Z_k -Magic Labeling of Cycle of Graphs

P.Jevanthi

(Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur 628215, Tamilnadu, India)

K.Jeya Daisy

(Department of Mathematics, Holy Cross College, Nagercoil, Tamilnadu, India)

E-mail: jeyajeyanthi@rediffmail.com, jeyadaisy@yahoo.com

Abstract: For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \to A - \{0\}$ such that, the vertex labeling f^+ defined as $f^+(v) = \sum f(uv)$ taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Z_k -magic graph if the group A is Z_k , the group of integers modulo k and these graphs are referred as k-magic graphs. In this paper we prove that the graphs such as cycle of generalized peterson, shell, wheel, closed helm, double wheel, triangular ladder, flower and lotus inside a circle are Z_k -magic graphs and also prove that if G is Z_k -magic graph and n is even then C(n.G) is Z_k -magic.

Key Words: A-magic labeling, Z_k -magic labeling, Z_k -magic graph, cycle of graphs, Smarandachely A-magic.

AMS(2010): 05C78.

§1. Introduction

Graph labeling is currently an emerging area in the research of graph theory. A graph labeling is an assignment of integers to vertices or edges or both subject to certain conditions. A detailed survey was done by Gallian in [6]. If the labels of edges are distinct positive integers and for each vertex v the sum of the labels of all edges incident with v is the same for every vertex v in the given graph then the labeling is called a magic labeling. Sedláček [8] introduced the concept of A-magic graphs. A graph with real-valued edge labeling such that distinct edges have distinct non-negative labels and the sum of the labels of the edges incident to a particular vertex is same for all vertices. Low and Lee [7] examined the A-magic property of the resulting graph obtained from the product of two A-magic graphs. Shiu, Lam and Sun [9] proved that the product and composition of A-magic graphs were also A-magic.

For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \to A - \{0\}$ such that, the vertex labeling f^+ defined as $f^+(v) = \sum f(uv)$ taken over all edges uv incident at v is a constant. Otherwise, it is said to be Smarandachely A-magic, i.e., $|\{f^+(v), v \in V(G)\}| \ge 2$. An A-magic graph G is said to

¹Received August 8, 2018, Accepted March 2, 2019.

be Z_k -magic graph if the group A is Z_k , the group of integers modulo k. These Z_k -magic graphs are referred to as k-magic graphs. Shiu and Low [10] determined all positive integers k for which fans and wheels have a Z_k -magic labeling with a magic constant 0. Motivated by the concept of A-magic graph in [8] and the results in [7], [9] and [10] Jeyanthi and Jeya Daisy [1]-[5] proved that some standard graphs admit Z_k -magic labeling. Let G be a graph with n vertices $\{u_1, u_2, \ldots u_n\}$ and consider n copies of G as $G_1, G_2, \ldots G_n$ with vertex set $V(G_i) = \{u_i^j : 1 \le i \le n, 1 \le j \le n\}$. The cycle of graph G is denoted by C(n,G) is obtained by identifying the vertex u_1^j of G_j with u_i of G for $1 \le i \le n, 1 \le j \le n$. In this paper we study the Z_k -magic labeling of some cycle of graphs and also prove that if G is Z_k -magic graph and n is even then C(n,G) is Z_k -magic. We use the following definitions in the subsequent section.

Definition 1.1 A generalized peterson graph P(n,m), $n \geq 3, 1 \leq m < \frac{n}{2}$ is a 3 regular graph with 2n vertices $\{u_1, u_2, \dots u_n, v_1, v_2 \dots v_n\}$ and edges $(u_i v_i), (u_i u_{i+1}), (v_i v_{i+m})$ for all $1 \leq i \leq n$, where the subscripts are taken modulo n.

Definition 1.2 A shell S_n is the graph obtained by taking n-3 concurrent chords in a cycle C_n . The vertex at which all the chords are concurrent is called the apex.

Definition 1.3 The wheel W_n is obtained by joining the vertices $v_1, v_2, \dots v_n$ of a cycle C_n to an extra vertex v called the centre.

Definition 1.4 The closed helm CH_n is the graph obtained from a helm H_n by joining each pendent vertex to form a cycle.

Definition 1.5 A double wheel graph DW_n of size n can be composed of $2C_n + K_1$, that is it consists of two cycles of size n, where the vertices of the two cycles are all connected to a common hub.

Definition 1.6 The triangular ladder graph TL_n , $n \geq 2$ is obtained by completing the ladder $P_2 \times P_n$ by adding the edges $v_{1,j}v_{2,j+1}$ for $1 \leq j \leq n$. The vertex set of the ladder is $\{v_{1,j}, v_{2,j}: 1 \leq j \leq n\}$.

Definition 1.7 The flower Fl_n is the graph obtained from a helm H_n by joining each pendent vertex to the central vertex of the helm.

Definition 1.8 A lotus inside a circle LC_n is a graph obtained from the cycle $C_n : u_1, u_2, \ldots u_n, u_1$ and a star $K_{1,n}$ with the central vertex v_0 and the end vertices v_1, v_2, \cdots, v_n by joining each u_i and $u_{i+1} \pmod{n}$.

§2. Main Results

Theorem 2.1 Let G be a Z_k -magic graph with magic constant b then C(n.G) is Z_k -magic if n is even.

