Common Fixed Points for

Pairs of Weakly Compatible Mappings

Rakesh Tiwari

(Department of Mathematics, Govt. Arts and Science College, Durg (C.G.), 491001, India)

S.K.Shrivastava

(Department of Mathematics, Deen Dayal Upadhyay University, Gorakhpur (U. P.), 273009, India)

E-mail: rakeshtiwari66@gmail.com, sudhirpr66@rediffmail.com

Abstract: In this note we establish a common fixed point theorem for a quadruple of self mappings satisfying a common (E.A) property on a metric space satisfying weakly compatibility and a generalized Φ - contraction. Our results improve and extend some known results.

Key Words: Common fixed points, weakly compatible mappings, generalized Φ- contraction, a common (E.A) property, Smarandache metric multi-space.

AMS(2010): 47H10, 54H25

§1. Introduction

For an integer $n \geq 1$, a Smarandache metric multi-space \widetilde{S} is a union $\bigcup_{i=1}^n A_i$ of spaces A_1, A_2, \cdots, A_n , distinct two by two with metrics $\rho_1, \rho_2, \cdots, \rho_n$ such that (A_i, ρ_i) is a metric space for integers $1 \leq i \leq n$. In 1986, the notion of compatible mappings which generalized commuting mappings, was introduced by Jungck [3]. This has proven useful for generalization of results in metric fixed point theory for single-valued as well as multi-valued mappings. Further in 1998, the more general class of mappings called weakly compatible mappings was introduced by Jungck and Rhoades [4]. Recall that self mappings S and T of a metric space (X,d) are called weakly compatible if Sx = Tx for some $x \in X$ implies that STx = TSx.

Recently Aamri et al. [1] introduced the following notion for a pair of maps as:

Definition 1.1 Let S and T be two self mappings of a metric space (X,d). S and T are said to satisfy the property (E.A), if there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sx_n = t$, for some $t \in X$.

Most recently, Y. Liu et al. [5] defined a common property (E.A) for pairs of mappings as

¹Received October 20, 2010. Accepted June 6, 2011.

follows:

Definition 1.2 Let $A, B, S, T : X \to X$. The pairs (A, S) and (B, T) satisfy a common property (E.A) if there exist two sequences $\{x_n\}$ and $\{y_n\}$ such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} By_n = \lim_{n \to \infty} Ty_n = t \in X.$$

If B = A and S = T in above, we obtain the definition of property (E.A).

Example 1.3 Let A, B, S and T be self maps on X = [0, 1], with the usual metric d(x, y) = |x - y|, defined by:

$$Ax = \begin{cases} 1 - \frac{x}{2} & when \ x \in [0, \frac{1}{2}), \\ 1 & when \ x \in [\frac{1}{2}, 1]). \end{cases}$$

$$Sx = \begin{cases} 1 - 2x & when \ x \in [0, \frac{1}{2}), \\ 1 & when \ x \in [\frac{1}{2}, 1]). \end{cases}$$

Bx=1-x and $Tx=1-\frac{x}{3}, \forall x\in X$. Let $\{x_n\}$ and $\{y_n\}$ be a sequences defined by $x_n=\frac{1}{n+1}$ and $y_n=\frac{1}{n^2+1}$, then $\lim_{n\to\infty}Ax_n=\lim_{n\to\infty}Sx_n=\lim_{n\to\infty}By_n=\lim_{n\to\infty}Ty_n=1\in X$. Thus a common (E.A) property is satisfied.

In this paper we prove some common fixed point theorems for a quadruple of weak compatible self mappings of a metric space satisfying a common (E.A) property, a special Smarandache metric multi-space $\bigcup_{i=1}^{n} (A_i, \rho_i)$ for n = 1 and a generalized Φ -contraction. These theorems extend and generalize results of Pathak et al. [6] and [7].

§2. Preliminaries

Now onwards, we denote by Φ the collection of all functions $\varphi : [0, \infty) \to [0, \infty)$ which are upper semi-continuous from the right, non-decreasing and satisfy $\lim_{s \to t+} \sup \varphi(s) < t$, $\varphi(t) < t$ for all t > 0.

Let X denote a metric space endowed with metric d and let $\mathbb N$ denote the set of natural numbers.

