Nonholonomic Frames for Finsler Space with (α,β) -Metrics

Brijesh Kumar Tripathi¹, K.B.Pandey² and R.B. Tiwari³

- 1. Department of Mathematics, L.E. College, Morbi(Gujrat) 363642, India
- 2. Department of Mathematics, K.N.I.T., Sultanpur, U.P., 228118, India
- 3. Department of Mathematics, M.K.R.E.C.I.T., Ambedkar Nagar(U.P.), India

E-mail: brijeshkumartripathi4@gmail.com, kunjbiharipandey05@gmail.com, tiwarirambharat@yahoo.in

Abstract: The purpose of present paper to determine the two special Finsler spaces due to deformations of some special Finsler space with help of (α,β) -metrics. Consequently, we obtain the non-holonomic frame for the (α,β) -metrics, such as (I) $L = \left(\frac{\alpha^2}{\alpha-\beta}\right)\frac{\beta^2}{\alpha} = \frac{\alpha\beta^2}{(\alpha-\beta)}$ i.e. product of Matsumoto metric and Kropina metric and (II) $L = (\alpha+\beta)\frac{\beta^2}{\alpha} = \beta^2 + \frac{\beta^3}{\alpha}$ i.e. product of Randers metric and Kropina metric.

Key Words: Finsler Space, (α,β) -metrics, Randers metric, Kropina metric, Matsumoto metric, GL-metric, Non-holonomic Finsler frame.

AMS(2010): 53C60.

§1. Introduction

In 1982, P.R. Holland [1] and [2] studies a unified formalism that uses a nonholonomic frame on space time arising from consideration of a charged particle moving in an external electromagnetic field. In fact, R.S. Ingarden [3] was the first to point out that the Lorentz force law can be written in this case as geodesic equation on a Finsler space called Randers space. The author R.G. Beil [5], [6] have studied a gauge transformation viewed as a nonholonomic frame on the tangent bundle of a four dimensional base manifold. The geometry that follows from these considerations gives a unified approach to gravitation and gauge symmetries. In the present paper we have used the common Finsler idea to study the existence of a nonholonomic frame on the vertical sub bundle VTM of the tangent bundle of a base manifold M.

In this paper, the fundamental tensor field of a Finsler space might be considered as the deformations of two different special Finsler spaces from the (α,β) -metrics. Further we obtain corresponding frame for each of these two Finsler deformations. Consequently, a nonholonomic frame for a Finsler space with special (α,β) -metrics such as first is the product of Matsumoto metric[11] and kropina metric[11] and second is the product of Randers metric[11] and Kropina metric. This is an extension work of Ioan Bucataru and Radu Miron [10] and also second extension work of S.K. Narasimhamurthy [14].

Consider, $a_{ij}(x)$ the components of a Riemannian metric on the base manifold M, a(x,y) >

¹Received August 12, 2015, Accepted February 26, 2016.

0 and $b(x,y) \ge 0$ Two functions on TM and $B(x,y) = B_i(x,y) (dx^i)$ a vertical 1-form on TM. Then

$$g_{ij}(x,y) = a(x,y)a_{ij}(x) + b(x,y)B_i(x,y)B_j(x,y)$$
(1.1)

is a generalized Lagrange metric, called the Beil metric. The metric tensor g_{ij} is also known as a Beil deformation of the Riemannian metric a_{ij} . It has been studied and applied by R. Miron and R.K. Tavakol in General Relativity for $a(x,y) = exp(2\sigma(x,y))$ and b = 0. The case a(x,y) = 1 with various choices of b and B_i was introduced and studied by R.G. Beil for constructing a new unified field theory [6].

§2. Preliminaries

An important class of Finsler spaces is the class of Finsler spaces with (α,β) -metrics [11]. The first Finsler spaces with (α,β) -metrics were introduced by the physicist G.Randers in 1940, are called Randers spaces [4]. Recently, R.G. Beil suggested a more general case and considered the class of Lagrange spaces with (α,β) -metric, which was discussed in [12]. A unified formalism which uses a nonholonomic frame on space time, a sort of plastic deformation, arising from consideration of a charged particle moving in an external electromagnetic field in the background space time viewed as a strained mechanism studied by P. R. Holland [1], [2]. If we do not ask for the function L to be homogeneous of order two with respect to the (α,β) variables, then we have a Lagrange space with (α,β) -metric. Next we defined some different Finsler space with (α,β) -metrics.

