A Note on Odd Graceful Labeling of a Class of Trees

Mathew Varkey T.K.

(Department of Mathematics, T.K.M. College of Engineering, Kollam-5, India)

Shajahan A.

(Department of Mathematics, M.S.M. College Kayamkulam, India)

 $E-mail: \ mathewvarkeytk@gmail.com, shajahan_safa@yahoo.com$

Abstract: A connected graph with n vertices and q edges is called odd graceful if it is possible to label the vertices x with pairwise distinct integers f(x) in $\{0, 1, 2, 3, \dots, 2q - 1\}$ so that when each edge, xy is labeled |f(x) - f(y)|, the resulting edge labels are pairwise distinct and thus form the entire set $\{1, 3, 5, \dots, 2q - 1\}$. In this paper we study the odd graceful labeling of class of T_n trees.

Key Words: Labeling, Odd graceful graph, Tree.

AMS(2010): 05C78

§1. Introduction

Unless mentioned otherwise, a graph in this paper shall mean a simple finite graph without isolated vertices.

For all terminology and notations in graph theory, we follow Harary [1] and for all terminology regarding odd graceful labeling, we follow [2]. A connected graph with n vertices and q edges is called odd graceful if it is possible to label the vertices x with pairwise distinct integers f(x) in $\{0,1,2,3,\cdots,2q-1\}$ so that each edge, xy, is labeled |f(x)-f(y)|, the resulting edge labels are pairwise distinct. (and thus form the entire set $\{1,3,5,\cdots,2q-1\}$). In this article we study the odd graceful labeling of typical class of T_n trees.

§2. On T_n -Class of Trees

Definition 2.1([3]) Let T be a tree and x and y be two adjacent vertices in T. Let there be two end vertices (non-adjacent vertices of degree one) $x_1, y_1 \in T$ such that the length of the path $x - x_1$ is equal to the length of the path $y - y_1$. If the edge xy is deleted from T and x_1, y_1 are joined by an edge x_1y_1 ; then such a transformations of the edge from xy to x_1y_1 is called an elementary parallel transformation (or an EPT of T) and the edge xy is called a transformable edge.

¹Received November 16, 2012, Accepted June 22, 2013.

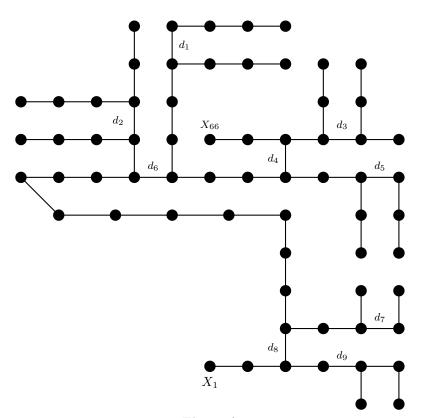
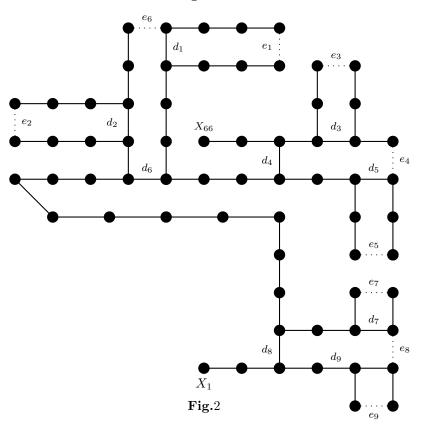


Fig.1 A T_{66} -tree T

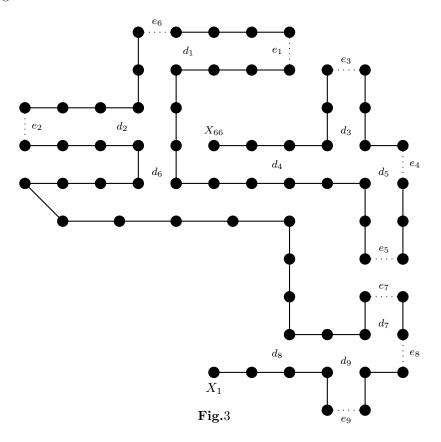


Definition 2.2 If by a sequence of EPT's, the tree, T can be reduced to a Hamiltonian path, then T is called a T_n -tree (transformed tree) and such a Hamiltonian path is denoted as $P^H(T)$. Any such sequence regarded as a composition mapping (EPT's) denoted by P is called parallel transformation of T[3].

