Surface Embeddability of Graphs via Tree-travels

Yanpei Liu

(Institute of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R.China)

E-mail: ypliu@bjtu.edu.cn

Abstract: This paper provides a characterization for surface embeddability of a graph with any given orientable and nonorientable genus not zero via a method discovered by the author thirty years ago.

Key Words: Surface, graph, Smarandache λ^{S} -drawing, embeddability, tree-travel.

AMS(2010): 05C15, 05C25

§1. Introduction

A drawing of a graph G on a surface S is such a drawing with no edge crosses itself, no adjacent edges cross each other, no two edges intersect more than once, and no three edges have a common point. A Smarandache λ^S -drawing of G on G is a drawing of G on G with minimal intersections G. Particularly, a Smarandache 0-drawing of G on G, if existing, is called an embedding of G on G. Along the Kurotowski research line for determining the embeddability of a graph on a surface of genus not zero, the number of forbidden minors is greater than a hundred even for the projective plane, a nonorientable surface of genus 1 in [1].

However, this paper extends the results in [3] which is on the basis of the method established in [3-4] by the author himself for dealing with the problem on the maximum genus of a graph in 1979. Although the principle idea looks like from the joint trees, a main difference of a tree used here is not corresponding to an embedding of the graph considered.

Given a graph G = (V, E), let T be a spanning tree of G. If each cotree edge is added to T as an articulate edge, what obtained is called a protracted tree of G, denoted by \check{T} . An protracted tree \check{T} is oriented via an orientation of T or its fundamental circuits. In order to guarantee the well-definedness of the orientation for given rotation at all vertices on G and a selected vertex of T, the direction of a cotree edge is always chosen in coincidence with its direction firstly appeared along the the face boundary of \check{T} . For convenience, vertices on the boundary are marked by the ordinary natural numbers as the root vertex, the starting vertex, by 0. Of course, the boundary is a travel on G, called a tree-travel.

In Fig.1, (a) A spanning tree T of K_5 (i.e., the complete graph of order 5), as shown by bold lines; (b) the protracted tree \check{T} of T.

¹Received December 25, 2010. Accepted February 22, 2011.

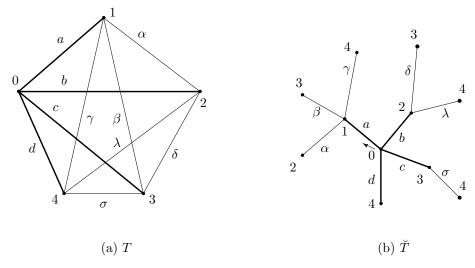


Fig.1

§2. Tree-Travels

Let C = C(V; e) be the tree travel obtained from the boundary of \check{T} with 0 as the starting vertex. Apparently, the travel as a edge sequence C = C(e) provides a double covering of G = (V, E), denoted by

$$C(V;e) = 0P_{0,i_1}v_{i_1}P_{i_1,i_2}v_{i_2}P_{i_2,i'_1}v_{i'_1}P_{i'_1,i'_2}v_{i'_2}P_{i'_2,2\epsilon}0$$
(1)

where $\epsilon = |E|$.

For a vertex-edge sequence Q as a tree-travel, denote by $[Q]_{\text{eg}}$ the edge sequence induced from Q missing vertices, then $C_{\text{eg}} = [C(V;e)]_{\text{eg}}$ is a polyhegon (i.e., a polyhedron with only one face).

Example 1 From \check{T} in Fig.1(b), obtain the thee-travel

$$C(V; e) = 0P_{0.8}0P_{8.14}0P_{14.18}0P_{18.20}0$$

where $v_0 = v_8 = v_{14} = v_{18} = v_{20} = 0$ and

$$\begin{split} P_{0,8} &= a1\alpha 2\alpha^{-1}1\beta 3\beta^{-1}1\gamma 4\gamma^{-1}1a^{-1};\\ P_{8,14} &= b2\delta 3\delta^{-1}2\lambda 4\lambda^{-1}2b^{-1};\\ P_{14,18} &= c3\sigma 4\sigma^{-1}3c^{-1};\\ P_{18,20} &= d4d^{-1}. \end{split}$$

For natural number i, if av_ia^{-1} is a segment in C, then a is called a reflective edge and then v_i , the reflective vertex of a.