Proof For any integer $b \in \mathbb{Z}_k$. Let $v_1, v_2, \dots v_n$ be the vertices of the cycle \mathbb{C}_n . Let G be

any Z_k -magic graph with magic constant b. Therefore $f^+(v) \equiv b \pmod{k}$ for all $v \in V(G)$. For any integer $a \in Z_k - \{0\}$, define the edge labeling $g : E(C(n.G)) \to Z_k - \{0\}$ as follows:

$$g(v_i v_{i+1}) = \begin{cases} a & \text{for } i \text{ is odd,} \\ k - a & \text{for } i \text{ is even,} \end{cases}$$

and g(e) = f(e) for other $e \in E(C(n.G))$. Then the induced vertex labeling $g^+: V(C(n.G)) \to Z_k$ is $g^+(v) \equiv b \pmod{k}$ for all $v \in V(C(n.G))$. Hence g^+ is constant and it is equal to $b \pmod{k}$. Notice that C(n.G) admits Z_k -magic labeling when n is even, then it is therefore a Z_k -magic graph.

Theorem 2.2 Let G be a Z_k -magic graph with magic constant b then C(n.G) is Z_k -magic if k is even.

Proof For any integer $b \in Z_k$. Let $v_1, v_2, \dots v_n$ be the vertices of the cycle C_n . Let G be any Z_k -magic graph with magic constant b. Therefore $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(G)$.

For any integer $a \in Z_k - \{0\}$, define the edge labeling $g : E(C(n.G)) \to Z_k - \{0\}$ to be $g(v_i v_{i+1}) = \frac{k}{2}$ for $1 \le i \le n-1$, $g(v_n v_1) = \frac{k}{2}$, g(e) = f(e) for other $e \in E(C(n.G))$.

Then the induced vertex labeling $g^+: V(C(n.G)) \to Z_k$ is $g^+(v) \equiv b \pmod{k}$ for all $v \in V(C(n.G))$. Hence g^+ is constant and it is equal to $b \pmod{k}$. Since C(n.G) admits Z_k -magic labeling when k is even, then it is a Z_k -magic graph. \Box

Theorem 2.3 The graph $C(n.C_r)$ is Z_k -magic except r is even, n is odd and k is odd.

Proof Let the vertex set and the edge set of $C(n.C_r)$ be $V(C(n.C_r)) = \{v_i^j : 1 \le i \le r, 1 \le j \le n\}$ and $E(C(n.C_r)) = \{v_i^j v_{i+1}^j : 1 \le i \le r-1, i \le j \le n\} \bigcup \{v_r^j v_1^j : 1 \le j \le n\} \bigcup \{v_r^j v_1^{j+1} : 1 \le j \le n-1\} \bigcup \{v_1^n v_1^1\}.$

Case 1. r is odd.

For any integer $a \in Z_k - \{0\}$, define the edge labeling $f : E(C(n.C_r)) \to Z_k - \{0\}$ as follows:

$$f(v_i^j v_{i+1}^j) = \begin{cases} k - a & \text{for } i \text{ is odd, } 1 \le j \le n, \\ a & \text{for } i \text{ is even, } 1 \le j \le n, \end{cases}$$
$$f(v_1^j v_1^{j+1}) = a \text{ for } 1 \le j \le n - 1,$$
$$f(v_1^n v_1^1) = a.$$

Then the induced vertex labeling $f^+: V(C(n.C_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(C(n.C_r))$.

Case 2. r is even.

Subcase 2.1 n is even.

The cycle C_r is Z_k -magic with magic constant zero when r is even. Therefore by theorem 2.1 it is Z_k -magic.

Subcase 2.2 n is odd and k is even.

By Theorem 2.2 it is Z_k -magic.

Hence f^+ is constant and it is equal to $0 \pmod{k}$. Since $C(n.C_r)$ admits Z_k -magic labeling, then it is a Z_k -magic graph.

The example for Z_{15} -magic labeling of $C(5.C_7)$ is shown in Figure 1.

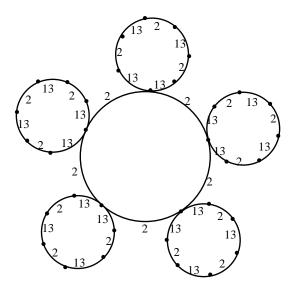


Figure 1 Z_{15} -magic labeling of $C(5.C_7)$

Conjecture 2.4 The graph $C(n.C_r)$ is not Z_k -magic when r is even, n is odd and k is odd.

Observation 2.1 The graph $C(n.C_{n_1}, C_{n_2}, \cdots, C_{n_l})$ is Z_k -magic when n_1, n_2, \cdots, n_l are odd.

Theorem 2.5 The cycle of generalized peterson graph C(n.P(r,m)) is Z_k -magic except r is even, n is odd and k is odd.

