DECOMPOSITION OF GRAPHS INTO INTERNALLY DISJOINT TREES

S.SOMASUNDARAM

(Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627 012 India)

A.NAGARAJAN

(Department of Mathematics, V.O. Chidambaram College, Tuticorin 628 008, India)

G.MAHADEVAN

(Department of Mathematics, Gandhigram Rural University, Gandhigram - 624 302) E-mail: nagarajan.voc@gmail.com, gmaha2003@yahoo.co.in

Abstract: A Smarandache graphoidal tree (k, d)-cover of a graph G is a partition of edges of G into trees T_1, T_2, \dots, T_l such that $|E(T_i) \cap E(T_j)| \leq k$ and $|T_i| \leq d$ for integers $1 \leq i, j \leq l$. In this paper we investigate the garphoidal tree covering number $\gamma_T(G)$, i.e., Smarandache graphoidal tree $(0, \infty)$ -cover of complete graphs, complete bipartite graphs and products of paths and cycles. In [5] M.F.Foregger, define a parameter z'(G) as the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces a tree. In this paper we also establish the relation $z'(G) \leq \gamma_T(G)$.

Key Words: Smarandache graphoidal tree (k, d)-cover, graphoidal tree cover, complete graph, complete bipartite graph, product of path and cycle.

AMS(2000): 05C70.

§1. Introduction

By a graph we mean a finite, undirected graphs without loops and multiple edges. Terms not defined here are used in the sense of Harary [6]. Any vertex of a graph H of degree greater than 1 is called an internal vertex of H. A Smarandache graphoidal tree (k,d)-cover of a graph G is a partition of edges of G into trees T_1, T_2, \dots, T_l such that $|E(T_i) \cap E(T_j)| \leq k$ and $|T_i| \leq d$ for integers $1 \leq i, j \leq l$. Particularly, a Smarandache graphoidal tree $(0, \infty)$ -cover, usually called a graphoidal tree cover of G is a collection of non C trivial trees in G such that

- (i) every vertex is an internal vertex of at most one tree;
- (ii) every edge is in exactly one tree.

Let \mathscr{G} denote the set of all graphoidal tree covers of G. Since E(G) is a graphoidal tree cover, we have $\mathscr{G} \neq \emptyset$. We define the graphoidal tree covering number of a graph G to be the minimum number of trees in any graphoidal tree cover of G, and denote it by $\gamma_T(G)$. Any

¹Received March 16, 2009. Accepted June 15, 2009.

graphoidal tree cover \mathscr{J} of G for which $|\mathscr{J}| = \gamma_T(G)$ is called a minimum graphoidal tree cover.

Example 1.1 Consider a graph G given in the Fig.1.

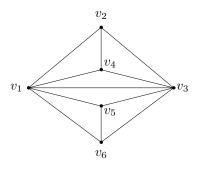


Fig.1

Let T_1 , T_2 and T_3 be the trees in Fig.2.

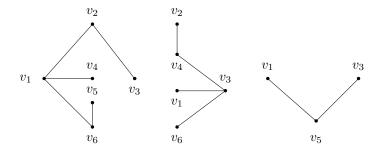


Fig.2

It is easy to see that the graph G in Fig.1 cannot be covered by two trees. Since the three trees shown in Fig.2 form a graphoidal tree cover, $\gamma_T(G) = 3$.

Observation 1.2 If $deg(v) > \gamma_T(G)$, then v is an internal vertex in some tree in every minimum graphoidal tree cover.

Observation 1.3 For a (p,q) graph $G, \gamma_T(G) \ge \lceil \frac{q}{p-1} \rceil$.

Observation 1.4 $\gamma_T(G) > \frac{\delta(G)}{2}$ if $\delta(G) > 0$.

§2. Preliminaries

 $\tau(G)$ is the minimum number of subsets into which the edge set E(G) of G can be partitioned so that each subset forms a tree. A cyclically 4-edge connected graph is one in which the removal of no three edges will disconnect the graph into two components such that each component

contains a cycle. We state some preliminary results from [2] and [4].

Theorem 2.1([4]) $\tau(K_n) = \lceil \frac{n}{2} \rceil$.

Theorem 2.2([2]) If G is a 2-connected cubic graph with p vertices, $p \geq 8$, then $\tau(G) \leq \lfloor \frac{p}{4} \rfloor$.