Because of nothing important for articulate vertices (1-valent vertices) and 2-valent vertices in an embedding, we are allowed to restrict ourselves only discussing graphs with neither 1-valent nor 2-valent vertices without loss of generality. From vertices of all greater than or equal to 3, we are allowed only to consider all reflective edges as on the cotree.

If v_{i_1} and v_{i_2} are both reflective vertices in (1), their reflective edges are adjacent in G and $v_{i'_1} = v_{i_1}$ and $v_{i'_2} = v_{i_2}$, $[P_{v_{i_1,i_2}}]_{\text{eg}} \cap [P_{v_{i'_1,i'_2}}]_{\text{eg}} = \emptyset$, but neither $v_{i'_1}$ nor $v_{i'_2}$ is a reflective vertex, then the transformation from C to

$$\Delta_{v_{i_1}, v_{i_2}} C(V; e) = 0 P_{0, i_1} v_{i_1} P_{i'_1, i'_2} v_{i_2} P_{i_2, i'_1} v_{i'_1} P_{i_1, i_2} v_{i'_2} P_{i'_2, 0} 0. \tag{2}$$

is called an operation of interchange segments for $\{v_{i_1}, v_{i_2}\}$.

Example 2 In C = C(V; e)) of Example 1, $v_2 = 2$ and $v_4 = 3$ are two reflective vertices, their reflective edges α and β , $v_9 = 2$ and $v_15 = 3$. For interchange segments once on C, we have

$$\triangle_{2.3}C = 0P_{0.2}2P_{9.15}3P_{4.9}2P_{2.4}3P_{15.20}0 \ (= C_1).$$

where

$$P_{0,2} = a1\alpha \ (= P_{1;0,2});$$

$$P_{9,15} = \delta 3\delta^{-1} 2\lambda 4\lambda^{-1} 2b^{-1} 0c3 \ (= P_{1;2,8});$$

$$P_{4,9} = \beta^{-1} 1\gamma 4\gamma^{-1} 1a^{-1} 0b2 \ (= P_{1;8,13});$$

$$P_{2,4} = \alpha^{-1} 1\beta \ (= P_{1;13,15});$$

$$P_{15,20} = \sigma 4\sigma^{-1} 3c^{-1} 0d4d^{-1} \ (= P_{1:15,20}).$$

Lemma 1 Polyhegon $\triangle_{v_i,v_j}C_{\text{eg}}$ is orientable if, and only if, C_{eg} is orientable and the genus of $\triangle_{v_{i_1},v_{i_2}}C_{\text{eg}}$ is exactly 1 greater than that of C_{eg} .

Proof Because of the invariant of orientability for \triangle -operation on a polyhegon, the first statement is true.

In order to prove the second statement, assume cotree edges α and β are reflective edges at vertices, respectively, v_{i_1} and v_{i_2} . Because of

$$C_{\rm eg} = A\alpha\alpha^{-1}B\beta\beta^{-1}CDE$$

where

$$A\alpha = [P_{0,i_1}]_{\text{eg}}; \ \alpha^{-1}B\beta = [P_{i_1,i_2}]_{\text{eg}};$$
$$\beta^{-1}C = [P_{i_2,i'_1}]_{\text{eg}}; \ D = [P_{i'_1,i'_2}]_{\text{eg}};$$
$$E = [P_{i'_2,i_{\epsilon}}]_{\text{eg}},$$

we have

$$\begin{split} \triangle_{v_{i_1},v_{i_2}}C_{\text{eg}} &= A\alpha D\beta^{-1}C\alpha^{-1}B\beta E \\ &\sim_{\text{top}} ABCDE\alpha\beta\alpha^{-1}\beta^{-1}, \text{ (Theorem 3.3.3 in [5])} \\ &= C_{\text{eg}}\alpha\beta\alpha^{-1}\beta^{-1} \text{ (Transform 1, in §3.1 of [5])}. \end{split}$$

Therefore, the second statement is true.