Proof Let the vertex set and the edge set of C(n.P(r,m)) be respectively $V(C(n.P(r,m))) = \{u_i^j, v_i^j: 1 \leq i \leq r, 1 \leq j \leq n\}$ and $E(C(n.P(r,m))) = \{u_i^j v_i^j: 1 \leq i \leq r, 1 \leq j \leq n\} \cup \{u_i^j u_{i+1}^j: 1 \leq i \leq r-1, 1 \leq j \leq n\} \cup \{u_r^j u_1^j: 1 \leq j \leq n\} \cup \{v_i^j v_{i+m}^j: 1 \leq i \leq r, 1 \leq j \leq n\}$ where the subscripts are taken modulo r.

Case 1. r is odd.

For any integer a such that k > 3a, define the edge labeling $f: E(C(n.P(r,m))) \to Z_k - \{0\}$ as follows:

$$\begin{split} f(v_i^j v_{i+m}^j) &= a \text{ for } 1 \leq i \leq r, \ 1 \leq j \leq n, \\ f(u_i^j v_i^j) &= k - 2a \text{ for } 1 \leq i \leq r, \ 1 \leq j \leq n, \\ f(u_i^j u_{i+1}^j) &= \begin{cases} 3a & \text{ for } i \text{ is odd, } 1 \leq j \leq n, \\ k - a & \text{ for } i \text{ is even, } 1 \leq j \leq n, \end{cases} \end{split}$$

 $f(u_1^j u_1^{j+1}) = k - 2a$ for $1 \le j \le n - 1$ and $f(u_1^n u_1^1) = k - 2a$.

Then the induced vertex labeling $f^+: V(C(n.P(r,m))) \to Z_k$ is $f^+(v) \equiv 0 \pmod k$ for all $v \in V(C(n.P(r,m)))$.

Case 2. r is even.

Subcase 2.1 n is even.

The graph P(r, m) is Z_k -magic with magic constant zero. Therefore by theorem 2.1 it is Z_k -magic.

Subcase 2.2 n is odd and k is even.

By theorem 2.2 it is Z_k -magic in this case.

Hence f^+ is constant and it is equal to $0 \pmod{k}$. Since C(n.P(r,m)) admits Z_k -magic labeling, then it is a Z_k -magic graph.

The example for \mathbb{Z}_5 -magic labeling of $\mathbb{C}(5.\mathbb{P}(5,2))$ is shown in Figure 2.

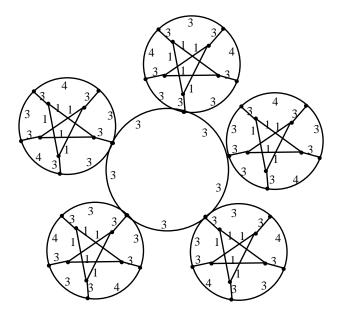


Figure 2 Z_5 -magic labeling of C(5.P(5,2))

Conjecture 2.6 The cycle of generalized peterson graph C(n.P(r,m)) is not Z_k -magic when r is even, n is odd and k is odd.

Theorem 2.7 The cycle of shell graph $C(n.S_r)$ is Z_k -magic.

Proof Let the vertex set and the edge set of $C(n.S_r)$ be respectively $V(C(n.S_r)) = \{v_i^j: 1 \le i \le r, 1 \le j \le n\}$ and $E(C(n.S_r)) = \{v_i^j v_{i+1}^j: 1 \le i \le r-1, 1 \le j \le n\} \cup \{v_r^j v_1^j: 1 \le j \le n\} \cup \{v_1^j v_{i+2}^j: 1 \le i \le r-3, 1 \le j \le n\} \cup \{v_1^j v_1^{j+1}: 1 \le j \le n-1\} \cup \{v_1^n v_1^1\}$. For any integer a such that k > (r-2)a, define the edge labeling

$$f: E(C(n.S_r)) \to Z_k - \{0\} \text{ as follows:}$$

$$f(v_1^j v_{i+2}^j) = 2a \text{ for } 1 \le i \le r - 3, \ 1 \le j \le n,$$

$$f(v_1^j v_2^j) = f(v_r^j v_1^j) = a \text{ for } 1 \le j \le n,$$

$$f(v_i^j v_{i+1}^j) = k - a \text{ for } 2 \le i \le r - 1, 1 \le j \le n,$$

$$f(u_1^j u_1^{j+1}) = k - (r - 2)a \text{ for } 1 \le j \le n - 1,$$

$$f(u_1^n u_1^1) = k - (r - 2)a.$$

Then the induced vertex labeling $f^+: V(C(n.S_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(C(n.S_r))$. Hence f^+ is constant and it is equal to $0 \pmod{k}$. Since $C(n.S_r)$ admits Z_k -magic labeling, then it is a Z_k -magic graph.

The example for Z_7 -magic labeling of $C(5.S_5)$ is shown in Figure 3.

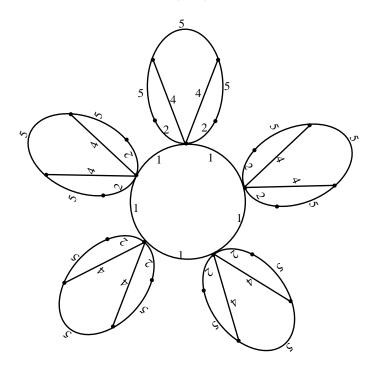


Figure 3 Z_7 -magic labeling of $C(5.S_5)$

Theorem 2.8 The cycle of wheel graph $C(n.W_r)$ is Z_k -magic.

