c are distinct non zero real numbers. The eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of $A_l(G)$ are said to be label eigenvalues of the graph G and form its label spectrum. The label eigenvalues satisfy the following simple relations:

$$\sum_{i=1}^{n} \lambda_i = 0 \quad and \quad \sum_{i=1}^{n} \lambda_i^2 = 2Q \tag{1.1}$$

where

$$Q = n_1 a^2 + n_2 b^2 + n_3 c^2 (1.2)$$

Where n_1 , n_2 and n_3 denotes number of edges with (0,0), (1,1) and (0,1) as end vertex labels respectively.

The label degree of the vertex v_i , denoted by L_i , is given by $L_i = \sum_{i=1}^n l_{ij}$. A Graph G is said to be k-label regular if $L_i = k$ for all i. The label Laplacian matrix of a binary labeled graph G is defined as

$$L_l(G) = Diag(L_i) - A_l(G)$$

where $Diag(L_i)$ denotes the diagonal matrix of the label degrees. Since $L_l(G)$ is real symmetric, all its eigenvalues μ_i , i = 1, 2, ..., n, are real and can be labeled as $\mu_1 \ge \mu_2 \ge ... \ge \mu_n$. These form the *label Laplacian spectrum* of G. Several results on Laplacian of Graph G are reported in the Literature ([6, 11, 12, 13, 16]).

This paper is organized as follows. In section 2, we establish relationship between λ_i and μ_i and some general results on Laplacian label eigenvalues μ_i . In section 3, lower bound and upper bounds for $LE_l(G)$ are obtained. In the last section label Laplacian spectrum is derived for family of graphs.

§2. Label Laplacian Energy

The following Lemma 2.1 shows the similarities between the spectra of label matrix and label Laplacian matrix. For a labeled graph, let $P_A(x)$ and $P_L(x)$ denote the label and label Laplacian characteristic polynomials respectively.

Lemma 2.1 If $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ is the label spectrum of k-label regular graph G, then $\{k - \lambda_n, k - \lambda_{n-1}, \dots, k - \lambda_1\}$ is the label Laplacian spectrum of G.

Proof The label Laplacian characteristic polynomial for k-label regular graph G is given

by

$$P_L(x) = \det(L_l(G) - xI) = (-1)^n \det(A_l(G) - (k - x)I) = (-1)^n P_A(k - x)$$
(2.1)

Thus, if $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$ is the label spectrum of k-label regular graph G, then from equation (2.1), it follows that $k - \lambda_n \geqslant k - \lambda_{n-1} \geqslant \ldots \geqslant k - \lambda_1$ is the label Laplacian spectrum of $G.\square$

We first introduce the auxiliary eigenvalues γ_i , defined as

$$\gamma_i = \mu_i - \frac{1}{n} \sum_{j=1}^n L_j$$

Lemma 2.2 If $\mu_1, \mu_2, \dots, \mu_n$ are the label Laplacian eigenvalues of $L_l(G)$, then

$$\sum_{i=1}^{n} \mu_i^2 = 2Q + \sum_{i=1}^{n} L_i^2.$$

Proof We have

$$\sum_{i=1}^{n} \mu_i^2 = trace (L_l(G))^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} l_{ij} l_{ji} = 2 \sum_{i < j} l_{ij}^2 + \sum_{i=1}^{n} l_{ii}^2$$

$$= 2[n_1(a)^2 + n_2(b)^2 + n_3(c)^2] + \sum_{i=1}^{n} L_i^2 = 2Q + \sum_{i=1}^{n} L_i^2 \qquad \Box$$

Lemma 2.3 Let G be a binary labeled graph of order n. Then $\sum_{i=1}^{n} \gamma_i = 0$ and $\sum_{i=1}^{n} \gamma_i^2 = 2R$, where

$$R = Q + \frac{1}{2} \sum_{i=1}^{n} \left(L_i - \frac{1}{n} \sum_{j=1}^{n} L_j \right)^2$$

and Q is given by equation (1.2).

Proof Note that

$$\sum_{i=1}^{n} \mu_i = tr(L_l(G)) = \sum_{i=1}^{n} L_i$$
 and $\sum_{i=1}^{n} \mu_i^2 = \sum_{i=1}^{n} L_i^2 + 2Q$

From which we have,

$$\sum_{i=1}^{n} \gamma_i = \sum_{i=1}^{n} \left(\mu_i - \frac{1}{n} \sum_{j=1}^{n} L_j \right) = \sum_{i=1}^{n} \mu_i - \sum_{j=1}^{n} L_j = 0$$

and

$$\sum_{i=1}^{n} \gamma_i^2 = \sum_{i=1}^{n} \left(\mu_i - \frac{1}{n} \sum_{j=1}^{n} L_j \right)^2$$

$$= \sum_{i=1}^{n} \mu_i^2 - \frac{2}{n} \sum_{i=1}^{n} L_j \sum_{i=1}^{n} \mu_i + \left(\frac{1}{n} \sum_{i=1}^{n} L_j \right)^2$$

$$= \sum_{i=1}^{n} L_i^2 + 2Q - \frac{2}{n} \left(\sum_{i=1}^{n} L_j \right)^2 + \left(\frac{1}{n} \sum_{i=1}^{n} L_j \right)^2$$

$$= 2Q + \sum_{i=1}^{n} \left(L_i - \frac{1}{n} \sum_{i=1}^{n} L_j \right)^2 = 2R$$