If interchange segments can be done on C successively for k times, then C is called a k-tree travel. Since one reflective edge is reduced for each interchange of segments on C and C has at most $m = \lfloor \beta/2 \rfloor$ reflective edges, we have $0 \le k \le m$ where $\beta = \beta(G)$ is the Betti number (or corank) of G. When k = m, C is also called *normal*.

For a k-tree travel $C_k(V; e, e^{-1})$ of G, graph G_k is defined as

$$G_k = T \bigcup [E_{\text{ref}} \bigcap E_{\bar{T}} - \sum_{j=1}^k \{e_j, e_j'\}]$$
 (3)

where T is a spanning tree, [X] represents the edge induced subgraph by edge subset X, and $e \in E_{\text{ref}}$, $e \in E_{\bar{T}}$, $\{e_j, e'_j\}$ are, respectively, reflective edge, cotree edge, pair of reflective edges for interchange segments.

Example 3 On C_1 in Example 2, $v_{1;3} = 3$ and $v_{1;5} = 4$ are two reflective vertices, $v_{1;8} = 3$ and $v_{1;10} = 4$. By doing interchange segments on C_1 , obtain

$$\triangle_{3,4}C_1 = 0P_{1:0,10}3P_{1:17,19}4P_{1:12,15}3P_{1:10,12}4P_{1:19,20}0 (= C_2)$$

where

$$P_{1;0,10} = a1\alpha 2b^{-1}0c3\beta^{-1}1\gamma 4\gamma^{-1}1a^{-1}0b2\delta(=P_{2;0,10});$$

$$P_{1;17,19} = c^{-1}0d(=P_{2;10,12});$$

 $P_{1\cdot 12\cdot 17} = \alpha^{-1}2\alpha^{-1}1\beta 3\sigma 4\sigma^{-1} (= P_{2\cdot 12\cdot 17});$

$$P_{1;10,12} = \delta^{-1} 2\lambda (= P_{2;17,19});$$

 $P_{1;19,20} = d^{-1} (= P_{2;19,20}).$

Because of $[P_{2;6,16}]_{\text{eg}} \cap [P_{2;12,19}]_{\text{eg}} \neq \emptyset$ for $v_{2;12} = 4$ and $v_{2;19} = 4$, only $v_{2;6} = 4$ and $v_{2;16} = 4$ with their reflective edges γ and σ are allowed for doing interchange segments on C_2 . The protracted tree \check{T} in Fig.1(b) provides a 2-tree travel C, and then a 1-tree travel as well.

However, if interchange segments are done for pairs of cotree edges as $\{\beta, \gamma\}$, $\{\delta, \lambda\}$ and $\{\alpha, \sigma\}$ in this order, it is known that C is also a 3-tree travel.

On C of Example 1, the reflective vertices of cotree edges β and γ are, respectively, $v_4 = 3$ and $v_6 = 4$, choose 4' = 15 and 6' = 19, we have

$$\triangle_{4,6}C = 0P_{1;0,4}3P_{1;4,8}4P_{1;8,17}3P_{1;17,19}4P_{1;19,20}0 (= C_1)$$

where

$$P_{1;0,4} = P_{0,4}; \ P_{1;4,8} = P_{15,19}; \ P_{1;8,17} = P_{6,15};$$

$$P_{1;17,19} = P_{4,6}; \ P_{1;19,20} = P_{19,20}.$$

On C_1 , subindices of the reflective vertices for reflective edges δ and λ are 5 and 8, choose $\delta' = 17$ and $\delta' = 19$, find

$$\triangle_{5,8}C_1 = 0P_{2:0,5}3P_{2:5,7}4P_{2:7,16}3P_{2:16,19}4P_{2:19,20}0 (= C_2)$$

