Some Properties of a h-Randers Finsler Space

V. K. Chaubey¹, Arunima Mishra² and A. K. Pandey³

- 1. Department of Applied Sciences, Buddha Institute of Technology, Gida, Gorakhpur (U.P.)-273209, India
- 2. Rashtriya Inter College, Baulliya Coloney, Gorakhpur (U.P.)-273001, India
- 3. Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India

E-mail: vkchaubey@outlook.com, arunima16oct@hotmail.com, ankpandey11@rediffmail.com

Abstract: The purpose of the present paper is to obtain the relation between imbedding class numbers of tangent Riemannian spaces to (M^n, L) and (M^n, L^*) where $L^*(\mathbf{x}, \mathbf{y})$ is obtained from the transformation of $L(\mathbf{x}, \mathbf{y})$ is given by

$$L^*(x,y) \to L(x,y) + b_i(x,y)y^i$$

Key Words: Riemannian metric, h-vector, imbedding class.

AMS(2010): 53B40, 53C60.

§1. Introduction

In 1971 Matsumoto [5] introduced the transformation of Finsler metric

$$\bar{L}(x,y) \to L(x,y) + b_i y^i$$
 (1.1)

and obtain the relation between the imbedding class numbers of a tangent Riemannian spaces to (M^n, L) and a Finsler space (M^n, \bar{L}) which is obtained by the transformation of the Finsler metric L by the relation given by in the equation (1.1). Since a concurrent vector field is a function of (x) i.e., position only, assuming $b_i(x)$ as a concurrent vector field, Matsumoto [6] studied the R3-likeness of Finsler spaces (M^n, L) and (M^n, \bar{L}) . Singh and Prasad [14,11] generalized the concept of concurrent vector field and introduced the semi-parallel and concircular vector fields which are functions of (x) only. Assuming $b_i(x)$ as a concicular vector field, Prasad, Singh and Singh [11] studied the R3-likeness of (M^n, L) and (M^n, \bar{L}) .

If L(x,y) is a metric function of Riemannian space then $\bar{L}(x,y)$ reduces to the metric function of Rander's space. Such a Finsler metric was first introduced by G. Randers [13] from the standpoint of general theory of relativity and applied to the theory of the electron microscope by R. S. Ingarden [3] who first named it us Randers space. The geometrical properties of this space have been studied by various workers [2, 7, 9, 12, 15].. In 1970 Numata [10] has studied the properties of (M^n, \bar{L}) which is obtained from Minkowski space (M^n, L) by transformation

¹Received August 18, 2016, Accepted February 21, 2017.

(1.1). In all those works the function $b_i(x)$ are assumed to be functions of (x) only.

In 1980, Izumi [4] while studying the conformal transformation of Finsler spaces, introduced the h-vector b_i which is v-covariantly constant with respect to Cartan's connection $C\Gamma$ and satisfies the relation

$$LC_{ij}^h b_h = \rho h_{ij}$$

Thus the h-vector b_i is not only a function of (x) but it is also a function of directional arguments satisfying $L\dot{\partial}_j b_i = \rho h_{ij}$. The purpose of the present paper is to obtain the relation between imbedding class numbers of tangent Riemannian spaces to (M^n, L) and (M^n, L^*) where $L^*(x, y)$ is obtained from the transformation of L(x, y) is given by

$$L^*(x,y) \to L(x,y) + \beta(x,y), \tag{1.2}$$

where $\beta(x,y) = b_i(x,y)y^i$, i.e. $b_i(x,y)$ is the function of position and direction both.

§2. An h-Vector in (M^n, L)

Let b_i be a vector field in the Finsler space (M^n, L) . If $b_i(x, y)$ satisfies the conditions

$$b_i|_j = 0, (2.1)$$

$$LC_{ij}^{h}b_{h} = \rho h_{ij}, \tag{2.2}$$

then the vector field b_i is called an h-vector [4]. Here $|_i$ denotes the v-covariant derivative with respect to y^i in the case of Cartan's connection $C\Gamma$, C_{ij}^h is the cartan's C-tensor, h_{ij} is the angular metric tensor and ρ is given by

$$\rho = \frac{LC^i b_i}{(n-1)},\tag{2.3}$$

where C^i is the torsion tensor given by $C^i_{jk}g^{jk}$.