Theorem 2.3([2]) If G is a 3-connected cubic graph with p vertices, $p \ge 12$, then $\tau(G) \le \lfloor \frac{p}{6} \rfloor$.

Theorem 2.4([2]) If G is a cyclically 4-edge connected cubic graph with p vertices, $8 \le p \le 16$ then $\tau(G) = 2$.

§3. Complete and complete bipartite graphs

We first determine the graphoidal tree covering number of a complete graphs.

Theorem 3.1 $\gamma_T(K_n) = \lceil \frac{n}{2} \rceil$.

Proof From observation 1.4, it follows that $\gamma_T(K_n) \geq \lceil \frac{n}{2} \rceil$. We give a construction for the reverse inclusion. First, let n be even, say n = 2k. For $i = 1, 2, \dots, k$, let T_i be the tree shown in Fig.3 (subscripts modulo n). The Standard Rotation Method shows that this is true. (see Fig.4 for the case n = 8).

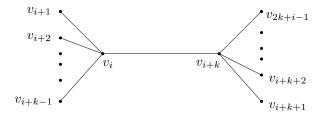


Fig.3

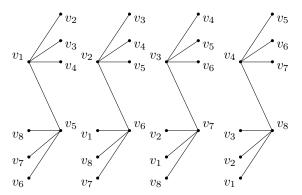


Fig.4

For n odd, delete one vertex from each tree in the decomposition given for K_{n+1} . The result is clearly a graphoidal tree cover for K_n , once isolated vertices are removed.

We now turn to the case of complete bipartite graphs, beginning with a general result on the diameter of trees in a minimum graphoidal tree cover. The following standard notation is used for the partite sets of $K_{m,n}$ with $m \le n$: $X = \{x_1, x_2, \dots, x_m\}$ and $Y = \{y_1, y_2, \dots, y_n\}$.

Lemma 3.2 If a minimum graphoidal tree cover \mathscr{J} of $K_{m,n}$ contains a tree with a path of length ≥ 5 , then it also contains a tree with exactly one edge.

Proof Let $T \in \mathcal{J}$ contain a path $P = (x_1, y_1, x_2, y_2, x_3, y_3, \cdots)$ where $x_i \in X$ and $y_j \in Y$. Since y_1 and x_3 are internal in T, these cannot be internal in any other member of \mathcal{J} . Therefore $T_1 = \{(y_1x_3)\} \in \mathcal{J}$.

Lemma 3.3 If $m \le n \le 2mC$ 3, $\gamma_T(K_{m,n}) \ge \lceil \frac{m+n}{3} \rceil$.

Proof Suppose $\gamma_T(K_{m,n}) = r$ with $r < \lceil \frac{m+n}{3} \rceil$. Let \mathscr{J} be a minimum graphoidal tree cover of $K_{m,n}$. Since $\delta(G) = m > \frac{m+n}{3} > r$ (as $n \leq 2mC$ 3), by Observation 1.3, we have every vertex is an internal vertex of a tree in \mathscr{J} .

Claim 1. No tree in \mathscr{J} can have more than two internal vertices from X with a common neighbor from Y. Suppose x_1, x_2, \cdots, x_k $(k \geq 3)$ are all adjacent to y_1 in T_1 of \mathscr{J} . Then the sum of degrees of x_1, x_2, \cdots, x_k in T_1 is at most n+k-1. But each x_i $(i=1,2,\cdots,k)$ is an end vertex in at most r-1 other members of \mathscr{J} . So they have at most n+k-1+k(r-1) total adjacencies in \mathscr{J} . Since $r < \frac{m+n}{3}, n+k-1+k(r-1) < \frac{3n+3k-3+k(m+n)-3k}{3} \leq \frac{n(2k+3)}{3}-1$ $(m \leq n) = nk - (\frac{n(k-3)}{3}+1) < nk$ $(k \geq 3)$, a contradiction. Hence we have Claim 1.

Claim 2 There exists a minimum graphoidal tree cover \mathcal{J}' such that no tree in \mathcal{J}' has a path of length ≥ 5 .