Definition 2.1 Let G be a binary labeled graph of order n. Then the label Laplacian energy of G, denoted by $LE_l(G)$, is defined as $\sum_{i=1}^{n} |\gamma_i|$, i.e.

$$LE_l(G) = \sum_{i=1}^{n} |\mu_i - \frac{1}{n} \sum_{j=1}^{n} L_j|$$

In 2006, I.Gutman and B.Zhou defined Laplacian energy LE(G) of a graph G. More on Laplacian energy reader can refer ([8], [15], [17], [18]). In Chemistry, there are situations where chemists use labeled graphs, such as vertices represent two distinct chemical species and the edges represent a particular reaction between two corresponding species. We mention that this paper deals only the mathematical aspects of label Laplacian energy of a graph and it is a new concept in the literature.

Lemma 2.4 If G is k- label regular, then $LE_l(G) = E_l(G)$.

If G is k-label regular, then $k = L_i = \frac{1}{n} \sum_{j=1}^n L_j$ for $i = 1, 2, \dots, n$. Using Lemma 2.1,

$$\gamma_i = \mu_i - \frac{1}{n} \sum_{j=1}^n L_j = (k - \lambda_{n+1-i}) - k = -\lambda_{n+1-i}$$

for $i = 1, 2, \dots, n$. Hence, the lemma follows from the definitions of the label energy and label Laplacian energy.

§2. Bounds for the Label Laplacian Energy

Lemma 3.1([17]) Let a_1, a_2, \ldots, a_n be non-negative numbers. Then

$$n\left[\frac{1}{n}\sum_{i=1}^{n}a_{i} - \left(\prod_{i=1}^{n}a_{i}\right)^{\frac{1}{n}}\right] \leqslant n\sum_{i=1}^{n}a_{i} - \left(\sum_{i=1}^{n}\sqrt{a_{i}}\right)^{2} \leqslant n(n-1)\left[\frac{1}{n}\sum_{i=1}^{n}a_{i} - \left(\prod_{i=1}^{n}a_{i}\right)^{\frac{1}{n}}\right].$$

Theorem 3.1 Let G be a binary labeled graph with n vertices and m edges. Then

$$\sqrt{2R + n(n-1)\Delta^{\frac{2}{n}}} \leqslant LE_l(G) \leqslant \sqrt{2(n-1)R + n\Delta^{\frac{2}{n}}},$$

where
$$\Delta = \left| \det \left(L_l(G) - \frac{1}{n} \sum_{j=1}^n L_j I \right) \right|.$$

Proof Note that

$$\sum_{i=1}^{n} |\gamma_i| = LE_l(G) \text{ and } \sum_{i=1}^{n} \gamma_i^2 = 2R,$$

where
$$R = \left[n_1(a)^2 + n_2(b)^2 + n_3(c)^2\right] + \frac{1}{2} \sum_{i=1}^n \left(L_i - \frac{1}{n} \sum_{j=1}^n L_j\right)^2$$
.

Using Lemma 3.1, it can be easily checked that Theorem 3.1 is true if $\Delta = 0$. Now we assume that $\Delta \neq 0$. By setting $a_i = \gamma_i^2$, i = 1, 2, ..., n, and

$$K = n \left[\frac{1}{n} \sum_{i=1}^{n} \gamma_i^2 - \left(\prod_{i=1}^{n} \gamma_i^2 \right)^{\frac{1}{n}} \right] \geqslant 0.$$

From Lemma 3.1, we have

$$K \leqslant n \sum_{i=1}^{n} \gamma_i^2 - \left(\sum_{i=1}^{n} |\gamma_i|\right)^2 \leqslant (n-1)K,$$

which can be further expressed as

$$K \le 2nR - (LE_l(G))^2 \le (n-1)K$$

 $2nR - (n-1)K \le (LE_l(G))^2 \le 2nR - K,$ (3.1)

where

$$K = n \left[\frac{1}{n} \gamma_i^2 - \left(\prod_{i=1}^n \gamma_i^2 \right)^{\frac{1}{n}} \right] = n \left[\frac{1}{n} 2R - \Delta^{\frac{2}{n}} \right] = 2R - n\Delta^{\frac{2}{n}}$$

Substituting in equation (3.1), we obtain

$$\sqrt{2R + n(n-1)\Delta^{\frac{2}{n}}} \leqslant LE_l(G) \leqslant \sqrt{2R(n-1) + n\Delta^{\frac{2}{n}}}.$$

Theorem 3.2 Let G be a binary labeled graph of order $n \ge 2$. Then

$$2\sqrt{R} \leqslant LE_l(G) \leqslant \sqrt{2nR}$$
.