Lemma 2.1([4]) If b_i is an h-vector then the function ρ and are independent of y.

Since The v-covariant derivation of $b^2=g^{ij}b_ib_j$ and the fact that g^{ij} is v-covariantly constant yield

$$b\dot{\partial}_k b = g^{ij}b_ib_i|_k.$$

In the view of (2.1) we have

$$\dot{\partial}_k b = 0.$$

Thus we have

Lemma 2.2 The magnitude b of an h-vector is independent of y.

From (2.1), Ricci identity [8] and the fact that $S_{ihjk} = g_{hr}S_{ijk}^r$ is skew-symmetric in h and

i we have

$$b_i|_j|_k - b_i|_k|_j = -S_{ijk}^h b_h = 0.$$

Thus we have

Lemma 2.3 For an h-vector b_i we have $S_{hijk}b^h = 0$, where S_{hijk} are components of v-curvature tensor of Cartan's connection $C\Gamma$.

The concept of concurrent vector field in (M^n, L) has been introduced by Tachibana [16] and its properties have been studied by Matsumoto [6]. A vector field b_i in (M^n, L) is said to be concurrent if it satisfies the condition (2.1) and

$$b_{i|j} = -g_{ij}, (2.4)$$

where |j| denotes h-covariant differentiation with respect to x^i in the sense of Cartan's connection $C\Gamma$.

Applying Ricci Identity [8]

$$b_{i|j}|_k - b_i|_{k|j} = -b_h P_{ijk}^h - b_{i|h} C_{jk}^h - b_i|_h P_{jk}^h$$

and using (2.1) and (2.4) we have

$$P_{ijk}^h b_h + C_{ijk} = 0.$$

Since $P_{imjk} = g_{mh}P_{ijk}^h$ is skew-symmetric in i and m, contraction of above equation with $b^i = g^{ij}b_j$ gives $C_{ijk}b^i = 0$. Hence we have the following

Lemma 2.4 An h-vector b_i with $\rho \neq 0$ is not a concurrent vector field.

§3. Properties of the h-Randers Finsler Space

Let b_i be an h-vector in the Finsler space (M^n, L) and (M^n, L^*) be another Finsler space whose fundamental function $L^*(x, y)$ is given by (1.2).

Since b_i is an h-vector, from (2.1) and (2.2), we get

$$\dot{\partial}_j b_i = L^{-1} \rho h_{ij},\tag{3.1}$$

which after using the indicatory property of h_{ij} yields $\dot{\partial}_j \beta = b_j$.

Definition 3.1 Let M^n be an n-dimensional differentiable manifold and F^n be a Finsler space equipped with a fundamental function $L(x,y), (y^i = \dot{x}^i)$ of M^n . A change in the fundamental function L by the equation (1.2) on the same manifold M^n is called h-Randers change. A space equipped with fundamental metric L^* is called h-Randers changed Finsler space F^{*n} .

Now differentiating (1.2) with respect to y^i we have

$$l_i^* = l_i + b_i, \tag{3.2}$$

where $l_i = \dot{\partial}_i L$ is the normalized supporting element in (M^n, L) and $l_i^* = \dot{\partial}_i L^*$ is the normalized element of support in (M^n, L^*) . The quantities of (M^n, L^*) will be denoted by starred letter. Now differentiating (3.2) with respect to y^j then the angular metric tensor $h_{ij}^* = \dot{\partial}_j l_i^*$ is given by

$$h_{ij}^* = \sigma h_{ij}, \tag{3.3}$$

where $\sigma = LL^{-1}(1+\rho)$. Hence we have

$$g_{ij}^* = \sigma g_{ij} + (1 - \sigma)l_i l_j + (l_i b_j + l_j b_i) + b_i b_j.$$
(3.4)

From (3.4) the relation between the contravariant components of the fundamental tensors can be derived as follows

$$g^{*ij} = \sigma^{-1}g^{ij} - (1+\rho^2)\sigma^{-3}(1-b^2-\sigma)l^il^j - (1+\rho)\sigma^{-2}(l^ib^j + l^jb^i), \tag{3.5}$$

where b is the magnitude of the vector b_i .