Proof Let the vertex set and the edge set of $C(n.W_r)$ be respectively $V(C(n.W_r)) = \{w_j, u_i^j: 1 \le i \le r, 1 \le j \le n\}$ and $E(C(n.W_r)) = \{u_i^j u_{i+1}^j: 1 \le i \le r-1, 1 \le j \le n\} \cup \{u_1^j u_1^j: 1 \le j \le n\} \cup \{u_1^j u_1^j: 1 \le j \le n\} \cup \{u_1^n u_1^1\}.$ For any integer a such that k > 2(r-1)a, define the edge labeling $f: E(C(n.W_r)) \to Z_k - \{0\}$ as follows:

$$\begin{split} f(w_j u_i^j) &= 2a \text{ for } 2 \le i \le r, \ 1 \le j \le n, \\ f(w_j u_1^j) &= k - 2(r-1)a \text{ for } 1 \le j \le n, \\ f(u_i^j u_{i+1}^j) &= k - a \text{ for } 1 \le i \le r - 1, 1 \le j \le n, \end{split}$$

$$f(u_r^j u_1^j) = k - a \text{ for } 1 \le j \le n,$$

$$f(u_1^j u_1^{j+1}) = ra \text{ for } 1 \le j \le n - 1,$$

$$f(u_1^n u_1^1) = ra.$$

Then the induced vertex labeling $f^+: V(C(n.W_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod k$ for all $v \in V(C(n.W_r))$. Hence f^+ is constant and it is equal to $0 \pmod k$. Since $C(n.W_r)$ admits Z_k -magic labeling, the cycle of wheel graph $C(n.W_r)$ is a Z_k -magic graph.

The example of Z_{13} -magic labeling of $C(5.W_7)$ is shown in Figure 4.

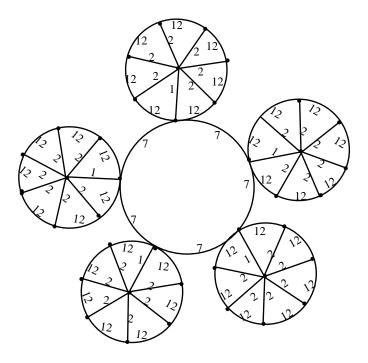


Figure 4 Z_{13} -magic labeling of $C(5.W_7)$

Theorem 2.9 The cycle of closed helm graph $C(n.CH_r)$ is Z_k -magic.

Proof Let the vertex set and the edge set of $C(n.CH_r)$ be respectively $V(C(n.CH_r)) = \{w_j, u_i^j, x_i^j : 1 \le i \le r, 1 \le j \le n\}$ and $E(C(n.CH_r)) = \{u_i^j u_{i+1}^j : 1 \le i \le r-1, 1 \le j \le n\} \cup \{u_r^j u_1^j : 1 \le j \le n\} \cup \{u_r^j u_1^j : 1 \le j \le n\} \cup \{u_1^j u_1^j : 1 \le j \le n\} \cup \{u_1^j u_1^j : 1 \le j \le n\} \cup \{u_1^j u_1^j : 1 \le j \le n\} \cup \{u_1^n u_1^1\}.$

Case 1. r is odd.

For any integer a such that k > (r+1)a, define the edge labeling $f: E(C(n.CH_r)) \to Z_k - \{0\}$ as follows:

$$f(u_i^j u_{i+1}^j) = \begin{cases} k - a & \text{for } i \text{ is odd, } 1 \le j \le n, \\ 2a & \text{for } i \text{ is even, } 1 \le j \le n, \end{cases}$$

$$\begin{split} f(x_i^j x_{i+1}^j) &= \begin{cases} k-a & \text{for } i \text{ is odd, } 1 \leq j \leq n, \\ a & \text{for } i \text{ is even, } 1 \leq j \leq n, \end{cases} \\ f(w_j x_1^j) &= k - (r-1)a \text{ for } 1 \leq j \leq n, \\ f(w_j x_i^j) &= a \text{ for } 2 \leq i \leq r, 1 \leq j \leq n, \\ f(x_1^j u_1^j) &= (r+1)a \text{ for } 1 \leq j \leq n, \\ f(x_i^j u_i^j) &= k-a \text{ for } 2 \leq i \leq r, 1 \leq j \leq n, \\ f(u_1^j u_1^{j+1}) &= k-\frac{(r-1)a}{2} \text{ for } 1 \leq j \leq n-1, \\ f(u_1^n u_1^1) &= k-\frac{(r-1)a}{2}. \end{split}$$

Then the induced vertex labeling $f^+: V(C(n.CH_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod k$ for all $v \in V(C(n.CH_r))$.

Case 2. r is even.