where

$$P_{2;0,12} = P_{1;0,12}; \ P_{2;12,14} = P_{1;17,19}; \ P_{2;14,17} = P_{1;14,17};$$

 $P_{2;17,19} = P_{1;12,14}; \ P_{2;19,20} = P_{1;19,20}.$

On C_2 , subindices of the reflective vertices for reflective edges α and σ are 2 and 5, choose 2' = 18 and 5' = 19, find

$$\triangle_{5,8}C_2 = 0P_{3;0,2}3P_{3;2,3}4P_{3;3,16}3P_{3;16,19}4P_{3;19,20}0 (= C_3)$$

where

$$P_{3;0,2} = P_{2;0,2}; \ P_{2;2,3} = P_{2;18,19}; \ P_{3;3,16} = P_{2;5,18};$$

 $P_{3;16,19} = P_{2;2,5}; \ P_{3;19,20} = P_{2;19,20}.$

Because of $\beta(K_5) = 6$, $m = 3 = \lfloor \beta/2 \rfloor$. Thus, the tree-travel C is normal.

This example tells us the problem of determining the maximum orientable genus of a graph can be transformed into that of determining a k-tree travel of a graph with k maximum as shown in [4].

Lemma 2 Among all k-tree travel of a graph G, the maximum of k is the maximum orientable genus $\gamma_{\max}(G)$ of G.

Proof In order to prove this lemma, the following two facts have to be known(both of them can be done via the finite recursion principle in §1.3 of [5]!).

- Fact 1 In a connected graph G considered, there exists a spanning tree such that any pair of cotree edges whose fundamental circuits with vertex in common are adjacent in G.
- Fact 2 For a spanning tree T with Fact 1, there exists an orientation such that on the protracted tree \check{T} , no two articulate subvertices(articulate vertices of T) with odd out-degree of cotree have a path in the cotree.

Because of that if two cotree edges for a tree are with their fundamental circuits without vertex in common then they for any other tree are with their fundamental circuits without vertex in common as well, Fact 1 enables us to find a spanning tree with number of pairs of adjacent cotree edges as much as possible and Fact 2 enables us to find an orientation such that the number of times for dong interchange segments successively as much as possible. From Lemma 1, the lemma can be done.

§3. Tree-Travel Theorems

The purpose of what follows is for characterizing the embeddability of a graph on a surface of genus not necessary to be zero via k-tree travels.

Theorem 1 A graph G can be embedded into an orientable surface of genus k if, and only if, there exists a k-tree travel $C_k(V;e)$ such that G_k is planar.

Proof Necessity. Let $\mu(G)$ be an embedding of G on an orientable surface of genus k. From Lemma 2, $\mu(G)$ has a spanning tree T with its edge subsets E_0 , $|E_0| = \beta(G) - 2k$, such that $\hat{G} = G - E_0$ is with exactly one face. By successively doing the inverse of interchange segments for k times, a k-tree travel is obtained on \hat{G} . Let K be consisted of the k pairs of cotree edge subsets. Thus, from Operation 2 in §3.3 of [5], $G_k = G - K = \hat{G} - K + E_0$ is planar.

Sufficiency. Because of G with a k-tree travel $C_k(V;e)$, Let K be consisted of the k pairs of cotree edge subsets in successively doing interchange segments for k times. Since $G_k = G - K$ is planar, By successively doing the inverse of interchange segments for k times on $C_k(V;e)$ in its planar embedding, an embedding of G on an orientable surface of genus k is obtained. \square

Example 4 In Example 1, for $G = K_5$, C is a 1-tree travel for the pair of cotree edges α and β . And, $G_1 = K_5 - \{\alpha, \beta\}$ is planar. Its planar embedding is

$$[4\sigma^{-1}3c^{-1}0d4]_{\text{eg}} = (\sigma^{-1}c^{-1}d);$$

$$[4d^{-1}0a1\gamma 4]_{\text{eg}} = (d^{-1}a\gamma);$$

$$[3\sigma 4\lambda^{-1}2\delta 3]_{\text{eg}} = (\sigma\lambda^{-1}\delta); [0c3\delta^{-1}2b^{-1}0]_{\text{eg}} = (c\delta^{-1}b^{-1});$$