Suppose $T_1 \in \mathcal{J}$ has a path $(x_1, y_1, x_2, y_2, x_3, y_3, \cdots)$. Then by the previous lemma, a tree T_2 in \mathcal{J} has just the single edge y_1x_3 . Let T'_1 be the tree containing x_2 obtained by removing the edge y_1x_2 from T_1 . Let T'_2 be the tree $(T_1 - T'_1) \cup T_2$. Let \mathcal{J}'_1 be the graphoidal tree cover obtained from \mathcal{J} after replacing T_1, T_2 by T'_1, T'_2 respectively. If there is a tree in \mathcal{J}'_1 again contains a path of length ≥ 5 we repeat this process for \mathcal{J}'_1 and so on. Finally we get the required minimum graphoidal tree cover \mathcal{J}' . Hence we get Claim 2.

Now we can assume that no tree in \mathscr{J} has a path of length ≥ 5 .

Claim 3 No tree in \mathscr{J} can have more than two internal vertices from Y with a common neighbor from X.

Suppose there is a tree T_1 in \mathscr{J} containing k internal vertices y_1, y_2, \dots, y_k $(k \geq 3)$ with a common neighbor x_1 . Since $m > \gamma_T(G)$ and every vertex is an internal vertex of a tree in \mathscr{J} , there is a tree in \mathscr{J} , say, T_2 containing at least two vertices from X as internal vertices. By Claim 2, the internal vertices of a tree in \mathscr{J} form a star and so the internal vertices from X in T_2 have a common neighbor from Y. By Claim 1, T_2 has exactly two internal vertices x_2 and x_3 from X with a common neighbor y_s from Y. Between x_2, x_3 and y_1, y_2, \dots, y_k there are 2k edges in $K_{m,n}$. Clearly x_2 and x_3 can be made adjacent with two y's in T_1 . Let

it be y_1 and y_2 . Now y_1, y_2, \dots, y_k can be made adjacent with x's in T_2 . But it will cover exactly k+2 edges (out of 2k edges) and so by the definition of graphoidal tree cover, each uncovered edge is a tree in \mathscr{J} . Without loss of generality let T_3, T_4, \dots, T_k be the trees with edges $(y_3, x_{l_3}), (y_4, x_{l_4}), \dots, (y_k, x_{l_k})$ respectively, where $l_i \in \{2, 3\}, 3 \leq i \leq k$. By Claim 2 the internal vertices of T_1 form a star. Removing all the edges incident with y_i from T_1 to form the tree T_i' ($3 \leq i \leq k$). Let T_1' be the tree formed by the remaining edges of T_1 after the removal. Now each T_i in \mathscr{J} is replaced by $T_i' \cup T_i$ for $3 \leq i \leq k$. Also replace T_1 in \mathscr{J} by T_1' . If \mathscr{J} again contains a tree having more than two internal vertices from Y with a common neighbor from X. We repeat the above process and so on. Hence we have Claim 3. From Claims 1, 2 and 3, it follows that no tree in \mathscr{J} has more than three internal vertices. Since every vertex of $K_{m,n}$ must be an internal vertex of a tree in \mathscr{J} and $\gamma_T(K_{m,n}) = r$, we have only 3r (< m + n) internal vertices in \mathscr{J} . This is a contradiction. Hence $\gamma_T(K_{m,n}) \geq \lceil \frac{m+n}{3} \rceil$.

Theorem 3.4 If $m \le n \le 2mC$ 3, then $\gamma_T(K_{m,n}) = \lceil \frac{m+n}{3} \rceil$. Furthermore, if n > 2m-3, then $\gamma_T(K_{m,n}) = m$.

Proof By Lemma 3.3, $\gamma_T(K_{m,n}) \geq \lceil \frac{m+n}{3} \rceil$. Next we proceed to prove $\gamma_T(K_{m,n}) \leq \lceil \frac{m+n}{3} \rceil$, where $3 \leq m \leq n \leq 2m-3$. Let $r = \lfloor \frac{2m}{3} \rfloor = \frac{2m-n+k}{3}$ where k is 0, 1 or 2.

Define for $1 \le i \le r$

$$P_i = \{(x_i, y_i x_{r+i})\} \cup \{(y_i, x_j) : j \neq i, r+i; 1 \leq j \leq m-k\} \cup \{(x_i, y_j) : r < j \leq m-r-k\} \cup \{(x_{r+i}, y_j) : m-r-k < j \leq n-k\}.$$

For $1 \le i \le m - 2r - k$ we define

 $P_{i+r} = \{(y_{r+i}, x_{2r+i}, y_{m-r-k+i})\} \cup \{(x_{2r+i}, y_j); j \neq r+i, m-r-k+i, r < j \leq n-k\} \cup \{(y_{r+i}, x_j) : r+1 \leq j \leq 2r\} \cup \{(y_{m-r-k+i}, x_j) : 1 \leq j \leq r\}.$