For any integer a such that k > ra, define the edge labeling $f: E(C(n.CH_r)) \to Z_k - \{0\}$ as follows:

$$f(u_i^j u_{i+1}^j) = \begin{cases} k - a & \text{for } i \text{ is odd, } 1 \le j \le n, \\ 2a & \text{for } i \text{ is even, } 1 \le j \le n, \end{cases}$$

$$f(x_i^j x_{i+1}^j) = \begin{cases} k - a & \text{for } i \text{ is odd, } 1 \le j \le n, \\ a & \text{for } i \text{ is even, } 1 \le j \le n, \end{cases}$$

$$f(w_j x_1^j) = k - (r - 1)a \text{ for } 1 \le j \le n,$$

$$f(w_j x_1^j) = a \text{ for } 2 \le i \le r, 1 \le j \le n,$$

$$f(x_1^j u_1^j) = (r - 1)a \text{ for } 1 \le j \le n,$$

$$f(x_i^j u_i^j) = k - a \text{ for } 2 \le i \le r, 1 \le j \le n,$$

$$f(u_1^j u_1^{j+1}) = k - a \text{ for } 2 \le i \le r, 1 \le j \le n,$$

$$f(u_1^n u_1^n) = k - \frac{ra}{2} \text{ for } 1 \le j \le n - 1,$$

$$f(u_1^n u_1^n) = k - \frac{ra}{2}.$$

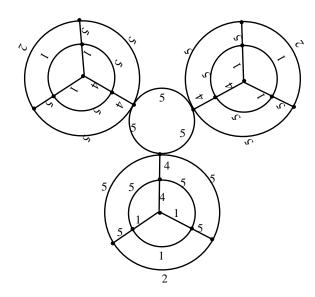


Figure 5 Z_6 -magic labeling of $C(3.CH_3)$

Then the induced vertex labeling $f^+: V(C(n.CH_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(C(n.CH_r))$.

Hence f^+ is constant and it is equal to $0 \pmod{k}$. Since $C(n.CH_r)$ admits Z_k -magic labeling, then it is a Z_k -magic graph.

The example of Z_6 -magic labeling of $C(3.CH_3)$ is shown in Figure 5.

Theorem 2.10 The cycle of double wheel graph $C(n.DW_r)$ is Z_k -magic except r is even, n is odd and k is odd.

Proof Let the vertex set and the edge set of $C(n.DW_r)$ be respectively $V(C(n.DW_r)) = \{v_j, u_i^j : 1 \le i \le r, 1 \le j \le n\}$ and $E(C(n.DW_r)) = \{v_i v_i^j, v_i u_i^j : 1 \le i \le r, 1 \le j \le n\} \cup \{v_i^j v_{i+1}^j : 1 \le i \le r-1, 1 \le j \le n\} \cup \{v_r^j v_1^j : 1 \le j \le n\} \cup \{u_i^j u_{i+1}^j : 1 \le i \le r-1, 1 \le j \le n\} \cup \{u_r^j u_1^j : 1 \le j \le n\} \cup \{u_r^j u_1^j : 1 \le j \le n\} \cup \{u_1^j u_1^j : 1 \le j \le n-1\} \cup \{u_1^n u_1^1\}.$

Case 1. r is odd.

For any integer a such that k > 3a, define the edge labeling $f: E(C(n.DW_r)) \to Z_k - \{0\}$ as follows:

$$\begin{split} f(v_i v_i^j) &= 2a \text{ for } 1 \leq i \leq r, \ 1 \leq j \leq n, \\ f(v_i u_i^j) &= k - 2a \text{ for } 1 \leq i \leq r, \ 1 \leq j \leq n, \\ f(v_i^j v_{i+1}^j) &= k - a \text{ for } 1 \leq i \leq r - 1, 1 \leq j \leq n, \\ f(u_i^j u_{i+1}^j) &= \begin{cases} 3a & \text{for } i \text{ is odd, } 1 \leq j \leq n, \\ k - a & \text{for } i \text{ is even, } 1 \leq j \leq n, \end{cases} \\ f(v_r^j v_1^j) &= k - a \text{ for } 1 \leq j \leq n, \\ f(u_1^j u_1^{j+1}) &= k - 2a \text{ for } 1 \leq j \leq n - 1, \\ f(u_1^n u_1^1) &= k - 2a. \end{split}$$

Case 2. r is even.

Subcase 2.1 n is even.

The graph DW_r is Z_k -magic with magic constant zero. Therefore by theorem 2.1 it is Z_k -magic.

Subcase 2.2 n is odd and k is even.

By Theorem 2.2 it is Z_k -magic in this case.

Hence f^+ is constant and it is equal to $0 \pmod{k}$. Since $C(n.DW_r)$ admits Z_k -magic labeling, then it is a Z_k -magic graph.

The example of Z_9 -magic labeling of $C(5.DW_3)$ is shown in Figure 6.

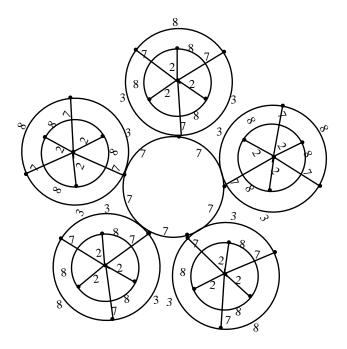


Figure 6 Z_9 -magic labeling of $C(5.DW_3)$

Conjecture 2.11 The cycle of double wheel graph $C(n.DW_r)$ is not Z_k -magic when r is even, n is odd and k is odd.

Obsevation 2.2 The graph $C(n.DW_{n_1}, DW_{n_2}, \dots, DW_{n_l})$ is Z_k -magic when $n_1, n_2, \dots n_l$ are odd.