Proof Consider the term

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} (|\gamma_i| - |\gamma_j|)^2 = 2n \sum_{i=1}^{n} |\gamma_i|^2 - 2 \left(\sum_{i=1}^{n} |\gamma_i|\right) \left(\sum_{j=1}^{n} |\gamma_j|\right)$$
$$= 2n \cdot 2R - 2(LE_l(G))^2 = 4nR - 2(LE_l(G))^2$$

Note that $S \ge 0$, i.e., $4nR - 2(LE_l(G))^2 \ge 0$, which implies $LE_l(G) \le \sqrt{2nR}$. We have $\left(\sum_{i=1}^n \gamma_i\right)^2 = 0$ and the fact that $R \ge 0$,

$$2R = \sum_{i=1}^{n} \gamma_i^2 = \left(\sum_{i=1}^{n} \gamma_i\right)^2 - 2\sum_{1 \le i < j \le n} \gamma_i \gamma_j \le 2 \left|\sum_{1 \le i < j \le n} \gamma_i \gamma_j\right| \le 2\sum_{1 \le i < j \le n} |\gamma_i||\gamma_j| \tag{3.2}$$

Thus,

$$LE_l(G)^2 = \left(\sum_{i=1}^n |\gamma_i|\right)^2 = \sum_{i=1}^n |\gamma_i|^2 + 2\sum_{1 \leqslant i < j \leqslant n} |\gamma_i||\gamma_j|$$

$$\geqslant 2R + 2R = 4R$$

from Lemma 2.3 and equation (3.1). Hence, $LE_l(G) \ge 2\sqrt{R}$.

Theorem 3.3 Let G be a labelled graph of order n. Then

$$LE_l(G) \leqslant \frac{1}{n} \sum_{i=1}^n L_i + \sqrt{(n-1)\left[2R - \left(\frac{1}{n} \sum_{i=1}^n L_i\right)^2\right]}.$$

Proof We have

$$\gamma_n = 0 - \frac{1}{n} \sum_{i=1}^n L_i = \frac{1}{n} \sum_{i=1}^n L_i.$$

Consider the non-negative term

$$S = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} (|\gamma_i| - |\gamma_j|)^2$$

$$= 2(n-1) \sum_{i=1}^n \gamma_i^2 - 2 \left(\sum_{i=1}^n |\gamma_i| \right) \left(\sum_{j=1}^n |\gamma_j| \right)$$

$$= 2(n-1) \left[2R - \left(\frac{1}{n} \sum_{i=1}^n L_i \right)^2 \right] - 2 \left(LE_l(G) - \frac{1}{n} \sum_{i=1}^n L_i \right)^2 \geqslant 0.$$

Hence,

$$LE_l(G) \leqslant \frac{1}{n} \sum_{i=1}^n L_i + \sqrt{(n-1) \left[2R - \left(\frac{1}{n} \sum_{i=1}^n L_i \right)^2 \right]}.$$

§4. Label Laplacian Spectrum of Some Graphs

Theorem 4.1 For $n \ge 2$, the label Laplacian spectrum of complete graph K_n is

$$\left\{
\begin{array}{lll}
0 & ma + (n-m)c & (n-m)b + mc & nc \\
1 & m-1 & n-m-1 & 1
\end{array}
\right\}$$

where m vertices are labeled zero, n-m vertices are labeled one and $0 \le m \le n$.

Proof Let v_1, v_2, \dots, v_m vertices of K_n be labeled zero and $v_{m+1}, v_{m+2}, \dots, v_n$ be labeled 1. Then the label degree of vertex v_i is $L(v_i) = (m-1)a + (n-m)c$ for $i = 1, 2, \dots, m$, $L(v_i) = (n-m-1)b + mc$ for $i = m+1, m+2, \dots, n$,

$$L_{l}(K_{n}) = \begin{bmatrix} [ma + (n-m)c]I_{m} - aJ_{m \times m} & -cJ_{m \times (n-m)} \\ -cJ_{(n-m) \times m} & [(n-m)b + mc]I_{n-m} - bJ_{(n-m) \times (n-m)} \end{bmatrix}$$

Consider

$$\det (\mu I - L_l(K_n)) = \frac{\left| [\mu - \{ma + (n-m)c\}]I_m + aJ_{m \times m} \right|}{cJ_{(n-m)\times m}} \left[[\mu - \{(n-m)b + mc\}]I_{n-m} + bJ_{(n-m)\times(n-m)} \right|.$$

Step 1 Replacing column C_1 by $C'_1 = C_1 + C_2 + \ldots + C_n$, we obtain determinant $\mu \det(B)$.

Step 2 In determinant B, replace the row R_i by $R'_i = R_i - R_{i-1}$ for i = 2, 3, ..., m, m + 2, m + 3, ..., n, we obtain

$$\det(B) = (\mu - \{(m-1)a + (n-m)c\})^{m-1} (\mu - \{(n-m-1)b + mc\})^{n-m-1} \det(C).$$

Step 3 By changing C_i by $C'_i = C_i + C_{i+1} + \ldots + C_n$ for i = m+1 to n in determinant C, we get a new determinant D of order m+1, i.e.

$$\det(D) = \begin{vmatrix} 1 & a & a & \dots & a & (n-m)c \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 1 & c & c & \dots & c & \mu-mc \end{vmatrix}$$

Step 4 By expanding determinant *D* over the first column , we obtain $\det(D) = \mu - mc + (-1)^{m+2}(-1)^{m+1}(n-m)c = \mu - nc$.