Definition 2.1 A Finsler space $F^n = (M, F(x, y))$ is called with (α, β) -metric if there exists a 2-homogeneous function L of two variables such that the Finsler metric $F: TM \to R$ is given by

$$F^{2}(x,y) = L(\alpha(x,y), \beta(x,y)), \tag{2.1}$$

where $\alpha^2(x,y) = a_{ij}(x)y^iy^j$, α is a Riemannian metric on the manifold M, and $\beta(x,y) = b_i(x)y^i$ is a 1-form on M.

Consider $g_{ij} = \frac{1}{2} \frac{(\partial^2 F^2)}{(\partial y^i \partial y^j)}$ the fundamental tensor of the Randers space(M,F). Taking into account the homogeneity of a and F we have the following formulae:

$$p^{i} = \frac{1}{a}y^{i} = a^{ij}\frac{\partial\alpha}{\partial y^{j}}; \quad p_{i} = a_{ij}p^{j} = \frac{\partial\alpha}{\partial y^{i}};$$

$$l^{i} = \frac{1}{L}y^{i} = g^{ij}\frac{\partial l}{\partial y^{i}}; l_{i} = g_{ij}l^{j} = \frac{\partial L}{\partial y^{i}} = P_{i} + b_{i},$$

$$l^{i} = \frac{1}{L}p^{i}; l^{i}l_{i} = p^{i}p_{i} = 1; l^{i}p_{i} = \frac{\alpha}{L}; p^{i}l_{i} = \frac{L}{\alpha};$$

$$b_{i}P^{i} = \frac{\beta}{\alpha}; b_{i}l^{i} = \frac{\beta}{L}$$

$$(2.2)$$

with respect to these notations, the metric tensors (α_{ij}) and (g_{ij}) are related by [13],

$$g_{ij}(x,y) = \frac{L}{\alpha}a_{ij} + b_iP_j + P_ib_j - \frac{\beta}{\alpha}p_ip_j = \frac{L}{\alpha}(a_{ij} - p_ip_j) + l_il_j.$$

$$(2.3)$$

Theorem 2.1([10]) For a Finsler space (M,F) consider the matrix with the entries:

$$Y_i^j = \sqrt{\frac{\alpha}{L}} (\delta_j^i - l^i l_j + \sqrt{\frac{\alpha}{L}} p^i p_j)$$
 (2.4)

defined on TM. Then $Y_j = Y_j^i(\frac{\partial}{\partial u^i}), j \in 1, 2, 3, \dots, n$ is a non holonomic frame.

Theorem 2.2([7]) With respect to frame the holonomic components of the Finsler metric tensor $\alpha_{\alpha\beta}$ is the Randers metric g_{ij} , i.e.,

$$g_{ij} = Y_i^{\alpha} Y_i^{\beta} \alpha_{\alpha\beta}. \tag{2.5}$$

Throughout this section we shall rise and lower indices only with the Riemannian metric $\alpha_{ij}(x)$ that is $y_i = \alpha_{ij}y^j$, $\beta^i = \alpha^{ij}\beta_j$, and so on. For a Finsler space with (α,β) -metric $F^2(x,y) = L(\alpha(x,y),\beta(x,y))$ we have the Finsler invariants [13]

$$\rho_1 = \frac{1}{2\alpha} \frac{\partial L}{\partial \alpha}; \rho_0 = \frac{1}{2} \frac{\partial^2 L}{\partial \beta^2}; \rho_{-1} = \frac{1}{2\alpha} \frac{\partial^2 L}{\partial \alpha \partial \beta}; \rho_{-2} = \frac{1}{2\alpha^2} (\frac{\partial^2 L}{\partial \alpha^2} - \frac{1}{\alpha} \frac{\partial L}{\partial \alpha})$$
(2.6)

where subscripts 1, 0, -1, -2 gives us the degree of homogeneity of these invariants.