For k = 1

$$P_{m-r} = \{(x_m, y_n)\} \cup \{(x_m, y_j) : 1 \le j \le n-1\} \cup \{(y_n, x_j) : 1 \le j \le m-1\}.$$

For k=2

$$P_{m-r-1} = \{(x_{m-1}, y_{n-1})\} \cup \{(x_{m-1}, y_j) : 1 \le j \le nC \ 2\} \cup \{(y_{n-1}, x_j) : 1 \le j \le mC \ 2\},\$$

$$P_{m-r} = \{(x_m, y_n)\} \cup \{(x_m, y_j) : 1 \le j \le n - 1\} \cup \{(y_n, x_j) : 1 \le j \le m - 1\}.$$

Clearly $\mathscr{J} = \{P_1, P_2, \cdots, P_{m-r}\}$ is a graphoidal tree cover for $K_{m,n}$. Therefore $\gamma_T(K_{m,n}) \le m - r = \frac{m+n+k}{3} \le \lceil \frac{m+n}{3} \rceil$.

Let n=2m-2+k, $k\geq 0$. Suppose that $\gamma_T(K_{m,n})\neq m$. Then there exists a graphoidal tree cover \mathscr{J} with at most m-1 trees. Since $\delta(G)>m-1$, it follows that every vertex is an internal vertex of a tree in \mathscr{J} . If x_i is an internal vertex of a tree T in \mathscr{J} then $\deg_T(x_i)\geq 2m-2+k-(m-2)=m+k$. This implies that in any minimum graphoidal tree cover exactly one vertex of X should be internal in a tree. But there are m vertices and $|\mathscr{J}|\leq m-1$. This leads to a contradiction. Hence $\gamma_T(K_{m,n})\geq m$. Clearly, $\gamma_T(K_{m,n})\leq m$ and so

$$\gamma_T(K_{m,n}) = m.$$

The following examples illustrate $\gamma_T(K_{m,n}) = \lceil \frac{m+n}{3} \rceil$.

Example 3.5 (i) Consider $K_{4,5}$. Clearly k=0 and r=1.

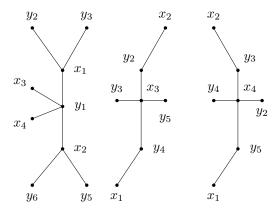


Fig.5

(ii) Consider $K_{8,9}$. Clearly r=2 and k=1.

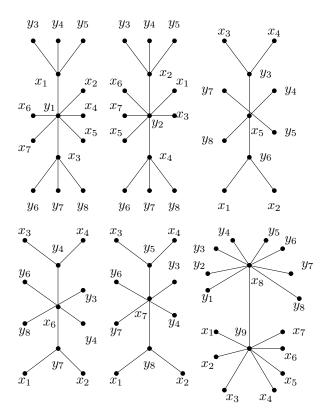


Fig.6

(iii) Consider $K_{12,13}$. Clearly r=3 and k=2.

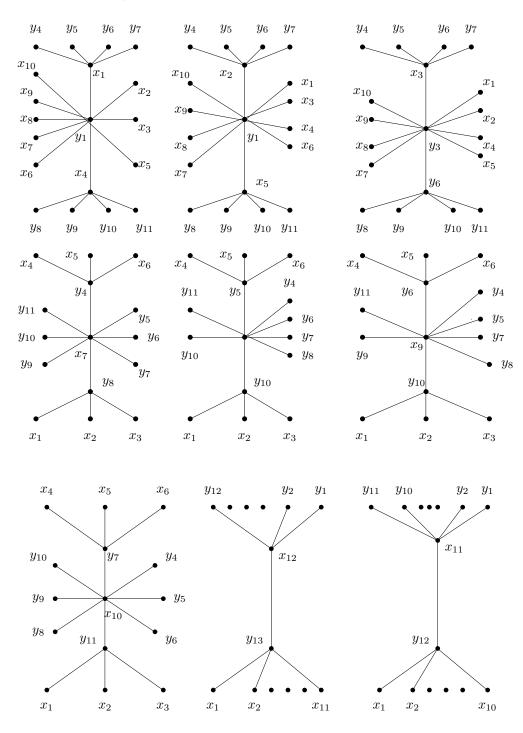


Fig.7

§4. Product of paths and cycles

Theorem 4.1 (a) $\gamma_T(P_m \times P_n) = 2$ for integers $m, n \geq 2$;

(b)
$$\gamma_T(P_n \times C_m) = 2$$
 for integers $m \geq 3$, $n \geq 2$;

(c)
$$\gamma_T(C_m \times C_n) = 3$$
 for integers $m, n \geq 3$.