From the lemma (2.1) and (3.2) we have

$$\dot{\partial}_i \sigma = \frac{(1+\rho)}{L} m_i, \tag{3.6}$$

$$m_i = b_i - \frac{\beta}{L} l_i. (3.7)$$

Now differentiating (3.3) with respect to y^k (3.2), (3.6), (3.3) and the fact

$$\dot{\partial}_k h_{ij} = 2C_{ijk} - L^{-1}(h_{ik}l_j + h_{jk}l_i),$$

we have

$$C_{ijk}^* = \sigma C_{ijk} + (1+\rho) \frac{h_{ij} m_k + h_{jk} m_i + h_{ki} m_j}{2L}.$$
 (3.8)

From the definition of m_i , it is evident that

(a)
$$m_i l^i$$
, (b) $m_i b^i = b^2 - \frac{\beta^2}{L^2} = m^i m_i$,
(c) $h_{ij} m^i = h_{ij} b^i = m_j$, (d) $C^h_{ij} m_h = L^{-1} \rho h_{ij}$.

From (2.1), (3.5), (3.8) and (3.9) we have

$$C_{ij}^{*r} = C_{ij}^{r} + \frac{(h_{ij}m^{r} + h_{j}^{r}m_{i} + h_{i}^{r}m_{j})}{2L^{*}} - \frac{1}{L^{*}} [\{\rho + \frac{L}{2L^{*}}(b^{2} - \frac{\beta^{2}}{L^{2}})\}h_{ij} + \frac{L}{L^{*}}m_{i}m_{j}]l^{r}.$$
(3.10)

Proposition 3.1 Let $F^{*n} = (M^n, L^*)$ be an n-dimensional Finsler space obtained from the h-Randers change of the Finsler space $F^n = (M^n, L)$, then the normalized supporting element l_i^* , angular metric tensor h_{ij}^* , fundamental metric tensor g_{ij}^* and (h)hv-torsion tensor C_{ijk}^* of F^{*n} are given by (3.2), (3.3), (3.4) and (3.8) respectively.

Proposition 3.2 Let $F^{*n} = (M^n, L^*)$ be an n-dimensional Finsler space obtained from the h-Randers change of the Finsler space $F^n = (M^n, L)$, then the reciprocal of the fundamental metric tensor g_{ij}^* is given by (3.5).

The curvature tensor S_{hijk} of (M^n, L^*) is given by

$$S_{hijk}^* = C_{hkm}^* C_{ii}^{*m} - C_{him}^* C_{ik}^{*m}. (3.11)$$

From the equation (3.8) and (3.10), we have

$$C_{hkm}^{*}C_{ij}^{*m} = \sigma C_{hkm}C_{ij}^{m} + \alpha h_{ij}h_{hk} + \frac{(1+\rho)}{2L} \{C_{ijk}m_{h} + C_{hjk}m_{i} + C_{hik}m_{j} + C_{hij}m_{k}\} + \frac{(1+\rho)}{4LL^{*}} \{2h_{ij}m_{k}m_{h} + 2h_{hk}m_{i}m_{j} + h_{ik}m_{j}m_{h} + h_{ih}m_{j}m_{k} + h_{jk}m_{i}m_{h} + h_{jh}m_{i}m_{k}\},$$

$$(3.12)$$

where $\alpha = \frac{(1+\rho)\rho}{4L^2} + \frac{1+\rho}{4LL^*}(b^2 - \frac{\beta^2}{L^2})$. Thus from (3.11) we have

$$S_{hijk}^* = \sigma S_{hijk} + h_{ij} d_{hk} + h_{hk} d_{ij} - h_{ik} d_{jh} - h_{hj} d_{ik}, \tag{3.13}$$

where $d_{ij} = \frac{\sigma}{2}h_{ij} + \frac{1+\rho}{4LL^*}m_im_j$.