Step 5 By back substitution,

$$\det (\mu I - L_l(G)) = \mu (\mu - [ma + (n-m)c])^{m-1} (\mu - [(n-m)b + mc])^{n-m-1} (\mu - nc).$$

Hence, label Laplacian spectrum of K_n is,

$$\begin{cases}
0 & ma + (n-m)c & (n-m)b + mc & nc \\
1 & m-1 & n-m-1 & 1
\end{cases}$$

Corollary 4.1 For $n \ge 2$, the label Laplacian spectrum of $K_n - \{(0,0)\}$ is

$$\begin{cases} 0 & (m-2)a + (n-m)c & ma + (n-m)c & (n-m)b + mc & nc \\ 1 & 1 & m-2 & n-m-1 & 1 \end{cases}$$

where m vertices are labeled zero, n-m vertices are labeled one and $0 \le m \le n$.

Corollary 4.2 For $n \ge 2$, the label Laplacian spectrum of $K_n - \{(1,1)\}$ is

$$\begin{cases}
0 & ma + (n-m)c & (n-m-2)b + mc & (n-m)b + mc & nc \\
1 & m-1 & 1 & n-m-2 & 1
\end{cases}$$

where m vertices are labeled zero, n-m vertices are labeled one and $0 \le m \le n$.

Theorem 4.2 The label Laplacian spectrum of star graph S_n is

$$\begin{cases}
0 & a & c & \frac{\alpha+\beta}{2} & \frac{\alpha-\beta}{2} \\
1 & m-2 & n-m-1 & 1 & 1
\end{cases}$$

where m denotes the number of vertices including the central vertex labeled zero, remaining vertices labeled one, $m \le n$, $\alpha = ma + (n - m + 1)c$ and $\beta = \sqrt{[ma + (n - m + 1)c]^2 - 4acn}$.

Proof Let v_1, v_2, \dots, v_m be labeled as zero and remaining vertices be labeled as one, where v_1 is the central vertex. Then, $L(v_1) = a(m-1) + c(n-m)$ and

$$L(v_i) = \begin{cases} a, & \text{for } i = 2, 3, \dots, m \\ c, & \text{for } i = m + 1, m + 2, \dots, n \end{cases}$$

$$L_l(S_n) = \begin{bmatrix} a(m-1) + c(n-m) & -a & -a & \cdots & -a & -c & -c & \cdots & -c \\ -a & a & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ -a & 0 & a & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -a & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ -a & 0 & 0 & \cdots & a & 0 & 0 & \cdots & 0 \\ -c & 0 & 0 & \cdots & 0 & c & 0 & \cdots & 0 \\ -c & 0 & 0 & \cdots & 0 & 0 & c & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -c & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & c \end{bmatrix}$$

where rows and columns are denoted by $v_1, v_2, \dots, v_m, v_{m+1}, v_{m+2}, \dots, v_n$ for the matrix $L_l(S_n)$. Consider $det(\mu I - L_l(G))$.

Step 1 Replace the column C_1 by $C'_1 = C_1 + C_2 + \cdots + C_n$. Then we see that $det(\mu I - L_l(G))$ is of the form $\mu \det(B)$.

Step 2 In det(B), replace R_i by $R'_i = R_i - R_{i-1}$, $i = 3, 4, \dots, m, m+2, \dots, n$. Simplifying we get $det(B) = (\mu - a)^{m-2} (\mu - c)^{n-m-1} det(C)$.

Step 3 In det(C), replace C_i by $C'_i = C_i + C_{i+1} + \cdots + C_n$ for $i = m, m+1, \cdots, n$. Then it reduces to the order m+1.

Step 4 In det(C), Replacing C_i by $C'_i = C_i + C_{i+1} + \cdots + C_m$ for $i = 2, 3, \cdots, (m-1)$, we get

$$\det(C) = \begin{vmatrix} 1 & (m-1)a & (m-2)a & \dots & 2a & a & (n-m)c \\ 1 & (\mu-a) & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 & (\mu-c) \end{vmatrix}$$

Expanding over the last column, we get $\det(C) = \mu^2 - [am + (n-m+1)c]\mu + acn$. By back substitution, we obtain

$$\det(\mu I - L_l(G)) = \mu(\mu - a)^{m-2}(\mu - c)^{n-m-1} \left(\mu^2 - [am + (n-m+1)c]\mu + acn\right).$$

Hence, label Laplacian spectrum of S_n is given by

$$\begin{cases}
0 & a & c & \frac{\alpha+\beta}{2} & \frac{\alpha-\beta}{2} \\
1 & m-2 & n-m-1 & 1 & 1
\end{cases}$$

where
$$\alpha = ma + (n-m+1)c$$
 and $\beta = \sqrt{[ma + (n-m+1)c]^2 - 4acn}$.

Corollary 4.3 The label Laplacian spectrum of star graph S_n is

$$\begin{cases}
0 & b & c & \frac{\delta+\gamma}{2} & \frac{\delta-\gamma}{2} \\
1 & m-2 & n-m-1 & 1 & 1
\end{cases}$$

where m denotes the number of vertices including the central vertex labeled zero, remaining vertices labeled one, $m \le n$, $\delta = mb + (n-m+1)c$ and $\gamma = \sqrt{[mb+(n-m+1)c]-4bcn}$.