Theorem 2.12 The cycle of triangular ladder graph $C(n.TL_r)$ is Z_k -magic.

Proof Let the vertex set and the edge set of $C(n.TL_r)$ be respectively $V(C(n.TL_r)) = \{u_i^j, v_i^j: 1 \le i \le r, 1 \le j \le n\}$ and $E(C(n.TL_r)) = \{u_i^j u_{i+1}^j, v_i^j v_{i+1}^j: 1 \le i \le r-1, 1 \le j \le n\} \cup \{u_i^j v_{i+1}^j: 1 \le i \le r-1, 1 \le j \le n\} \cup \{u_i^j v_i^j: 1 \le i \le r, 1 \le j \le n\} \cup \{v_1^j v_1^{j+1}: 1 \le j \le n-1\} \cup \{v_1^n v_1^1\}.$

Case 1. r is odd.

For any integer a such that k > 2a, define the edge labeling $f : E(C(n.TL_r)) \to Z_k - \{0\}$ as follows:

$$f(u_i^j u_{i+1}^j) = \begin{cases} 2a & \text{for } i \text{ is odd, } 1 \le j \le n, \\ k - a & \text{for } i \text{ is even, } 1 \le j \le n, \end{cases}$$

$$f(v_i^j v_{i+1}^j) = \begin{cases} k - a & \text{for } i \text{ is odd, } 1 \le j \le n, \\ a & \text{for } i \text{ is even, } 1 \le j \le n, \end{cases}$$

$$f(u_1^j v_1^j) = k - a \text{ for } 1 \le j \le n,$$

$$f(u_i^j v_i^j) = a \text{ for } 2 \le i \le r, 1 \le j \le n,$$

$$f(u_1^j v_2^j) = k - a \text{ for } 1 \le j \le n,$$

$$f(u_i^j v_{i+1}^j) = k - 2a \text{ for } 2 \le i \le r - 1, 1 \le j \le n,$$

$$f(v_1^j v_1^{j+1}) = a \text{ for } 1 \le j \le n - 1,$$

$$f(v_1^n v_1^1) = a.$$

Then the induced vertex labeling $f^+: V(C(n.TL_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod k$ for all $v \in V(C(n.TL_r))$.

Case 2. r is even.

For any integer a such that k > 2a, define the edge labeling $f: E(C(n.TL_r)) \to Z_k - \{0\}$ as follows:

$$\begin{split} f(u_i^j u_{i+1}^j) &= \begin{cases} 2a & \text{for } i \text{ is odd, } 1 \leq j \leq n, \\ k-2a, & \text{for } i \text{ is even, } 1 \leq j \leq n, \end{cases} \\ f(v_i^j v_{i+1}^j) &= \begin{cases} k-a & \text{for } i \text{ is odd, } i \neq (r-1) \ 1 \leq j \leq n, \\ a & \text{for } i \text{ is even, } 1 \leq j \leq n, \end{cases} \\ f(v_{r-1}^j v_r^j) &= a \text{ for } 1 \leq j \leq n, \\ f(u_1^j v_1^j) &= k-a \text{ for } 1 \leq j \leq n, \\ f(u_i^j v_i^j) &= a \text{ for } 2 \leq i \leq r-2, 1 \leq j \leq n, \\ f(u_r^j v_{r-1}^j) &= k-a \text{ for } 1 \leq j \leq n, \\ f(u_r^j v_{r-1}^j) &= a \text{ for } 1 \leq j \leq n, \end{cases} \\ f(u_r^j v_{i+1}^j) &= a \text{ for } 1 \leq i \leq r-2, 1 \leq j \leq n, \\ f(u_r^j v_{i+1}^j) &= a \text{ for } 1 \leq j \leq n, \\ f(v_1^j v_1^{j+1}) &= a \text{ for } 1 \leq j \leq n-1, \\ f(v_1^n v_1^j) &= a \text{ for } 1 \leq j \leq n-1, \end{split}$$

Then the induced vertex labeling $f^+: V(C(n.TL_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(C(n.TL_r))$. Hence f^+ is constant and it is equal to $0 \pmod{k}$. Since $C(n.TL_r)$ admits Z_k -magic labeling, then it is a Z_k -magic graph.

The example of Z_{10} -magic labeling of $C(5.TL_5)$ is shown in Figure 7.

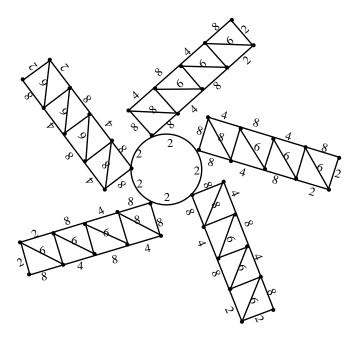


Figure 7 Z_{10} -magic labeling of $C(5.TL_5)$

Theorem 2.13 The cycle of flower graph $C(n.Fl_r)$ is Z_k -magic.