If we define the tensor A_{ij} and B_{ij} as

$$A_{ij} = \frac{h_{ij} + d_{ij}}{\sqrt{2}}, \quad B_{ij} = \frac{h_{ij} - d_{ij}}{\sqrt{2}},$$
 (3.14)

then S_{hijk}^* is written as

$$S_{hijk}^* = \sigma S_{hijk} - (A_{hj}A_{ik} - A_{hk}A_{ij}) + (B_{hj}B_{ik} - B_{hk}B_{ij}). \tag{3.15}$$

Thus we have

Proposition 3.3 Let $F^{*n} = (M^n, L^*)$ be an n-dimensional Finsler space obtained from the h-Randers change of the Finsler space $F^n = (M^n, L)$, then the curvature tensor S^*_{hijk} is given by (3.15).

If $|_{i}$ denotes v-covariant differentiation with respect to y^{j} in (M^{n}, L^{*}) then we have

$$h_{ij}|_k - h_{ik}|_j = \frac{(h_{ij}l_k - h_{ik}l_j)}{L},$$
 (3.16)

$$m_i|_j - m_j|_i = \frac{(m_i l_j - m_j l_i)}{L},$$
 (3.17)

$$d_{ij}|_k - d_{ik}|_j = \frac{(d_{ij}l_k - d_{ik}l_j)}{L}. (3.18)$$

Hence from (3.14), (3.16) and (3.18), we get

$$A_{ij}|_{k} - A_{ik}|_{j} = \frac{(B_{ij}l_{k} - B_{ik}l_{j})}{L},$$
(3.19)

$$B_{ij}|_{k} - B_{ik}|_{j} = \frac{(A_{ij}l_{k} - A_{ik}l_{j})}{I}.$$
(3.20)

$\S 4.$ Imbedding Class Numbers of Tangent Riemannian Space to (M^n,L) and (M^n,L^*)

The tangent vector space M_x^n to M^n at every point x is regarded as n-dimensional Riemannian space (M_x^n, g_x) with Riemannian metric $g_x = g_{ij}(x, y)dy^idy^j$. Thus the component C_{jk}^i of Cartan's C-tensor are the Christoffel symbols associated with g_x , i.e.

$$C_{jk}^{i} = \frac{1}{2}g^{ih}(\partial_{k}g_{jh} + \dot{\partial}_{j}g_{hk} + \dot{\partial}_{h}g_{jk}).$$

Hence C_{jk}^i defines the Riemannian connection on M_x^n . It is observed from the definition if S_{hijk} that the curvature tensor of the Riemannian space (M_x^n, g_x) at a point x. The space (M_x^n, g_x) equipped with such a Riemannian connection will be called the tangent Riemannian space.

In the theory of Riemannian space, we know that any n-dimensional Riemannian space V^n , can be imbedded isometrically in a Euclidean space of dimension $\frac{n(n-1)}{2}$. If n+r is the lowest dimension of the Euclidean space in which V^n is imbedded isometrically then the integer r is called imbedding class number of V^n . The fundamental theorem of isometric imbedding [1] states that the tangent Riemannian n-space (M_x^n, g_x) is locally imbedded isometrically in an Euclidean n+r space if and only if there exist r numbers, and $\lambda=\pm 1, r$ symmetric tensor $H_{(P)ij}$ and $\frac{r(r-1)}{2}$ covariant vector fields $H_{(PQ)i}=H_{(QP)i}, \quad Q=1,2,3,\cdots,r$ satisfying the Gauss equations,

$$S_{hijk} = Sigma\lambda_{(P)} \{H_{(P)hj}H_{(P)ik} - H_{(P)hk}H_{(P)ij}\},$$

where summation is given over P.