A T_n -tree and a sequence of nine EPT's reducing it to a hamiltonian path are illustrated in Fig.1 to Fig.3.

In Fig.2, let $d_1, d_2, \dots d_9$ are the deleted edges and e_1, e_2, \dots, e_9 are the corresponding added edges (Given in broken lines).

An EPT $P_i^H(T)$; for $i=1,2,\cdots,9$. The hamiltonian path $P^H(T)$ for the tree in Fig. 1 is given in Fig.3.



Theorem 2.3 Every T_n tree is odd graceful.

Proof Let T be a T_n tree with (n+1) vertices. By definition there exist a path $P^H(T)$ corresponding to T_n . Let $E_d = \{d_1, d_2, \cdots, d_r\}$ be the set of edges deleted from tree T and E_p is the set of edges newly added through the sequence $\{e_1, e_2, \cdots, e_r\}$ of the EPT's used to arrive at the path (Hamiltonian path) $P^H(T)$. Clearly E_d and E_p have the same number of edges. Now we have $V(P^H(T)) = V(T)$ and $E(P^H(T)) = \{E\{T\} - E_d\} \cup E_p$: Now denote the vertices of $P^H(T)$ successively as $v_1, v_2, \cdots, v_{n+1}$ starting from one pendant vertex of $P^H(T)$ right up to other. Define the vertex numbering of f from $V(P^H(T)) \to \{0, 1, 2, \cdots, 2q-1\}$ as

follows.

$$f(v_i) = 2\left[\frac{i-1}{2}\right] \text{ if } i \text{ is odd, } 1 \leqslant i \leqslant n+1$$
$$= (2q-1) - 2\left[\frac{i-2}{2}\right] \text{ if } i \text{ is even, } 2 \leqslant i \leqslant n+1$$

where, q is the number of edges of T and [.] denote the integer part.

Now it can be easily seen that f is injective. Let g_f^* be the induced mapping defined from the edge set of $P^H(T)$ in to the set $\{1,3,5,\cdots,2q-1\}$ as follows: $g_f^*(uv) = |f(u) - f(v)|$ whenever $uv \in E(PH(T))$. Since $P^H(T)$ is a path, every edge in $P^H(T)$ is of the form v_iv_{i+1} for $i=1,2,\cdots,n$.

Case 1 When i is even, then

$$g_{f}^{*}(v_{i}v_{i+1}) = |f(v_{i}) - f(v_{i+1})|$$

$$= |(2q-1) - 2\left[\frac{i-2}{2}\right] - 2\left[\frac{i+1-1}{2}\right]|$$

$$= |(2q-1) - 2\left\{\left[\frac{i-2}{2}\right] + \left[\frac{i}{2}\right]\right\}|$$

$$= |(2q-1) - 2\left[\frac{i-2+i}{2}\right]|$$

$$= |(2q-1) - 2\left[\frac{2i-2}{2}\right]|$$

$$= |(2q-1) - 4\left[\frac{i-1}{2}\right]|$$
(1)

Case 2 When i is odd, then

$$g_f^*(v_i v_{i+1}) = |f(v_i) - f(v_{i+1})|$$

$$= \left[2 \left[\frac{i-1}{2} \right] - \left((2q-1) - 2 \left[\frac{i+1-2}{2} \right] \right) \right]$$

$$= \left| 2 \left[\frac{i-1}{2} \right] - (2q-1) + 2 \left[\frac{i-1}{2} \right] \right|$$

$$= \left| (2q-1) - 4 \left[\frac{i-1}{2} \right] \right|$$
(2)

From (1) and (2), we get for all i,

$$g_f^*(v_i v_{i+1}) = \left| (2q - 1) - 4 \left[\frac{i - 1}{2} \right] \right| \tag{3}$$

From (3), it is clear that g_f^* is injective and its range is $\{1, 3, 5, \dots, 2q - 1\}$. Then f is odd graceful on $P^H(T)$.