 $\begin{array}{lll} \textit{Proof} & \text{Let the vertex set and the edge set of } C(n.Fl_r) \text{ be respectively } V(C(n.Fl_r)) = \\ \{v_j, v_i^j, u_i^j: 1 \leq i \leq r, \ 1 \leq j \leq n\} \text{ and } E(C(n.Fl_r)) = \{v_j v_i^j: 1 \leq i \leq r, \ 1 \leq j \leq n\} \cup \{v_i^j u_i^j: 1 \leq i \leq r, \ 1 \leq j \leq n\} \cup \{v_i^j u_i^j: 1 \leq i \leq r, \ 1 \leq j \leq n\} \cup \{v_i^j v_{i+1}^j: 1 \leq i \leq r-1, \ 1 \leq j \leq n\} \cup \{v_i^r v_1^j: 1 \leq j \leq n\} \cup \{v_1^j v_1^{j+1}: 1 \leq j \leq n-1\} \cup \{v_1^r v_1^1\}. \end{array}$

Case 1. r is odd.

For any integer a such that k > 3a, define the edge labeling $f: E(C(n.Fl_r)) \to Z_k - \{0\}$ as follows:

$$f(v_j^i v_i^j) = a \text{ for } 1 \le i \le r, \ 1 \le j \le n,$$

$$f(v_i^j u_i^j) = a \text{ for } 1 \le i \le r, \ 1 \le j \le n,$$

$$f(u_i^j v_j) = k - a \text{ for } 1 \le i \le r, \ 1 \le j \le n,$$

$$f(v_i^j v_{i+1}^j) = \begin{cases} a & \text{for } i \text{ is } odd, \ 1 \le j \le n, \\ k - 3a & \text{for } i \text{ is } even, \ 1 \le j \le n, \end{cases}$$

$$f(v_1^j v_1^{j+1}) = k - 2a \text{ for } 1 \le j \le n - 1,$$

$$f(v_1^n v_1^1) = k - 2a.$$

Then the induced vertex labeling $f^+:V(C(n.Fl_r))\to Z_k$ is $f^+(v)\equiv 0 \pmod k$ for all $v\in V(C(n.Fl_r))$.

Case 2. r is even.

For any integer a such that k > 2a, define the edge labeling $f: E(C(n.Fl_r)) \to Z_k - \{0\}$ as follows:

```
\begin{split} f(v_jv_1^j) &= 2a \text{ for } 1 \leq j \leq n, \\ f(v_jv_i^j) &= a \text{ for } 2 \leq i \leq r, \ 1 \leq j \leq n, \\ f(v_1^ju_1^j) &= 2a \text{ for } 1 \leq j \leq n, \\ f(v_i^ju_i^j) &= a \text{ for } 2 \leq i \leq r, \ 1 \leq j \leq n, \\ f(u_i^jv_j) &= k - 2a \text{ for } 1 \leq j \leq n, \\ f(u_i^jv_j) &= k - a \text{ for } 2 \leq i \leq r, \ 1 \leq j \leq n, \\ f(u_i^jv_j) &= k - a \text{ for } 2 \leq i \leq r, \ 1 \leq j \leq n, \\ f(v_i^jv_{i+1}^j) &= k - a \text{ for } 1 \leq i \leq r - 1, \ 1 \leq j \leq n, \\ f(v_n^jv_1^j) &= k - a, \\ f(v_n^jv_1^j) &= k - a \text{ for } 1 \leq j \leq n - 1, \\ f(v_n^lv_1^j) &= k - a. \end{split}
```

Then the induced vertex labeling $f^+: V(C(n.Fl_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(C(n.Fl_r))$. Hence f^+ is constant and it is equal to $0 \pmod{k}$. Since $C(n.Fl_r)$ admits Z_k -magic labeling, then it is a Z_k -magic graph.

The example of Z_5 -magic labeling of $C(3.Fl_3)$ is shown in Figure 8.

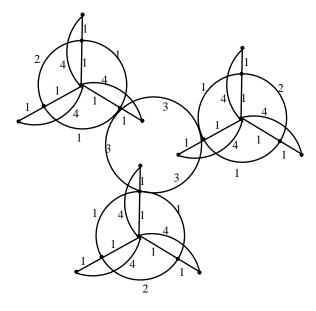


Figure 8 Z_5 -magic labeling of $C(3.Fl_3)$

Theorem 2.14 The cycle of lotus inside a circle graph $C(n.LC_r)$ is Z_k -magic.

Proof Let the vertex set and the edge set of $C(n.LC_r)$ be respectively $V(C(n.LC_r)) = \{v_j, v_i^j, u_i^j : 1 \le i \le r, 1 \le j \le n\}$ and $E(C(n.LC_r)) = \{v_j v_i^j : 1 \le i \le r, 1 \le j \le n\} \cup \{v_i^j u_i^j : 1 \le i \le r, 1 \le j \le n\} \cup \{u_i^j v_{i+1}^j : 1 \le i \le r-1, 1 \le j \le n\} \cup \{u_i^j v_1^j : 1 \le j \le n\} \cup \{u_i^j u_{i+1}^j : 1 \le j \le n\} \cup \{u_1^j u_1^j : 1 \le j \le n\} \cup \{u_1^n u_1^j \}.$

Case 1. r is odd.