For a Finsler space with metric we have,

$$\rho_{-1}\beta + \rho_{-2}\alpha^2 = 0 \tag{2.7}$$

With respect to the notations we have that the metric tensor g_{ij} of a Finsler space with (α,β) -metric is given by [13]

$$g_{ij}(x,y) = \rho \alpha_{ij}(x) + \rho_0 b_i(x) + \rho_{-1}(b_i(x)y_j + b_j(x)y_i) + \rho_{-2}y_i y_j.$$
 (2.8)

From (2.8) we can see that g_{ij} is the result of two Finsler deformations

I.
$$a_{ij} \to h_{ij} = \rho a_{ij} + \frac{1}{\rho_{-2}} (\rho_{-1} b_i + \rho_{-2} y_i) (\rho_{-1} b_j + \rho_{-2} y_j)$$

II. $h_{ij} \to g_{ij} = h_{ij} + \frac{1}{\rho_{-2}} (\rho_0 \rho_{-1} - \rho_{-1}^2) b_i b_j.$ (2.9)

The nonholonomic Finsler frame that corresponding to the I^{st} deformation (2.9) is according to the Theorem 7.9.1 in [10], given by

$$X_{j}^{i} = \sqrt{\rho}\delta_{j}^{i} - \frac{1}{\beta^{2}}(\sqrt{\rho} + \sqrt{\rho + \frac{\beta^{2}}{\rho_{-2}}})(\rho_{-1}b^{i} + \rho_{-2}y^{i})(\rho_{-1}b_{j} + \rho_{-2}y_{j}), \tag{2.10}$$

where $B^2 = a_{ij}(\rho_{-1}b^i + \rho_{-2}y^i)(\rho_{-1}b_j + \rho_{-2}y_j) = \rho_{-1}^2b^2 + \beta\rho_{-1}\rho_{-2}$.

This metric tensor a_{ij} and h_{ij} are related by,

$$h_{ij} = X_i^k X_i^l a_{kl}. (2.11)$$

Again the frame that corresponds to the II_{nd} deformation (2.9) given by,

$$Y_j^i = \delta_j^i - \frac{1}{C^2} \left(1 \pm \sqrt{1 + \left(\frac{\rho_{-2}C^2}{\rho_0 \rho_{-2 - \rho_{-1}^2}} \right)} \right) b^i b_j, \tag{2.12}$$

where $C^2 = h_{ij}b^ib^j = \rho b^2 + \frac{1}{\rho_{-2}}(\rho_{-2}b^2 + \rho_{-2}\beta)^2$.

The metric tensor h_{ij} and g_{ij} are related by the formula

$$g_{mn} = Y_m^i Y_n^j h_{ij}. (2.13)$$

Theorem 2.3([10]) Let $F^2(x,y) = L(\alpha(x,y), \beta(x,y))$ be the metric function of a Finsler space with (α,β) metric for which the condition (2.7) is true. Then

$$V_i^i = X_k^i Y_i^k$$

is a nonholonomic Finsler frame with X_k^i and Y_j^k are given by (2.10) and (2.12) respectively.

§3. Nonholonomic Frames for Finsler Space with (α,β) -Metrics

In this section we consider two cases of non-holonomic Finlser frames with (α,β) -metrics, such a I^{st} Finsler frame product of Matusmoto metric and Kropina metric and II^{nd} Finsler frame product of Randers metric and Kropina metric.

(I) Nonholonomic Frames for
$$L = \left(\frac{\alpha^2}{\alpha - \beta}\right) \frac{\beta^2}{\alpha} = \frac{\alpha \beta^2}{\alpha - \beta}$$

In the first case, for a Finsler space with the fundamental function

$$L = \left(\frac{\alpha^2}{\alpha - \beta}\right) \frac{\beta^2}{\alpha} = \frac{\alpha \beta^2}{\alpha - \beta},$$

the Finsler invariants (2.6) are given by

$$\rho_{1} = -\frac{\beta^{3}}{2\alpha(\alpha - \beta)^{2}}; \rho_{0} = \frac{1}{2} \frac{(2\alpha^{3} - \alpha\beta^{2})}{(\alpha - \beta)^{3}};$$

$$\rho_{-1} = \frac{1}{2\alpha} \frac{\beta^{2}(\beta - 3\alpha)}{(\alpha - \beta)^{3}}; \rho_{-2} = \frac{\beta^{3}(3\alpha - \beta)}{2\alpha^{3}(\alpha - \beta)^{3}};$$

$$B^{2} = \frac{\beta^{2}(1 - 3\alpha)^{2}b^{2} + \beta^{5}(\alpha - \beta)(1 - 3\alpha)(3\alpha - \beta)}{4\alpha^{4}(\alpha - \beta)^{6}}.$$
(3.1)