Proof The fact that $P_m \times C_{2r}$ and $P_m \times C_{2r+1}$ can be decomposed into graphoidal tree covers of order 2 clearly follows from Fig.11 and Fig.12. Hence (b) follows. It is easily seen that deleting the edges (W_{i1}, W_{in}) , $i = 1, 2, 3, \dots, m$ (from Fig.8, Fig.9 and Fig.10) produces a graphoidal tree cover for $P_m \times P_n$ and so (a) follows. Since $C_m \times C_n$ is 4-regular, $\gamma_T(C_m \times C_n) > 2$. Now consider the minimum graphoidal tree cover $\{T_1, T_2\}$ of $P_{m-1} \times C_n$.

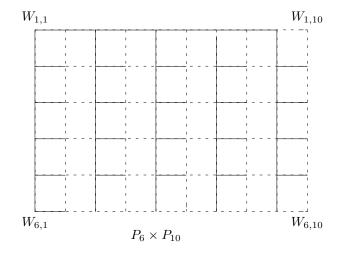


Fig.8

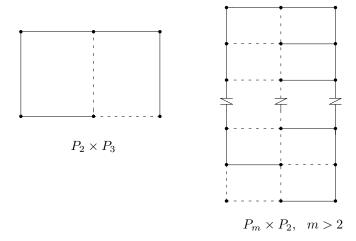


Fig.9

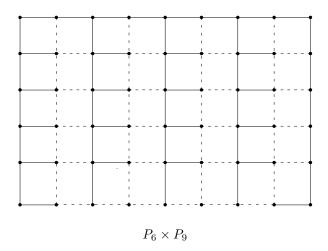


Fig.10

Here in Fig.11 and Fig.12 thick lines form the tree T_1 and dotted lines form the tree T_2 .

Case (i) n is even.

To the tree T_2 , add vertices $w_{m,2}$ and $w_{m,4}$. Then add a vertex $w_{m,3}$ adjacent to $w_{1,3}$, $w_{m-1,3}$, $w_{m,2}$ and $w_{m,4}$. The only additional internal vertex this creates is $w_{m,3}$.

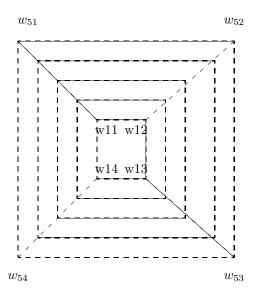


Fig.11

Now take a third tree as $T_3 = \{(w_{m,i-1}, w_{m,i}) : 2 \le i \le n; i \ne 3, 4\} \cup \{(w_{m,1}, w_{m,n})\} \cup \{(w_{m,i}, w_{1,i}), (w_{m,i}, w_{m-1,i}) : 1 \le i \le n; i \ne 3\}.$

Case (ii) n is odd.

To the tree T_2 , add vertices $w_{m,1}$ and $w_{m,3}$. Then add a vertex $w_{m,2}$ adjacent to $w_{1,2}$, $w_{m-1,2}$, $w_{m,1}$, $w_{m,3}$. The only additional internal vertex this creates is $w_{m,2}$.

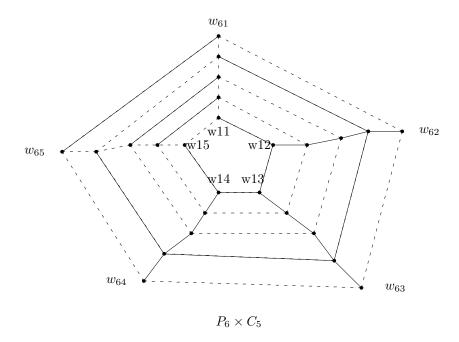


Fig.12

Now take a third tree as $T_3 = \{(w_{m,i-1}, w_{m,i}) : 4 \le i \le n\} \cup \{(w_{m,1}, w_{m,n})\} \cup \{(w_{m,i}, w_{1,i}), (w_{m,i}, w_{m-1,i}) : 1 \le i \le n; i \ne 2\}$. Now $\{T_1, T_2, T_3\}$ is a graphoidal tree cover for $C_m \times C_n$ and so $\gamma_T(C_m \times C_n) = 3$.