Proof Let v_1 be the central vertex . Let v_1, v_2, \cdots, v_m be labeled as one and remaining vertices be labeled as zero. Then , $L(v_1) = b(m-1) + c(n-m)$ and

$$L(v_i) = \begin{cases} b, & \text{for } i = 2, 3, \dots, m \\ c, & \text{for } i = m + 1, m + 2, \dots, n \end{cases}$$

The remaining proof of this corollary is similar to Theorem 4.2.

Corollary 4.4 If the vertices of cycle C_{2n} are labeled 0 and 1 alternately, then $LE_l(C_{2n}) = cLE(C_{2n}) = cE(C_{2n})$.

Corollary 4.5 If the vertices of path P_n are labeled 0 and 1 alternately, then $LE_l(P_n) = cLE(P_n)$.

Lemma 4.1([10]) Let M, N, P, Q be matrices, M invertible and

$$S = \begin{pmatrix} M & N \\ P & Q \end{pmatrix}$$

Then $det(S) = det(M) det(Q - PM^{-1}N)$. Furthermore, if M, P are commute, then det(S) = det(MQ - PN).

Theorem 4.3 The label Laplacian spectrum of complete bipartite graph K(r,s) with $m_1 \le r, m_2 \le s$, the number of zeros in the vertex set of order r, s respectively, is given by

$$\begin{cases}
0 & (am_2 + (s - m_2)c) & (cm_2 + (s - m_2)b) & (am_1 + (r - m_1)c) & (cm_1 + (r - m_1)b) \\
1 & m_1 - 1 & r - m_1 - 1 & m_2 - 1 & s - m_2 - 1
\end{cases}$$

and the roots of

$$\begin{split} &[\mu^3 - \mu^2 \{ (a+c)(m_1+m_2) + (b+c)((r+s) - (m_1+m_2)) \} \\ &+ \mu \{ ac(m_1^2+m_2^2) + (c^2+ab)(m_2(s-m_2) + m_1(r-m_1)) \\ &+ (ab+bc+ca)(m_1(s-m_2) + m_1(r-m_1)) + bc((r-m_1) \\ &+ (s-m_2))^2 + (b^2+c^2)(r-m_1)(s-m_2) \} - \{ (a+c)bc(r-m_1)(s-m_2)(m_1+m_2) \\ &+ abc\,(m_1(s-m_2)(s+m_1-m_2) + m_2(r-m_1)(r+m_2-m_1)) \\ &+ bc^2(r-m_1)(s-m_2)(r+s-m_1-m_2) \\ &+ ac(a+c)m_1^2m_2 + c(ac+c^2+ab)m_1m_2(s-m_2) + ac(b+c)m_1m_2(r-m_1) \} \} = 0. \end{split}$$

Proof Let the labels of r+s vertices of K(r,s) be $\underbrace{000\cdots 0}_{m_1}\underbrace{111\cdots 1}_{r-m_1}$ and $\underbrace{000\cdots 0}_{m_2}\underbrace{111\cdots 1}_{s-m_2}$.

$$L_l(K(r,s)) = \begin{bmatrix} A_{r \times r} & -B_{r \times s} \\ -B_{s \times r}^T & C_{s \times s} \end{bmatrix}_{(r+s) \times (r+s)} \text{ with } B = \begin{bmatrix} aJ_{m_1 \times m_2} & cJ_{m_1 \times s - m_2} \\ cJ_{r-m_1 \times m_2} & bJ_{r-m_1 \times s - m_2} \end{bmatrix}_{r \times s}$$

Characteristic polynomial of $L_l(K(r, s))$ is

$$\phi(L_l(K(r,s)),\mu) = \begin{vmatrix} \mu I - A \end{pmatrix}_{r \times r} \begin{vmatrix} B_{r \times s} \\ B_{s \times r} \end{vmatrix} = |\mu I - A| |(\mu I - C) - B^T A^{-1} B|$$
 (4.1)

by Lemma 4.1. Let us denote the label degree of m_1 , $r-m_1$, m_2 and $s-m_2$ vertices as $W=cm_2+(s-m_2)b$, $X=cm_2+(s-m_2)b$, $Y=am_1+(r-m_1)c$ and $Z=cm_1+(r-m_1)b$ respectively. Then $A=Diag[\mu-W,\mu-W,\dots,\mu-W,\mu-W,\mu-X,\mu-X,\dots,\mu-X]$, $C=Diag[\mu-Y,\mu-Y,\dots,\mu-Y,\mu-Y,\mu-Z,\mu-Z,\dots,\mu-Z]$. Note that

$$B^{T}A^{-1}B = \begin{bmatrix} \frac{m_{1}a^{2}}{\mu - W} + \frac{c^{2}(r - m_{1})}{\mu - X} \end{bmatrix} J_{m_{2} \times m_{2}} & \left\{ \frac{acm_{1}}{\mu - W} + \frac{bc(r - m_{1})}{\mu - X} \right\} J_{m_{2} \times s - m_{2}} \\ \frac{acm_{1}}{\mu - W} + \frac{bc(r - m_{1})}{\mu - X} \end{bmatrix} J_{s - m_{2} \times m_{2}} & \left\{ \frac{c^{2}m_{1}}{\mu - W} + \frac{b^{2}(r - m_{1})}{\mu - X} \right\} J_{s - m_{2} \times s - m_{2}} \end{bmatrix}$$