Now, let A, B, S and T be self-mappings of X such that

$$[d^{p}(Ax, By) + a \ d^{p}(Sx, Ty)]d^{p}(Ax, By)$$

$$\leq a \ max\{d^{p}(Ax, Sx)d^{p}(By, Ty), d^{q}(Ax, Ty)d^{q'}(By, Sx)\}$$

$$+ max\{\varphi_{1}(d^{2p}(Sx, Ty)), \varphi_{2}(d^{r}(Ax, Sx)d^{r'}(By, Ty)),$$

$$\varphi_{3}(d^{s}(Ax, Ty)d^{s'}(By, Sx)),$$

$$\varphi_{4}(\frac{1}{2}[d^{l}(Ax, Ty)d^{l'}(Ax, Sx) + d^{l}(By, Sx))d^{l'}(By, Ty)\}$$
(2.1)

for all $x, y \in X$, $\varphi_i \in \Phi(i = 1, 2, 3, 4)$, $a, p, q, q', r, r', s, s', l, l' \ge 0$ and 2p = q + q' = r + r' = s + s' = l + l'. The condition (2.1) is commonly called a generalized Φ -contraction.

§3. Main Results

The following theorems are our main results in this section.

Theorem 3.1 Let A, B, S and T be self mappings of a metric space (X, d) satisfying (2.1). If the pairs (A, S) and (B, T) satisfy a common (E.A) property, are weakly compatible and that T(X) and S(X) are closed subsets of X, then A, B, S and T have a unique common fixed point in X.

Proof. Since (A, S) and (B, T) satisfy a common property (E.A). Then there exist two sequences $\{x_n\}$ and $\{y_n\}$ such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} By_n = \lim_{n \to \infty} Ty_n = z$$

for some $z \in X$. Assume that S(X) and T(X) are closed subspaces of X. Then, z = Su = Tv for some $u, v \in X$. Then by using (2.1) with $x = x_n$ and y = v, we have

$$\begin{split} [d^p(Ax_n,Bv) + a \ d^p(Sx_n,Tv)] d^p(Ax_n,Bv) &\leq a \max\{d^p(Ax_n,Sx_n)d^p(Bv,Tv),\\ d^q(Ax_n,Tv)d^{q'}(Bv,Sx_n)\} + max\{\varphi_1(d^{2p}(Sx_n,Tv)),\\ \varphi_2(d^r(Ax_n,Sx_n)d^{r'}(Bv,Tv)), \varphi_3(d^s(Ax_n,Tv)d^{s'}(Bv,Sx_n)),\\ \varphi_4(\frac{1}{2}[d^l(Ax_n,Tv)d^{l'}(Ax_n,Sx_n) + d^l(Bv,Sx_n))d^{l'}(Bv,Tv)]), \end{split}$$

taking $\lim_{n\to\infty}$, we obtain

$$\begin{split} [d^p(z,Bv) + a \ d^p(z,Tv)] d^p(z,Bv) &\leq a \max\{d^p(z,z) d^p(Bv,z), d^q(z,Tv) d^{q'}(Bv,z)\} \\ &\quad + \max\{\varphi_1(d^{2p}(z,Tv)), \varphi_2(d^r(z,z) d^{r'}(Bv,z)), \\ \varphi_3(d^s(z,Tv) d^{s'}(Bv,z)), \varphi_4(\frac{1}{2}[d^l(z,Tv) d^{l'}(z,z) \\ &\quad + d^l(Bv,z)) d^{l'}(Bv,z)])\}, \end{split}$$

or
$$d^{2p}(z, Bv) \leq \max\{\varphi_1(0), \varphi_2(0), \varphi_3(0), \varphi_4(\frac{1}{2}d^{l+l'}(Bv, z))\},$$
 or
$$d^{2p}(z, Bv) \leq \max\{\varphi_1(d^{2p}(z, Bv)), \varphi_2(d^{r+r'}(z, Bv), \varphi_3(d^{s+s'}(z, Bv)), \varphi_4(\frac{1}{2}d^{l+l'}(Bv, z))\}.$$

This together with a well known result of Chang [2] which states that if $\varphi_i \in \Phi$ where $i \in I$ (some indexing set), then there exists a $\varphi \in \Phi$ such that max $\{\varphi_i, i \in I\} \leq \varphi(t)$ for all t > 0; imply

$$d^{2p}(z,Bv) \leq \varphi(d^{2p}(z,Bv)) \ < d^{2p}(z,Bv),$$

a contradiction. This implies that z = Bv. Therefore Tv = z = Bv. Hence it follows by the weak compatibility of the pair (B, T) that BTv = TBv, that is Bz = Tz.