Observation 4.2 It is observed that $\tau(G) \leq \gamma_T(G)$. From Theorems 2.1 and 3.1, it follows that (i) $\tau(K_n) = \gamma_T(K_n) = \lceil \frac{n}{2} \rceil$. It is also observed that $\tau(G) = \gamma_T(G)$ for all graphs with maximum degree ≤ 3 . From Theorems 2.2, 2.3 and 2.4, it follows that

Theorem 4.3 If G is a 2-connected cubic graph with p vertices, $p \geq 8$, then $\gamma_T(G) \leq \lfloor \frac{p}{4} \rfloor$.

Theorem 4.4 If G is a 3-connected cubic graph with p vertices, $p \ge 12$, then $\gamma_T(G) \le \lfloor \frac{p}{6} \rfloor$.

Theorem 4.5 If G is a cyclically 4-edge connected cubic graph with p vertices, $8 \le p \le 16$ then $\gamma_T(G) = 2$.

§5. Relationship between $\tau'(G)$ and $\gamma_T(G)$

In [5] Foregger, M F and Foregger, T.H defined $\tau'(G)$ as the minimum number of subsets into which V(G) can be partitioned so that each subset induces a tree. In this section we try to find some relationship between $\tau'(G)$ and $\gamma_T(G)$.

Theorem 5.1 Let G be a graph with vertices $p \geq 4$ and let $\mathscr{J} = \{T_1, T_2, \dots, T_n\}$ be a minimum graphoidal tree cover of G with $|E(T_j)| = 1$ for some j and $|E(T_i)| > 1$ for all $i \neq j$. Then we can always find a minimum graphoidal tree cover $\mathscr{J}' = \{T'_1, T'_2, \dots, T'_n\}$ with $|E(T'_i)| > 1$ for all i.

Proof Let $T_j = \{(xy)\}$. Consider cases following.

Case (i) Suppose at least one of the vertices x and y, say x, is internal in a tree of \mathscr{J} . First assume that x is internal in a tree T_i of \mathscr{J} . If $y \notin V(T_i)$ then replacing T_i by $T_i \cup T_j$ and removing T_j from \mathscr{J} , we get a graphoidal tree cover \mathscr{J}' with $|\mathscr{J}'| < |\mathscr{J}|$. Hence $y \in V(T_i)$. Let (w, x, z, \dots, y) be a path in T_i . Let C_1 and C_2 be the two components of $T_i - (xz)$ containing x and y respectively. Replace T_i and T_j by $C_2 \cup (xz)$ and $C_1 \cup T_j$ respectively so that both of them have at least two edges. Now \mathscr{J} is still a minimum graphoidal tree cover and |E(T)| > 1 for every $T \in \mathscr{J}$.

Case (ii) Suppose both x and y are external vertices in \mathscr{J} . If $x \in V(T_i)$ and $y \notin V(T_i)$ then as in Case (i), we get a graphoidal tree cover \mathscr{J}' with $|\mathscr{J}'| < |\mathscr{J}|$. Hence either $x, y \in V(T)$ or $x, y \notin V(T)$ for every T in \mathscr{J} . Let $x, y \in V(T_r)$, $T_r \in \mathscr{J}$. Suppose $|E(T_r)| > 2$. Let e = (xz) be an edge in T_r . Replace T_r and T_j by $T_r - e$ and $T_j \cup e$ respectively and the result is true in this case. So let us assume that $|E(T_i)| = 2$ for some $T_i \in \mathscr{J}$ and $x, y \in V(T_i)$. Suppose $T_i = (xzy) \in \mathscr{J}$. Then $\deg(z) \geq 3$ in G. For, suppose $\deg(z) = 2$ in G. Since G is connected and $p \geq 4$, we must have at least one of the vertices x, y is of $\deg(z) \geq 3$. Since x or y alone can not be a member of a tree in \mathscr{J} and $x, y \in V(T_i)$, $V(T_i)$ we have $\deg(x) \geq 3$ and $\deg(y) \geq 3$.