$$[2\lambda 4\gamma^{-1}1a^{-1}0b2]_{\text{eg}} = (\lambda\gamma^{-1}a^{-1}b).$$

By recovering $\{\alpha, \beta\}$ to G and then doing interchange segments once on C, obtain C_1 . From C_1 on the basis of a planar embedding of G_1 , an embedding of G on an orientable surface of genus 1(the torus) is produced as

$$[4\sigma^{-1}3c^{-1}0d4]_{\text{eg}} = (\sigma^{-1}c^{-1}d); [4d^{-1}0a1\gamma4]_{\text{eg}} = (d^{-1}a\gamma);$$
$$[3\sigma4\lambda^{-1}2\delta3\beta^{-1}1a^{-1}0b2\alpha^{-1}1\beta3]_{\text{eg}} = (\sigma\lambda^{-1}\delta\beta^{-1}a^{-1}b2\alpha^{-1}\beta);$$
$$[0c3\delta^{-1}2b^{-1}0]_{\text{eg}} = (c\delta^{-1}b^{-1}); [2\lambda4\gamma^{-1}1\alpha2]_{\text{eg}} = (\lambda\gamma^{-1}\alpha).$$

Similarly, we further discuss on nonorientable case. Let $G=(V,E),\ T$ a spanning tree, and

$$C(V;e) = 0P_{0,i}v_iP_{i,j}v_iP_{i,2\epsilon}0$$
(4)

is the travel obtained from 0 along the boundary of protracted tree \check{T} . If v_i is a reflective vertex and $v_i = v_i$, then

$$\widetilde{\triangle}_{\xi}C(V;e) = 0P_{0,i}v_iP_{i,j}^{-1}v_jP_{j,2\epsilon}0\tag{5}$$

is called what is obtained by doing a reverse segment for the reflective vertex v_i on C(V;e).

If reverse segment can be done for successively k times on C, then C is called a k-tree travel. Because of one reflective edge reduced for each reverse segment and at most β reflective edges on C, we have $0 \le k \le \beta$ where $\beta = \beta(G)$ is the Betti number of G(or corank). When $k = \beta$, C(or G) is called twist normal.

Lemma 3 A connected graph is twist normal if, and only if, the graph is not a tree.

Proof Because of trees no cotree edge themselves, the reverse segment can not be done, this leads to the necessity. Conversely, because of a graph not a tree, the graph has to be with a circuit, a tree-travel has at least one reflective edge. Because of no effect to other reflective

edges after doing reverse segment once for a reflective edge, reverse segment can always be done for successively $\beta = \beta(G)$ times, and hence this tree-travel is twist normal. Therefore, sufficiency holds.

Lemma 4 Let C be obtained by doing reverse segment at least once on a tree-travel of a graph. Then the polyhegon $[\triangle_i C]_{eg}$ is nonorientable and its genus

$$\widetilde{g}([\triangle_{\xi}C]_{\text{eg}}) = \begin{cases}
2g(C) + 1, & \text{when } C \text{ orientable;} \\
\widetilde{g}(C) + 1, & \text{when } C \text{ nonorientable.}
\end{cases}$$
(6)

Proof Although a tree-travel is orientable with genus 0 itself, after the first time of doing the reverse segment on what are obtained the nonorientability is always kept unchanged. This leads to the first conclusion. Assume $C_{\rm eg}$ is orientable with genus g(C) (in fact, only g(C) = 0 will be used!). Because of

$$[\triangle_i C]_{\text{eg}} = A\xi B^{-1}\xi C$$

where $[P_{0,i}]_{\text{eg}} = A\xi$, $[P_{i,j}]_{\text{eg}} = \xi^{-1}B$ and $[P_{j,\epsilon}]_{\text{eg}} = C$, From (3.1.2) in [5]

$$[\triangle_i C]_{\text{eg}} \sim_{\text{top}} ABC\xi\xi.$$

Noticing that from Operation 0 in §3.3 of [5], $C_{rseq} \sim_{top} ABC$, Lemma 3.1.1 in [5] leads to

$$\widetilde{g}([\triangle_{\xi}C]_{\text{eg}}) = 2g([C]_{\text{eg}}) + 1 = 2g(C) + 1.$$

Assume C_{eg} is nonorientable with genus g(C). Because of

$$C_{\rm eg} = A\xi\xi^{-1}BC \sim_{\rm top} ABC,$$

$$\widetilde{g}([\triangle_{\xi}C]_{\text{eg}}) = \widetilde{g}(C) + 1$$
. Thus, this implies the second conclusion.