By applying elementary transformations, $\det(C - B^T A^{-1}B)$ reduces to order $m_2 + 1$. Hence,

$$|C - B^T A^{-1} B| = (\mu - Y)^{m_2 - 1} (\mu - Z)^{s - m_2 - 1} \det(E),$$
 (4.2)

where

$$\det(E) = \begin{vmatrix} (\mu - Y) - m_2 G & -(m_2 - 1)G & (m_2 - 2)G & \dots & -G & -(s - m_2)H \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & & & & \dots & & \vdots \\ -m_2 H & -(m_2 - 1)H & -(m_2 - 2)H & \dots & -H & (\mu - Z) - (s - m_2)K \end{vmatrix}$$

and
$$G = \frac{m_1 a^2}{\mu - W} + \frac{c^2(r - m_1)}{\mu - X}$$
, $H = \frac{acm_1}{\mu - W} + \frac{bc(r - m_1)}{\mu - X}$ and $K = \frac{c^2m_1}{\mu - W} + \frac{b^2(r - m_1)}{\mu - X}$.

Now expression (4.1) becomes

$$\phi(L_{l}(K(r,s),\mu) = (\mu - W)^{m_{1}-1}(\mu - X)^{r-m_{1}-1}(\mu - Y)^{m_{2}-1}(\mu - Z)^{s-m_{2}-1}$$

$$\times [(\mu - W)(\mu - X)(\mu - Y)(\mu - Z) - c^{2}m_{1}(s - m_{2})(\mu - X)(\mu - Y)$$

$$-b^{2}(r - m_{1})(s - m_{2})(\mu - W)(\mu - Y) - a^{2}m_{1}m_{2}(\mu - Z)(\mu - X)$$

$$-c^{2}(r - m_{1})m_{2}(\mu - Z)(\mu - W) + (r - m_{1})m_{1}m_{2}(s - m_{2})(c^{4} + a^{2}b^{2} - 2abc^{2})].$$

On further simplification, we obtain

$$\phi(L_{l}(K(r,s),\mu) = \mu(\mu - W)^{m_{1}-1}(\mu - X)^{r-m_{1}-1}(\mu - Y)^{m_{2}-1}(\mu - Z)^{s-m_{2}-1}$$

$$[\mu^{3} - \mu^{2}(X + Y + Z + W) + \mu(WX + XY + YZ + ZW + WY + XZ)$$

$$-(XYZ + XYW + XWZ + WYZ) - c^{2}m_{1}(s - m_{2})(\mu - (X + Y))$$

$$-b^{2}(r - m_{1})(s - m_{2})(\mu - (Y + W)) - a^{2}m_{1}m_{2}(\mu - (X + Z))$$

$$-c^{2}(r - m_{1})m_{2}(\mu - (W + Z))].$$

Substituting W,X,Y and Z and reducing the terms we get

$$\begin{cases}
0 & (am_2 + (s - m_2)c) & (cm_2 + (s - m_2)b) & (am_1 + (r - m_1)c) & (cm_1 + (r - m_1)b) \\
1 & m_1 - 1 & r - m_1 - 1 & m_2 - 1 & s - m_2 - 1
\end{cases}$$

and the roots of

$$[\mu^{3} - \mu^{2}\{(a+c)(m_{1}+m_{2}) + (b+c)((r+s) - (m_{1}+m_{2}))\}$$

$$+\mu\{ac(m_{1}^{2}+m_{2}^{2}) + (c^{2}+ab)(m_{2}(s-m_{2}) + m_{1}(r-m_{1}))$$

$$+(ab+bc+ca)(m_{1}(s-m_{2}) + m_{1}(r-m_{1})) + bc((r-m_{1})$$

$$+(s-m_{2}))^{2} + (b^{2}+c^{2})(r-m_{1})(s-m_{2})\} - \{(a+c)bc(r-m_{1})(s-m_{2})(m_{1}+m_{2})$$

$$+abc(m_{1}(s-m_{2})(s+m_{1}-m_{2}) + m_{2}(r-m_{1})(r+m_{2}-m_{1}))$$

$$+bc^{2}(r-m_{1})(s-m_{2})(r+s-m_{1}-m_{2})$$

$$+ac(a+c)m_{1}^{2}m_{2} + c(ac+c^{2}+ab)m_{1}m_{2}(s-m_{2}) + ac(b+c)m_{1}m_{2}(r-m_{1})\}] = 0.$$

Theorem 4.4 Let S(m,n) be a double star graph with central vertices labeled zero and the pendent vertices labeled one. Then the characteristic polynomial of label Laplacian matrix of S(m,n) is

$$\mu(\mu-c)^{m+n-4} \left(\mu^3 - [(m+n)c + 2a]\mu^2 + [ac(m+n) + c^2mn + 2ac]\mu - [ac^2(m+n)]\right).$$