The Codazzi equations

$$H_{(P)ij}|_k - H_{(P)ik}|_j = \sum \lambda_{(Q)} \{H_{(Q)ij}H_{(QP)k} - H_{(Q)ik}H_{(QP)j}\},$$

where summation is given over Q and Ricci-Kuhne equations

$$H_{(PQ)i}|_{j} - H_{(PQ)j}|_{i} + \sum \lambda_{(R)} \{H_{(RP)i}H_{(RQ)j} - H_{(RP)i}H_{(PQ)i}\} + g^{hk} \{H_{(P)hi}H_{(Q)kj} - H_{(P)hi}H_{(Q)ki}\} = 0.$$

For a special case when (M_x^n, g_x) is of imbedding class 1, the above equations reduce to

$$S_{hijk} = \lambda (H_{hj}H_{ik} - H_{hk}H_{ij}), \tag{4.1}$$

$$H_{ij}|_k - H_{ik}|_j = 0. (4.2)$$

Since $S_{hijk}y^k = 0$, from (3.21), we have

$$H_{hj}H_{i0} - H_{h0}H_{ij} = 0$$

contracting above equation by y^i , we have

$$H_{hj}H_{00} - H_{h0}H_{0j} = 0,$$

which implies that $H_{0j} = 0$ or $H_{ij} = H_{00}^{-1} H_{h0} H_{0j}$. In the latter case we get $S_{hijk} = 0$. In the theory of spaces of imbedding class 1, [17] introduced the concept of type number t, which is the rank of matrix $||H_{ij}||$ provided to the rank is more than 1. If the rank is 0 or 1, then S vanishes. Therefore if (M_x^n, g_x) is of imbedding class 1, the second fundamental tensor H_{ij} satisfies $H_{ij}y^j = 0$ and thus the type number t is less than n.

Again by virtue of Lemma 2.3 and equation (4.1), we get

$$H_{hi}H_{ik} - H_{hk}H_{ii}b^h = 0.$$

From this equation we have

$$H_{hi}b^h b^j H_{ik} - H_{hk}b^h H_{ii}b^j = 0.$$

This gives

$$H_{hk}b^h = 0$$
, or $H_{ik} = \frac{H_{hk}b^h H_{ij}b^j}{H_{hj}b^h b^j}$.

In the latter case $S_{hijk} = 0$. Thus for an imbedding class 1, $H_{hk}b^k = 0$. Now we shall put

$$H_{(1)ij}^* = \sqrt{\sigma} H_{ij}, \qquad \varepsilon_1^* = \varepsilon,$$
 (4.3)

$$H_{(2)ij}^* = A_{ij}, \qquad \varepsilon_2^* = -1, \tag{4.4}$$

$$H_{(3)ij}^* = B_{ij}, \qquad \varepsilon_3^* = 1, \tag{4.5}$$

then from (3.15) and (4.1), we get

$$S_{hijk}^* = \sum \lambda_P^* \{ H_{(P)hj}^* H_{(P)ik}^* - H_{(P)hh}^* H_{(P)ij}^* \},$$

where summation is varies from P = 1, 2, 3. Thus the above equation is noting but Gauss equation of (M_x^n, g_x^*) .

Now we put

$$H_{(21)i}^* = -H_{(12)i}^* = 0, (4.6)$$

$$H_{(31)i}^* = -H_{(13)i}^* = 0, (4.7)$$

$$H_{(32)i}^* = -H_{(23)i}^* = \frac{1}{L}l_i \tag{4.8}$$

and using (4.2), (4.3), (3.3), Lemma 2.1 and the fat that $H_{i0} = 0$, we get

$$H_{(1)ij}^*|_k - H_{(1)ik}^*|_j = 0. (4.9)$$

Again in view of (4.4), (4.5), (4.6), (4.7) and (4.8), equations (3.19) and (3.20) reduce to

$$H_{(2)ij}^*|_k - H_{(2)ik}^*|_j = \sum \lambda_Q^* \{ H_{(Q)ij}^* H_{(Q2)k}^* - H_{(Q)ik}^* H_{(Q2)j}^* \},$$

$$4.10$$

$$H_{(3)ij}^*|_k - H_{(3)ik}^*|_j = \sum \lambda_Q^* \{ H_{(Q)ij}^* H_{(Q3)k}^* - H_{(Q)ik}^* H_{(Q3)j}^* \},$$

$$4.11$$

where summation is varies from Q = 1, 2, 3.