Let x and y be external vertices in a tree T_r of \mathscr{J} $(r \neq i, j)$. Replace T_r and T_j by $T_r \cup (xz)$ and $T_j \cup (zy)$ respectively. Now $\{T_1, T_2, \cdots, T_{i-1}, T_{i+1}, \cdots, T_n\}$ is clearly a graphoidal tree cover for G. This is a contradiction to the minimality of \mathscr{J} . Hence $\deg(z) \geq 3$ in G. Now, z must be external in some tree T_r of \mathscr{J} . Clearly $x, y \in V(T_r)$. Suppose $x, y \notin V(T_r)$. Replace T_r and T_j by $T_r \cup \{(xz)\}$ and $T_j \cup \{(zy)\}$ respectively in \mathscr{J} . Now $\{T_1, T_2, \cdots, T_{i-1}, T_{i+1}, \cdots, T_n\}$ is clearly a graphoidal tree cover for G. This is a contradiction to the minimality of \mathscr{J} . It shows that $x, y \in V(T_r)$. Since x, y and z are external vertices in T_r we have $|E(T_r)| \geq 3$. Let e be an edge in T_r containing z. Replace T_i and T_j by $\{T_i - (xz)\} \cup \{e\}$ and $T_j \cup \{(xz)\}$ respectively. Now \mathscr{J} is a minimum graphodial tree cover and |E(T)| > 1 for every $T \in \mathscr{J}$.

Proposition 5.2 If $p \ge 4$, then there exists a minimum graphoidal tree cover of a connected graph G, in which every tree has more than one edge.

Proof Let \mathscr{J} be a minimum graphoidal tree cover of G and let $\mathscr{J} = \{T_1, T_2, \cdots, T_n\}$. Let us assume that $T_i = \{e_i\}, 1 \leq i \leq k$ and $|E(T_j)| > 1$ for $k+1 \leq j \leq n$. Let $G' = G - \{e_1, e_2, \cdots, e_k\}$. Clearly $\mathscr{J}' = \mathscr{J} - \{T_1, T_2, \cdots, T_k\}$ is a graphoidal tree cover for G'. Suppose G' is a disconnected graph. Then the number of components $\omega(G')$ is greater than one. If $\omega(G' \cup e_i) = \omega(G')$ for every $i \in \{1, 2, \cdots, k\}$ then G is disconnected. Hence we can choose $e_i = (x_i, y_i)$ for some $i \in \{1, 2, \cdots, k\}$ such that $\omega(G' \cup e_i) < \omega(G')$. Let G'_1, G''_1 be the components of G' such that $G'_1 \cup G''_1 \cup e_i$ is connected. Without loss of generality assume that $x_i \in G'_1$, $y_i \in G''_1$. If at all x_i is internal in a tree of \mathscr{J} , let it be in a tree T (of \mathscr{J}) in G'_1 . Clearly $\mathscr{J}_1 = (\mathscr{J} - \{T, T_i\}) \cup \{T \cup T_i\}$ is a graphoidal tree cover of G

and $\mathcal{J}_1 < |\mathcal{J}|$. This is a contradiction. Hence G' is connected. Take $G_1 = G' \cup \{e_1\}$. Clearly $\mathcal{J}_1 = \mathcal{J}' \cup \{T_1\}$ is a minimum graphoidal tree cover for G_1 and $|\mathcal{J}_1| = n - k + 1$. For, suppose $\gamma_T(G_1) < n - k + 1$ and let \mathcal{J}'' be a minimum graphoidal tree cover for G_1 . Then $|\mathcal{J}''| < n - k + 1$. Since $G = G_1 \cup \{e_2, \dots, e_k\}$, $\mathcal{J}''' = \mathcal{J}'' \cup \{T_2, \dots, T_k\}$ is a graphoidal tree cover for G and $|\mathcal{J}'''| = |\mathcal{J}''| + k - 1 < n - k + 1 + k - 1 = n$. This is a contradiction to the minimality of \mathcal{J} . Hence $\gamma_T(G_1) = n - k + 1$. By Theorem 5.1, there exists a minimum graphoidal tree cover \mathcal{J}'_1 of G_1 in which every tree has more than one edge and $|\mathcal{J}'_1| = |\mathcal{J}_1| = n - k + 1$. Let $G_2 = G_1 \cup \{e_2\}$. Proceeding as above, we find a minimum graphoidal tree cover \mathcal{J}_2 of G_2 in which every tree has more than one edge. Finally, we get $G = G_n = G_{n-1} \cup \{e_n\}$ and by a similar argument as above, we find a minimum graphoidal tree cover \mathcal{J}_n of $G = G_n$ in which |E(T)| > 1 for every $T \in \mathcal{J}_n$.