Now, we shall show that z is a common fixed point of B and T. For this put $x = x_n$ and y = z in (2.1), we have

$$\begin{split} [d^p(Ax_n,Bz) + a \ d^p(Sx_n,Tz)] d^p(Ax_n,Bz) &\leq a \ \max\{d^p(Ax_n,Sx_n)d^p(Bz,Tz),\\ \\ d^q(Ax_n,Tz)d^{q'}(Bz,Sx_n)\} + max\{\varphi_1(d^{2p}(Sx_n,Tz)),\\ \\ \varphi_2(d^r(Ax_n,Sx_n)d^{r'}(Bz,Tz)), \varphi_3(d^s(Ax_n,Tz)d^{s'}(Bz,Sx_n)),\\ \\ \varphi_4(\frac{1}{2}[d^l(Ax_n,Tz)d^{l'}(Ax_n,Sx_n) + d^l(Bz,Sx_n))d^{l'}(Bz,Tz)\}. \end{split}$$

Letting $n \to \infty$ with the help of the fact that $\lim_{n\to\infty} Ax_n = z = \lim_{n\to\infty} Sx_n$ and Bz = Tz, we get

$$[d^{p}(z,Bz) + ad^{p}(z,Tz)]d^{p}(z,Bz) \leq a \max\{d^{p}(z,z)d^{p}(Bz,z), d^{q}(z,Tz)d^{q'}(Bz,z)\}$$

$$+ \max\{\varphi_{1}(d^{2p}(z,Tz)), \varphi_{2}(d^{r}(z,z)d^{r'}(Bz,z)), \varphi_{3}(d^{s}(z,Tz)d^{s'}(Bz,z)),$$

$$\varphi_{4}(\frac{1}{2}[d^{l}(z,Tz)d^{l'}(z,z) + d^{l}(Bz,z))d^{l'}(Bz,z)])\},$$
or
$$d^{2p}(z,Bz) + a d^{2p}(z,Bz) \leq a d^{q+q'}(Bz,z) + \max\{\varphi_{1}(d^{2p}(z,Bz)),$$

$$\varphi_{2}(0), \varphi_{3}(d^{s+s'}(z,Bz)), \varphi_{4}(0)\},$$
or
$$(1+a)d^{2p}(z,Bz) \leq a d^{q+q'}(Bz,z)\} + \max\{\varphi_{1}(d^{2p}(z,Bz)),$$

$$\varphi_{2}(0), \varphi_{3}(d^{s+s'}(z,Bz)), \varphi_{4}(0)\},$$
or
$$d^{2p}(z,Bz) \leq \frac{a}{1+a}d^{q+q'}(Bz,z) + \frac{1}{1+a}\max\{\varphi_{1}(d^{2p}(z,Bz)),$$

$$\varphi_{2}(0), \varphi_{3}(d^{s+s'}(z,Bz)), \varphi_{4}(0)\},$$

$$(2^{2p}(z,Bz), (2^{2p}(z,Bz)),$$

$$\varphi_{2}(0), \varphi_{3}(d^{s+s'}(z,Bz)), \varphi_{4}(0)\}$$

$$(2^{2p}(z,Bz),$$

a contradiction. So z = Bz = Tz. Thus z is a common fixed point of B and T.

Similarly we can prove that z is a common fixed point of A and S. Thus z is the common fixed point of A, B, S and T. The uniqueness of z as a common fixed point of A, B, S and T can easily be verified.

Remark 3.3 Our Theorem 3.1 extends theorem 2.1 of Pathak et al. [6].

In Theorem 3.1, if we put a = 0 and $\varphi_i(t) = ht$ (i = 1, 2, 3, 4), where 0 < h < 1, we get the following corollary:

Corollary 3.4 Let A, B, S and T be self mappings of a metric space X. If the pairs (A, S) and (B, T) satisfy a common (E.A) property and

$$d^{2p}(Ax, By) \le h \ \max\{d^{2p}(Sx, Ty), d^{r}(Ax, Sx)d^{r'}(By, Ty), d^{s}(Ax, Ty)\}$$

$$d^{s'}(By, Sx)), \frac{1}{2}[d^{l}(Ax, Ty)d^{l'}(Ax, Sx) + d^{l}(By, Sx))d^{l'}(By, Ty)\} \quad (2.2)$$

for all $x, y \in X$, $\varphi_i \in \Phi$ (i=1,2,3,4), a, p, q, $q', r, r', s, s', l, l' \geq 0$ and 2p = q + q' = r + r' = s + s' = l + l'. If the pairs (A, S) and (B, T) are weakly compatible and that T(X) and S(X) are closed, then A, B, S and T have a unique common fixed point in X.

Especially when

$$\max\{d^{2p}(Sx,Ty),d^{r}(Ax,Sx)d^{r'}(By,Ty),d^{s}(Ax,Ty)d^{s'}(By,Sx)),\\ \frac{1}{2}[d^{l}(Ax,Ty)d^{l'}(Ax,Sx)+d^{l}(By,Sx))d^{l'}(By,Ty)\}=d^{2p}(Sx,Ty),$$

it generalizes Corollary 3.9 of Pathak et al. [7].