The equations (4.9), (4.10) and (4.11) are the Codazzi equations of (M_x^n, g_x^*) . Now we have to verify Ricci-Kuhne equations, we have from (3.10),

$$l_i|_j = L^{-1}h_{ij+L^{*-1}}\left[\left\{\rho + (2L^*)^{-1}(v^2 - \frac{\beta^2}{L^2})\right\}h_{ij} + L^{*-1}m_i m_j\right]$$

from which we get $l_i|_j - l_j|_i = 0$. Hence from (4.10), we get

$$H_{(32)i}^*|_j - H_{(23)j}^*|_i = 0,$$

which are the Ricci-Kuhne equations of (M_x^n, g_x^*) as

$$M_{(12)}^* - M_{(21)}^* = 0$$
, and $M_{(13)}^* - M_{(31)}^* = 0$.

Thus from above we have

Theorem 4.1 Let $F^{*n} = (M^n, L^*)$ be an n-dimensional Finsler space obtained from the h-Randers change of the Finsler space $F^n = (M^n, L)$, then if the tangent Riemannian n-space (M_x^n, g_x) to (M^n, L) is of imbedding class 1, then the tangent Riemannian n-space (M_x^n, g_x) to (M^n, L^*) is at most of imbedding class 3.

References

- [1] Eisenhart L. P., Riemannian Geometry, Princeton (1925).
- [2] Hashiguchi M. and Ichijyo Y., On some special (α, β) metrics, Rep. Fac. Sci., Kagoshima Univ., 8 (1975), 39-46.
- [3] Ingarden R. S., Differential geometry and physics, Tensor, N.S., 20 (1970), 201-209.
- [4] Izumi H., Conformal transformations of Finsler spaces II. An h-conformally flat Finsler space, *Tensor*, *N.S.*, 33 (1980), 337-359.
- [5] Matsumoto M., On transformations of locally Minkowskian space, Tensor, N.S., 22 (1971), 103-111.

- [5] Matsumoto M., Finsler space admitting concurrent vector field, Tensor, N.S., 28 (1974), 239-249.
- [6] Matsumoto M., On Finsler spaces with Rander's metric and special forms of important tensors, J. Math. Kyoto Univ., 14 (1975), 477-498.
- [7] Matsumoto M., Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Japan (1986).
- [8] Numata S., On the curvature tensor S_{hijk} and the tensor T_{hijk} of generalized Rander's spaces, Tensor, N.S., 20 (1975), 35-39.
- [9] Numata S., On the torsion tensor R_{hjk} and P_{hjk} of Finsler spaces with metric $ds = \sqrt{(g_{ij}dx^idx^j)} + b_i(x)dx^i$, Tensor, N. S., 32 (1978), 27-31.
- [10] Prasad B. N., Singh V. P. and Singh Y. P., On concircular vector fields in Finsler space, Indian J. Pure Appl. Math., 17 (1986), 998-1007.
- [11] Pandey T. N. and Chaubey V. K., mth-root Randers change of a Finsler Metric, *International J. Math. Combin.*, 1, (2013), 38-45.
- [12] Randers G., On an asymmetrical metric in the four space of general relativity, *Phys. Rev.*, (2) 59 (1941), 195-199.
- [13] Singh U. P. and Prasad B. N., Modification of a Finsler space by a normalized semi-parallel vector field, *Periodica Mathematica Hungarica*, 14 (1) (1983), 31-41.
- [14] Shibata C., Shimada H., Azumi, M. and Yasuda, H., On Finsler spaces with Rander's metric, Tensor, N. S., 31 (1977), 219-226.
- [15] Tachibana S., On Finsler spaces which admit a concurrent vector field, *Tensor*, N. S. 1 (1950), 1-5.
- [16] Thomas T. Y., Riemannian spaces of class one and their characterization, Acta Math.,67 (1936), 169-211.