As a matter of fact, only reverse segment is enough on a tree-travel for determining the nonorientable maximum genus of a graph.

Lemma 5 Any connected graph, except only for trees, has its Betti number as the nonorientable maximum genus.

Proof From Lemmas 3-4, the conclusion can soon be done. \Box

For a \widetilde{k} -tree travel $C_{\widetilde{k}}(V;e)$ on G, the graph $G_{\widetilde{k}}$ is defined as

$$G_{\widetilde{k}} = T \bigcup [E_{\text{ref}} - \sum_{j=1}^{k} \{e_j\}] \tag{7}$$

where T is a spanning tree, [X] the induced graph of edge subset X, and $e \in E_{ref}$ and $\{e_j, e'_j\}$, respectively, a reflective edge and that used for reverse segment.

Theorem 2 A graph G can be embedded into a nonorientable surface of genus k if, and only if, G has a \widetilde{k} -tree travel $C_{\widetilde{k}}(V;e)$ such that $G_{\widetilde{k}}$ is planar.

Proof From Lemma 3, for $k, 1 \leq k \leq \beta(G)$, any connected graph G but tree has a \widetilde{k} -tree travel.

Necessity. Because of G embeddable on a nonorientable surface $S_{\widetilde{k}}$ of genus k, let $\widetilde{\mu}(G)$ be an embedding of G on $S_{\widetilde{k}}$. From Lemma 5, $\widetilde{\mu}(G)$ has a spanning tree T with cotree edge set E_0 , $|E_0| = \beta(G) - k$, such that $\widetilde{G} = G - E_0$ has exactly one face. By doing the inverse of reverse segment for k times, a \widetilde{k} -tree travel of \widetilde{G} is obtained. Let K be a set consisted of the k cotree edges. From Operation 2 in §3.3 of [5], $G_{\widetilde{k}} = G - K = \widetilde{G} - K + E_0$ is planar.

Sufficiency. Because of G with a \widetilde{k} -tree travel $C_{\widetilde{k}}(V;e)$, let K be the set of k cotree edges used for successively doing reverse segment. Since $G_{\widetilde{k}} = G - K$ is planar, by successively doing reverse segment for k times on $C_{\widetilde{k}}(V;e)$ in a planar embedding of $G_{\widetilde{k}}$, an embedding of G on a nonorientable surface $S_{\widetilde{k}}$ of genus k is then extracted.

Example 5 On $K_{3,3}$, take a spanning tree T, as shown in Fig.2(a) by bold lines. In (b), given a protracted tree \check{T} of T. From \check{T} , get a tree-travel

$$C = 0P_{0,11}2P_{11,15}2P_{15,0}0 (= C_0)$$

where $v_0 = v_{18}$ and

$$\begin{split} P_{0,11} &= c4\delta 5\delta^{-1} 4\gamma 3\gamma^{-1} 4c^{-1} 0d2e3\beta 1\beta^{-1} 3e^{-1}; \\ P_{11,15} &= d^{-1} 0a1b5\alpha; \\ P_{15,0} &= \alpha^{-1} 5b^{-1} 1a^{-1}. \end{split}$$

Because of $v_{15}=2$ as the reflective vertex of cotree edge α and $v_{11}=v_{15}$,

$$\triangle_3 C_0 = 0 P_{1:0,11} 2 P_{1:11,15} 2 P_{1:15,0} 0 \ (= C_1)$$

where

$$\begin{split} P_{1;0,11} &= P_{0,11} = c4\delta 5\delta^{-1} 4\gamma 3\gamma^{-1} 4c^{-1} 0d2e3\beta 1\beta^{-1} 3e^{-1}; \\ P_{1;11,15} &= P_{11,15}^{-1} = \alpha^{-1} 5b^{-1} 1a^{-1} 0d; \\ P_{1;15,0} &= P_{15,0} = \alpha^{-1} 5b^{-1} 1a^{-1}. \end{split}$$