For any integer a such that k > (r-1)a, define the edge labeling $f: E(C(n.LC_r)) \to Z_k - \{0\}$ as follows:

$$f(v_{j}v_{1}^{j}) = k - (n-1)a \text{ for } 1 \le j \le n,$$

$$f(v_{j}v_{i}^{j}) = a \text{ for } 2 \le i \le r, \ 1 \le j \le n,$$

$$f(v_{1}^{j}u_{1}^{j}) = (r-2)a \text{ for } 1 \le j \le n,$$

$$f(v_{i}^{j}u_{i}^{j}) = k - 2a \text{ for } 2 \le i \le r, 1 \le j \le n,$$

$$f(u_{i}^{j}v_{i+1}^{j}) = a \text{ for } 1 \le i \le r - 1, 1 \le j \le n,$$

$$f(u_{r}^{j}v_{1}^{j}) = a \text{ for } 1 \le j \le n,$$

$$f(u_{r}^{j}v_{1}^{j}) = a \text{ for } 1 \le j \le n,$$

$$f(u_{i}^{j}u_{i+1}^{j}) = \begin{cases} 2a & \text{for } i \text{ is odd, } 1 \le j \le n, \\ k - a & \text{for } i \text{ is even, } 1 \le j \le n, \end{cases}$$

$$f(u_{1}^{j}u_{1}^{j+1}) = k - \frac{(r+3)a}{2} \text{ for } 1 \le j \le n - 1,$$

$$f(u_{1}^{n}u_{1}^{1}) = k - \frac{(r+3)a}{2}.$$

Then the induced vertex labeling $f^+: V(C(n.LC_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(C(n.LC_r))$.

Case 2. r is even.

For any integer a such that k > (r-1)a, define the edge labeling $f: E(C(n.LC_r)) \to \mathbb{Z}_k - \{0\}$ as follows:

$$\begin{split} f(v_j v_1^j) &= k - (n-1)a \text{ for } 1 \leq j \leq n, \\ f(v_j v_i^j) &= a \text{ for } 2 \leq i \leq r, \ 1 \leq j \leq n, \\ f(v_1^j u_1^j) &= (r-2)a \text{ for } 1 \leq j \leq n, \\ f(v_i^j u_i^j) &= k - 2a \text{ for } 2 \leq i \leq r, 1 \leq j \leq n, \\ f(u_i^j v_{i+1}^j) &= a \text{ for } 1 \leq i \leq r - 1, 1 \leq j \leq n, \\ f(u_r^j v_1^j) &= a \text{ for } 1 \leq j \leq n, \\ f(u_r^j u_{i+1}^j) &= \begin{cases} 2a & \text{for } i \text{ is odd, } 1 \leq j \leq n, \\ k - a & \text{for } i \text{ is even, } 1 \leq j \leq n, \end{cases} \\ f(u_1^j u_{i+1}^j) &= k - \frac{ra}{2} \text{ for } 1 \leq j \leq n - 1, \\ f(u_1^n u_1^1) &= k - \frac{ra}{2}. \end{split}$$

Then the induced vertex labeling $f^+: V(C(n.LC_r)) \to Z_k$ is $f^+(v) \equiv 0 \pmod{k}$ for all $v \in V(C(n.LC_r))$. Hence f^+ is constant and it is equal to $0 \pmod{k}$. Since $C(n.LC_r)$ admits Z_k -magic labeling, then it is a Z_k -magic graph.

The example of Z_8 -magic labeling of $C(5.LC_5)$ is shown in Figure 9.

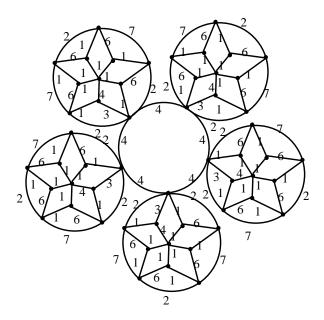


Figure 9 Z_8 -magic labeling of $C(5.LC_5)$

References

- [1] P.Jeyanthi and K.Jeya Daisy, Z_k -magic labeling of open star of graphs, Bulletin of the International Mathematical Virtual Institute, 7 (2017), 243–255.
- [2] P.Jeyanthi and K.Jeya Daisy, Z_k -magic labeling of subdivision graphs, *Discrete Math. Algorithm. Appl.*, 8(3) (2016), [19 pages] DOI: 10.1142/S1793830916500464.
- [3] P.Jeyanthi and K.Jeya Daisy, Certain classes of Z_k -magic graphs, Journal of Graph Labeling, 4(1) (2018), 38–47.
- [4] P.Jeyanthi and K.Jeya Daisy, Z_k -Magic labeling of some families of graphs, *Journal of Algorithms and Computation*, 50(2) (2018),1-12.
- [5] P.Jeyanthi and K.Jeya Daisy, Some results on Z_k -magic labeling, Palestine Journal of Mathematics, to appear.
- [6] J.A.Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 2017.
- [7] R.M. Low and S.M Lee, On the products of group-magic graphs, Australian J. Combin., 34 (2006), 41–48.
- [8] J. Sedláček, On magic graphs, Math. Slov., 26 (1976), 329–335.
- [9] W.C. Shiu, P.C.B. Lam and P.K. Sun, Construction of magic graphs and some A-magic graphs with A of even order, Congr. Numer., 167 (2004), 97–107.
- [10] W.C. Shiu and R.M. Low, Z_k -magic labeling of fans and wheels with magic-value zero, Australian. J. Combin., 45 (2009), 309–316.