Proof Let v_m and v_{m+1} be the central vertices of S(m, n) with zero labels. Remaining m + n - 2 vertices be given label one. Characteristic polynomial of $L_l(S(m, n))$ is

$$|\mu I - L_l(S(m,n))| = \begin{vmatrix} (\mu - c)I_{m-1} & cJ_{m-1 \times 1} & O_{m-1 \times 1} & O_{m-1 \times n-1} \\ cJ_{1 \times m-1} & (\mu - (m-1)c - a)I_1 & aI_1 & O_{1 \times n-1} \\ O_{1 \times m-1} & aI_1 & (\mu - (n-1)c - a)I_1 & cJ_{1 \times n-1} \\ O_{n-1 \times m-1} & O_{m-1 \times 1} & cJ_{n-1 \times 1} & (\mu - c)I_{n-1} \end{vmatrix}$$

Using elementary transformations, we get

$$|\mu I - L_l(S(m,n))| = \mu(\mu - c)^{m+n-4} \begin{vmatrix} (\mu - mc - a) & a & 0 \\ a - c & (\mu - (n-1)c - a) & (n-1)c \\ -c & c & (\mu - c) \end{vmatrix}$$

Hence, the characteristic polynomial of S(m, n) is

$$\phi(L_l(S(m,n)),\mu) = \mu(\mu-c)^{m+n-4} \left(\mu^3 - [(m+n)c + 2a]\mu^2 + [ac(m+n) + c^2mn + 2ac]\mu - [ac^2(m+n)]\right).$$

Corollary 4.6 Let S(m,n) be a double star graph with central vertices labeled one and the pendent vertices labeled zero. Then the characteristic polynomial of label Laplacian matrix of S(m,n) is

$$\mu(\mu-c)^{m+n-4} \left(\mu^3 - [(m+n)c + 2b]\mu^2 + [bc(m+n) + c^2mn + 2bc]\mu - [bc^2(m+n)]\right).$$

Definition 4.1 The crown graph S_n^0 for an integer $n \ge 3$ is the graph with vertex set $\{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n\}$ and edge set $\{u_i v_i : 1 \le i, j \le n, i \ne j\}$.

Lemma 4.2([10]) *Let*

$$A = \begin{bmatrix} A_0 & A_1 \\ A_1 & A_0 \end{bmatrix}$$

be a 2×2 block symmetric matrix. Then the eigenvalues of A are the eigenvalues of the matrices $A_0 + A_1$ and $A_0 - A_1$.

Theorem 4.5 The label Laplacian spectrum of crown graph S_n^0 of order 2n is

$$\left\{ \begin{array}{lll} 0 & ma + (n-m)c & (n-m)b + mc & nc & (m-2)a + c(n-m) & \frac{\xi + \eta}{2} & \frac{\xi - \eta}{2} \\ 1 & m - 1 & n - m - 1 & 1 & m - 1 & 1 & 1 \end{array} \right\}$$

where X = 2a(m-1) + 2b(n-m-1) + cn, Y = 4ab(m-1)(n-m-1) + 2bc(n-m-1)(n-m) + 2acm(m-1), $\xi = X$, $\eta = \sqrt{X^2 - 4Y}$ and m denotes the number of vertices labelled zero in each vertex set of the crown graph.

Proof Let the labels of n vertices of S_n^0 be $\underbrace{000\dots0}_{m}\underbrace{111\cdots1}_{n-m}$ in each partite set. Then

$$L_l(S_n^0) = \left[\begin{array}{c|c} A & -B \\ \hline -B & A \end{array} \right]$$

where

$$v_1 \quad v_2 \quad \cdots \quad v_m \quad v_{m+1} \quad v_{m+2} \quad \cdots \quad v_n$$

$$A = Diag[\quad W \quad W \quad \cdots \quad W \quad \quad Z \quad \quad Z \quad \cdots \quad \quad Z \quad],$$

W and Z are the label degrees of the m zero label vertices and n-m one label vertices respectively given by W = a(m-1) + c(n-m) and Z = b(n-m-1) + cm. Note that

$$B = \begin{bmatrix} a(J-I)_{m \times m} & cJ_{m \times n-m} \\ cJ_{n-m \times m} & a(J-I)_{n-m \times n-m} \end{bmatrix}$$

From Lemma 4.2, the label Laplacian spectrum of $L_l(S_n^0)$ is the union of spectrum of A + B and A - B. Observe that $A + B = L_l(K_n)$. Hence, by Theorem 4.2, we obtain

$$Spec_{l}(A+B) = \left\{ \begin{array}{ll} 0 & ma + (n-m)c & (n-m)b + mc & nc \\ 1 & m-1 & n-m-1 & 1 \end{array} \right\}$$
 (4.3)

Also, $A - B = A + A_l(K_n)$. Consider $\det(\mu I - (A + A_l(K_n)))$.