In Theorem 3.1, if we take $S = T = I_X$ (the identity mapping on X), then we have the following corollary:

Corollary 3.5 Let A and B be self mappings of a complete metric space X satisfying the following condition:

$$\begin{aligned} [d^p(Ax, By) + a \ d^p(x, y)] d^p(Ax, By) &\leq a \ max\{d^p(Ax, x)d^p(By, y), \\ d^q(Ax, y)d^{q'}(By, x)\} + max\{\varphi_1(d^{2p}(x, y)), \varphi_2(d^r(Ax, x)d^{r'}(By, y)), \\ \varphi_3(d^s(Ax, y)d^{s'}(By, x)), \varphi_4(\frac{1}{2}[d^l(Ax, y)d^{l'}(Ax, x) + d^l(By, x))d^{l'}(By, y)\} \end{aligned}$$

for all $x, y \in X$, $\varphi_i \in \Phi$ (i = 1, 2, 3, 4), $a, p, q, q', r, r', s, s', l, l' \ge 0$ and 2p = q + q' = r + r' = s + s' = l + l', then A and B have a unique common fixed point in X.

As an immediate consequences of Theorem 3.1 with S = T, we have the following:

Corollary 3.6 Let A, B, and S be self-mappings of X such that (A, S) and (B, S) satisfy a common (E.A) property and

$$d^{2p}(Ax, By) \leq a \max\{d^{p}(Ax, Sx)d^{p}(By, Sy), d^{q}(Ax, Sy)d^{q'}(By, Sx)\} + \max\{\varphi_{2}(d^{r}(Ax, Sx)d^{r'}(By, Sy)), \varphi_{3}(d^{s}(Ax, Sy)d^{s'}(By, Sx)), \varphi_{4}(\frac{1}{2}[d^{l}(Ax, Sy)d^{l'}(Ax, Sx) + d^{l}(By, Sx))d^{l'}(By, Sy)\}$$
(2.3)

for all $x, y \in X$, $\varphi_i \in \Phi$ (i = 1, 2, 3, 4), $a, p, q, q', r, r', s, s', l, l' \ge 0$ and 2p = q + q' = r + r' = s + s' = l + l'. If the pairs (A, S) and (B, S) are weakly compatible and that S(X) is closed, then A, B and S have a unique common fixed point in X.

Theorem 3.7 Let S, T and A_n ($n \in \mathbb{N}$) be self mappings of a metric space (X,d). Suppose further that the pairs (A_{2n-1},S) and (A_{2n},T) are weakly compatible for any $n \in \mathbb{N}$ and satisfying a common (E.A) property. If S(X) and T(X) are closed and that for any $i \in N$, the following condition is satisfied for all $x, y \in X$

$$\begin{split} [d^p(A_ix,A_{i+1}y) + a \ d^p(Sx,Ty)] d^p(A_ix,A_{i+1}y) \\ &\leq a \max\{d^p(A_ix,Sx)d^p(A_{i+1}y,Ty), \\ & d^q(A_ix,Ty)d^{q'}(A_{i+1}y,Sx)\} + max\{\varphi_1(d^{2p}(Sx,Ty)), \\ & \varphi_2(d^r(A_ix,Sx)d^{r'}(A_{i+1}y,Ty)), \varphi_3(d^s(A_ix,Ty)d^{s'}(A_{i+1}y,Sx)), \\ & \varphi_4(\frac{1}{2}[d^l(A_ix,Ty)d^{l'}(A_ix,Sx) + d^l(A_{i+1}y,Sx))d^{l'}(A_{i+1}y,Ty)] \end{split}$$

where $\varphi_i \in \Phi(i=1,2,3,4)$, $a,p,q,q',r,r',s,s',l,l \geq 0$ and 2p=q+q'=r+r'=s+s'=l+l', then S,T and $A_n(n \in \mathbb{N})$ have a common fixed point in X.

Acknowledgement: The authors are very grateful to Prof. H. K. Pathak for his valuable suggestions regarding this paper.

References

- [1] M.Aamri and D. El Moutawakil, Some new common fixed point theorems under strict contractive conditions, *J. Math. Anal. Appl.* **270**(2002), 181-188.
- [2] S. S.Chang, A common fixed point theorem for commuting mappings, *Math. Japon*, **26** (1981), 121-129.
- [3] G.Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986), 771-779.
- [4] G.Jungck and B.E.Rhoades, Fixed points for set valued functions without continuity, *Indian J. Pure Appl. Math.*, **29** (3)(1998), 227-238.
- [5] W.Liu, J.Wu, Z. Li, Common fixed points of single-valued and multi-valued maps, *Int. J. Math. Math. Sc.*, **19**(2005), 3045-3055.
- [6] H.K.Pathak, S.N.Mishra and A.K.Kalinde, Common fixed point theorems with applications to non-linear integral equations, *Demonstratio Math.*, **XXXII(3)** (1999), 547-564.
- [7] H.K.Pathak, Y.J.Cho and S.M.Kang, Common fixed points of biased maps of type (A) and applications, *Int.J. Math. and Math. Sci.*, **21(4)** (1999), 681-694.