Since $G_{\tilde{1}} = K_{3,3} - \alpha$ is planar, from C_0 we have its planar embedding

$$f_1 = [5P_{16,0}0P_{0,2}0]_{\text{eg}} = (b^{-1}a^{-1}c\delta);$$

$$f_2 = [3P_{4,8}3]_{\text{eg}} = (\gamma^{-1}c^{-1}de);$$

$$f_3 = [1P_{13,14}5P_{2,4}3P_{8,9}1]_{\text{eg}} = (\delta^{-1}\gamma\beta b);$$

$$f_4 = [1P_{9,13}1]_{\text{eg}} = (\beta^{-1}e^{-1}d^{-1}a).$$

By doing reverse segment on C_0 , get C_1 . On this basis, an embedding of $K_{3,3}$ on the projective plane (i.e., nonorientable surface $S_{\tilde{1}}$ of genus 1) is obtained as

$$\begin{cases} \widetilde{f}_1 = [5P_{1;16,0}0P_{1;0,2}0]_{\text{eg}} = f_1 = (b^{-1}a^{-1}c\delta); \\ \widetilde{f}_2 = [3P_{1;4,8}3]_{\text{eg}} = f_2 = (\gamma^{-1}c^{-1}de); \\ \widetilde{f}_3 = [1P_{1;9,11}2P_{1;11,13}1]_{\text{eg}} = be^{-1}e^{-1}\alpha^{-1}b^{-1}); \\ \widetilde{f}_4 = [0P_{1;14,15}2P_{1;15,16}5P_{1;2,4}3P_{1;8,9}1P_{1;13,14}0]_{\text{eg}} \\ = (d\alpha^{-1}\delta^{-1}\gamma\beta\alpha^{-1}). \end{cases}$$

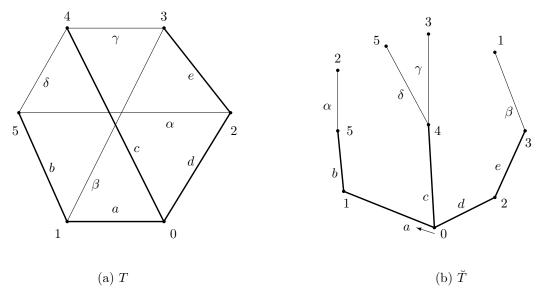


Fig.2

§4. Research Notes

- **A.** For the embeddability of a graph on the torus, double torus *etc* or in general orientable surfaces of genus small, more efficient characterizations are still necessary to be further contemplated on the basis of Theorem 1.
- **B.** For the embeddability of a graph on the projective plane(1-crosscap), Klein bottle(2-crosscap), 3-crosscap *etc* or in general nonorientable surfaces of genus small, more efficient characterizations are also necessary to be further contemplated on the basis of Theorem 2.
- C. Tree-travels can be extended to deal with all problems related to embedings of a graph on surfaces as joint trees in a constructive way.

References

- [1] Archdeacon, D., A Kuratowski theorem for the projective plane, J. Comb. Theory, 5 (1981), 243–246.
- [2] Liu, Yi. and Liu, Y.P., A characterization of the embeddability of graphs on the surface of given genus, *Chin. Ann. Math.*, 17B(1996), 457–462.
- [3] Liu, Y.P., The nonorientable maximum genus of a graph(in Chinese with English abstract), *Scintia Sinica*, Special Issue on Math. I(1979), 191–201.
- [4] Liu, Y.P., The maximum orientable genus of a graph, *Scientia Sinica*, Special Issue on Math. II(1979), 41–55.
- [5] Liu, Y.P., Topological Theory on Graphs, USTC Press, 2008.