Step 1 Replacing R_i by $R'_i = R_i - R_{i-1}$, for $i = 2, 3, \dots, m, m+2, m+3, \dots, n$, we obtain

$$\det(\mu I - (A + A_l(K_n))) = (\mu - (a(m-2) + c(n-m)))^{m-1} (\mu - (b(n-m-2) + cm)))^{n-m-1} \det(E).$$

Step 2 Replacing C_i by $C'_i = C_i + C_{i+1} + \ldots + C_m$, $i = 1, 2, \ldots, m-1$ and replacing C_j by $C_j = C_j + C_{j+1} + \ldots + C_n$, $j = 1, 2, \ldots, n-1$, the det(E) reduces to a determinant of order m+1.

$$\det(E) = \begin{vmatrix} \sigma & -a(m-1) & -a(m-2) & \dots & -a & -c(n-m) \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ -cm & -c(m-1) & -c(m-2) & \dots & -c & \varsigma \end{vmatrix},$$

where $\sigma = \mu - [2a(m-1) + c(n-m)]$ and $\varsigma = \mu - [2b(n-m-1) + cm]$.

Step 3 Expanding over the first column

$$\det(E) = \mu^2 - \mu[2a(m-1) + 2b(n-m-1) + cm] + 4ab(m-1)(n-m-1) + 2bc(n-m-1)(n-m) + 2cam(m-1).$$

Step 4 Substituting det(E) in Step 1,

$$\det(\mu I - (A + A_l(K_n))) = (\mu - (a(m-2) + c(n-m)))^{m-1} \times (\mu - (b(n-m-2) + cm)))^{n-m-1} \{\mu^2 - \mu[2a(m-1) + 2b(n-m-1) + cm] + 4ab(m-1)(n-m-1) + 2bc(n-m-1)(n-m) + 2cam(m-1)\}.$$

Hence, label Laplacian spectrum of A - B is

$$Spec_{l}(A - B) = \begin{pmatrix} a(m-2) + c(n-m) & m-1 \\ b(n-m-2) + cm & n-m-1 \\ \frac{X + \sqrt{X^{2} - 4Y}}{2} & 1 \\ \frac{X - \sqrt{X^{2} - 4Y}}{2} & 1 \end{pmatrix}$$
(4.4)

where

$$\begin{array}{lcl} X & = & 2a(m-1)+2b(n-m-1)+cn, \\ Y & = & 4ab(m-1)(n-m-1)+2bc(n-m-1)(n-m)+2acm(m-1). \end{array}$$

The union of expressions (4.3) and (4.4) is the label Laplacian spectrum of S_n^0 .

References

- [1] C.Adiga, A.Bayad, I.Gutman and Shrikanth A.S., The minimum covering energy of a graph, *Kragujevac J.Sci.*, **34** (2012), 39-56.
- [2] C.Adiga, E.Sampathkumar, M.A.Sriraj and Shrikanth A. S., Color energy of a graph, *Proc. Jangieon Math. Soc.*, **16** (2013) 335-351.
- [3] C.Adiga and Smitha, On maximum degree energy of a graph, *Int. J. Contemp. Math. Sciences*, 8 (2009), 385-396.
- [4] R.Balakrishnan, The energy of a graph, Linear Algebra Appl., 387(2004), 287-295.
- [5] R.B.Bapat, Graphs and Matrices, Springer Hindustan Book Agency, London, 2011.
- [6] R. Li, Some lower bounds for Laplacian energy of graphs, *International Journal of Contemporary Mathematical Sciences*, 4(2009), 219-223.
- [7] D.M.Cvetkovic, M.Doob and H.Sachs, Spectra of Graphs, Theory and Applications, Academic Press, New York, 1980.
- [8] I.Gutman and B.Zhou, Laplacian energy of a graph, Lin. Algebra Appl., 414(2006) 29-37.
- [9] I.Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz., 103(1978) 1-22.
- [10] G.Indulal, I.Gutman and A.Vijayakumar, On distance energy of graphs, MATCH Commun.Math. Comput.Chem., 60 (2008), 461-472.
- [11] Jia-Yu Shao, Li Zhang and Xi-Ying Yuan, On the second Laplacian eigenvalues of trees of odd order, *Lin. Algebra Appl.*, **419**(2006), 475-485.
- [12] Maria Robbiano and Raul Jimenez, Applications of a theorem by Ky Fan in the theory of

- Laplacian, MATCH Commun.Math. Comput.Chem., 62(2009), 537-552.
- [13] B.Mohar, The Laplacian spectrum of graphs, in *Graph Theory, Combinatorics and Applications*, Y. Alavi, G. Chartrand, O. E. Ollerman and A. J. Schwenk, Eds., John Wiley and Sons, New York, USA, (1991), 871-898.
- [14] Pradeep G. Bhat and Sabitha D'Souza, Energy of binary labeled graph, *Trans. Comb.*, Vol. 2. No. 3(2013), 53-67.
- [15] Tatjana Aleksic, Upper bounds for Laplacian energy of graphs, MATCH Commun.Math. Comput.Chem., 60(2008), 435-439.
- [16] E.R.Van Dam and W.H.Haemers, Which graphs are determined by their spectrum?, *Linear Algebra Appl.*, **373** (2003), 241-272.
- [17] Bo Zhou, Ivan Gutman and Tatzana Aleksic, A note on Laplacian energy of graphs, MATCH Commun.Math.Comput. Chem., 60 (2008), 441-446.
- [18] Bo Zhou, More on energy and Laplacian energy, MATCH Commun.Math.Comput. Chem., 64 (2010), 75-84.