In order to prove that f is also odd graceful on T_n , it is enough to show that $g_f^*(d_s) = g_f^*(e_s)$. Let $d_s = v_i v_j$ be an edge of T for same indices i and j, $1 \le i \le n+1$; $1 \le j \le n+1$ and d_s be deleted and e_s be the corresponding edge joined to obtain $P^H(T)$ at a distance k from u_i and u_j . Then $e_s = v_{i+k}v_{j-k}$. Since e_s is an edge in $P^H(T)$, it must be of the form $e_s = v_{i+k}v_{i+k+1}$.

We have $(v_{i+k}, v_{j-k}) = (v_{i+k}, v_{i+k+1}) \Longrightarrow j - k = i + k + 1 \Longrightarrow j = i + 2k + 1$. Therefore i and j are of opposite parity \Longrightarrow one of i, j is odd and other is even.

Case a When i is odd, $1 \le i \le n$. The value of the edge $e_s = v_i v_j$ is given by

$$g_f^*(d_s) = g_f^*(v_i v_j)$$

$$= g_f^*(v_i v_{i+2k+1})$$

$$= |f(v_i) - f(v_{i+2k+1})|$$

$$= \left|(2q-1) - 2\left[\frac{i-2}{2}\right] - 2\left[\frac{i+2k+1-1}{2}\right]\right|$$

$$= \left|(2q-1) - 2\left\{\left[\frac{i-2}{2}\right] + 2\left[\frac{i+2k}{2}\right]\right\}\right|$$

$$= |(2q-1) - (2i+2k-2)|$$

$$= |(2q-1) - 2(i+k-1)|$$
(5)

Case b When i is even, $2 \le i \le n$.

$$g_f^*(d_s) = |f(v_i) - f(v_{i+2k+1})|$$

$$= \left| 2 \left[\frac{i-2}{2} \right] - \left((2q-1) - 2 \left[\frac{i+2k+1-2}{2} \right] \right) \right|$$

$$= \left| 2 \left[\frac{i-2}{2} \right] + 2 \left[\frac{i+2k-1}{2} \right] - (2q-1) \right|$$

$$= |(2i+2k-2) - 2 - (2q-1)|$$

$$= |(2q-1) - 2(i+k-1)|$$
(6)

From (4), (5) and (6) it follows that

$$g_f^*(d_s) = g_f^*(v_i v_j) = |(2q - 1) - 2(i + k - 1)|, 1 \leqslant i \leqslant n$$
(7)

Now again,

$$g_f^*(e_s) = g_f^*(v_{i+k}v_{j-k}) = g_f^*(v_kv_{i+k+1})$$

$$= |f(v_{i+k}) - f(v_{i+k+1})|$$

$$= |(2q-1) - 2\left[\frac{i+k-2}{2}\right] - 2\left[\frac{i+k+1-1}{2}\right]$$

$$= |(2q-1) - (2i+2k-2)|$$

$$= |(2q-1) - 2(i+k-1)|, 1 \leqslant i \leqslant n$$
(8)

From (7) and (8), it follows that

$$g_f^*(e_s) = g_f^*(d_s).$$

Then f is odd graceful on T_n also. Hence the graph T_n -tree is odd graceful. The proof is complete.

For example, an odd graceful labelling of a T_n -tree using 2.3, is shown in Fig.4.

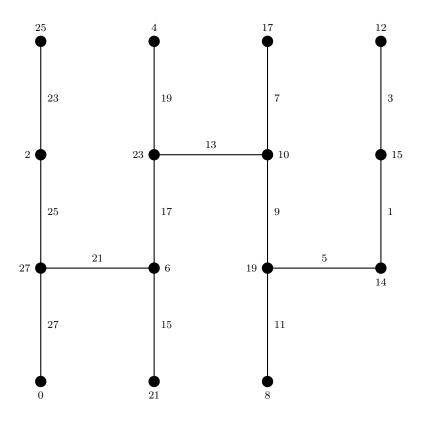


Fig.4

An odd graceful labeling of a T_n -tree using Theorem 2.3.

References

- [1] F.Harary, Graph Theory, Addision Wesley, Reading, M.A., 1969.
- [2] Joseph A. Gallian, A dynamic Survey of Graph Labeling, *The Electronic Journal of Combinatorics*, 2012, pp 1-178.
- [3] T.K.Mathew Varkey, Graceful labeling of a class of trees, *Proceedings of the National Seminar on Algebra and Discrete Mathematics*, Dept. of Mathematics, University of Kerala, Trivandrum, Kerala, November 2003, pp 156-159.