Lemma 5.3 Let $p(G) \geq 4$. Let \mathscr{J} be a graphoidal tree cover of G such that |E(T)| > 1 for every tree $T \in \mathscr{J}$. Let i(T) be the set of internal vertices of T. Then $\langle i(T) \rangle$ -the subgraph induced by i(T) is a subgraph of T and it is a tree for every $T \in \mathscr{J}$.

Proof If |i(T)| = 1 then clearly the result is true. Let |i(T)| > 1. Let $x, y \in i(T)$ and $xy \in E(G)$. Suppose $xy \notin E(T)$. Then there exists T' of \mathscr{J} such that $T' = \{(xy)\}$ by the definition of graphoidal tree cover. By our assumption this is not possible. Hence $\langle i(T) \rangle$ is a subgraph of T and it is a tree. Moreover, it is got by removing all the pendant vertices of $T.\square$

Theorem 5.4 If G is a (p,q) graph with $p \ge 4$, then $\tau'(G) \le \gamma_T(G)$.

Proof By Proposition 5.2, we have known that result (1) following:

there exists a minimum graphoidal tree cover $\mathscr J$ such that |E(T)| > 1 for all $T \in \mathscr J$ and $|\mathscr J| = n$.

Let
$$\mathscr{J} = \{T_1, T_2, \cdots, T_n\}.$$

Case (i) If every vertex is an internal vertex of a tree of \mathscr{J} , then $V(G) = i(T_1) \cup \cdots \cup i(T_n)$ is clearly a vertex partition of G. By Lemma 5.3, $\langle i(T_j) \rangle$ is a subgraph of T_j and is a tree for $1 \leq j \leq n$. Hence $\tau'(G) \leq n \leq \gamma_T(G)$.

Case (ii) Let x be one of the vertices which is not internal in any tree of \mathscr{J} . Let $x \in V(T_k)$ and $v \in i(T_k)$ such that $xv \in E(T_k)$. Since x is not internal in any tree of \mathscr{J} and v is not internal in any tree except T_k , we have $\langle i(T_k) \cup \{x\} \rangle$ is a tree. For, if $xu \in E(G)$ and $xu \notin E(T_k)$ where $u \neq v$ in $i(T_k)$, then by the definition of graphoidal tree cover there exists T' of \mathscr{J} such that $T' = \{(xu)\}$. This is a contradiction to claim in (1).

Let x,y be non-internal vertices in any tree of \mathscr{J} . Let $x,y \in V(T_k)$. If $xy \in E(G)$ then there exists T' of \mathscr{J} such that $T' = \{(xy)\}$. This is a contradiction to the claim (1) also. Clearly, in this case $\langle i(T_k) \cup \{x,y\} \rangle$ is a tree. In this way we adjoin every such vertex to an $i(T_k)$. We make sure that each such vertex is adjoined to only one $i(T_k)$. These induced subgraphs give rise to a partition of V(G) and these induced subgraphs form $n = \gamma_T(G)$ trees. Hence $\tau'(G) \leq n = \gamma_T(G)$. From Theorems 3.1 and 4.1 it follows that $\gamma_T(G) = \tau'(G)$ for the following graphs $K_n, P_m \times P_n$ and $P_n \times C_m$.

References

- [1] B.D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, *Indian J. Pure Appl. Math.*, 18 (1987), 882-890.
- [2] T. Boborickan and Linda Valdés, Tree decompositions of cubic graphs, *Proc. of the Seventh Quadrennial International conf. on the Theory and Applications of Graphs, Graph Theory, Combinatorics and Applications* (1995), 71-82.
- [3] J. Bosak, Decomposition of graphs, Kluwer Academic Pub, 1990.
- [4] F.R.K. Chung, On partitions of graphs into trees, Discrete Math., 23(1978), 23-30.
- [5] M.F. Foregger and T.H. Foregger, The tree covering number of a graph, *Czechoslov J.Math.*, 30(1980), 633-639.
- [6] F. Harary F., Graph Theory, Addison-Wesley, 1972.
- [7] S. Somasundaram and A. Nagarajan, Graphoidal tree cover, Acta Ciencia, Indica, Vol.XXIIIM, No.2,(1997), 95-98.