Using (3.1) in (2.10) we have,

$$X_{j}^{i} = \sqrt{-\frac{\beta^{3}}{2\alpha(\alpha-\beta)^{2}}} \delta_{j}^{i} - \frac{\beta^{4}}{4\alpha^{4}(\alpha-\beta)^{5}} \left[\sqrt{\frac{-\beta^{3}}{2\alpha}} + \sqrt{\frac{4\alpha^{4}(\alpha-\beta)^{5} - \beta^{4}(3\alpha-\beta)}{2\alpha\beta(3\alpha-\beta)}} \right] \times (b^{i} - \frac{(3\alpha-\beta)}{\alpha^{2}(\alpha-\beta)}y^{i})(b_{j} - \frac{(3\alpha-\beta)}{\alpha^{2}(\alpha-\beta)}y_{j}).$$

$$(3.2)$$

Again using (3.1) in (2.12) we have,

$$Y_j^i = \delta_j^i - \frac{1}{C^2} \left(1 \pm \sqrt{1 + \frac{2(\alpha - \beta)^3 C^2}{\alpha^2 (2\alpha - 3\beta)}} \right) b^i b_j, \tag{3.3}$$

where
$$C^2 = -\frac{\beta^3}{2\alpha(\alpha-\beta)^2}b^2 + \frac{\beta(3\alpha-\beta)}{2\alpha^3(\alpha-\beta)^3}(\alpha^2b^2 - \beta^2)^2$$
.

Theorem 3.1 Consider Finsler space $L = \left(\frac{\alpha^2}{\alpha - \beta}\right) \frac{\beta^2}{\alpha} = \frac{\alpha \beta^2}{\alpha - \beta}$, for which the condition (2.7) is true. Then

$$V_i^i = X_k^i Y_i^k$$

is non-holomic Finsler Frame with X_k^i and Y_j^k are given by (3.2) and (3.3) respectively.

(II) Nonholonomic Frames for
$$L = (\alpha + \beta)(\frac{\beta^2}{\alpha}) = \beta^2 + \frac{\beta^3}{\alpha}$$

In the second case, for a Finsler space with the fundamental function $L = (\alpha + \beta)(\frac{\beta^2}{\alpha})$ the Finsler invariants (2.6) are given by:

$$\rho_{1} = -\frac{\beta^{3}}{2\alpha^{3}}; \rho_{0} = \frac{3\beta + \alpha}{\alpha}; \rho_{-1} = -\frac{3}{2}\frac{\beta^{2}}{\alpha^{3}}; \rho_{-2} = \frac{3}{2}\frac{\beta^{3}}{\alpha^{5}};$$

$$B^{2} = \frac{9}{4}\frac{\beta^{4}}{\alpha^{8}}(\alpha^{2}b^{2} - \beta^{2}), \tag{3.4}$$

$$X_{j}^{i} = \sqrt{-\frac{\beta^{3}}{2\alpha^{3}}} \quad \delta_{j}^{i} - \frac{9}{4} \frac{\beta^{2}}{\alpha^{6}} \left[\sqrt{-\frac{\beta^{3}}{2\alpha^{3}}} + \sqrt{-\frac{\beta^{3}}{2\alpha^{3}} + \frac{2}{3} \frac{\alpha^{5}}{\beta}} \right] (b^{i} - \frac{\beta}{\alpha^{2}} y^{i})(b_{j} - \frac{\beta}{\alpha^{2}} y_{j}). \tag{3.5}$$

Again using (3.4) in (2.12) we have

$$y_j^i = \delta_j^i - \frac{1}{c^2} \left[1 \pm \sqrt{1 + (\frac{2\alpha c^2}{2\alpha + 3\beta})} \right] b^i b_j,$$
 (3.6)

where $C^2 = -\frac{\beta^3}{2\alpha^3}b^2 + \frac{3}{2}\frac{\beta}{\alpha^5}[\alpha^2b^2 - \beta^2]^2$.

Theorem 3.2 Consider a Finsler space $L = (\alpha + \beta)(\frac{\beta^2}{\alpha}) = \beta^2 + \frac{\beta^3}{\alpha}$, for which the condition 2.7 is true. Then

$$V_j^i = X_k^i Y_j^k$$

is non-holomic Finsler Frame with X_k^i and Y_j^k are given by (3.5) and (3.6) respectively.

§4. Conclusions

Non-holonomic frame relates a semi-Riemannian metric (the Minkowski or the Lorentz metric) with an induced Finsler metric. Antonelli P.L., Bucataru I. ([7][8]), has been determined such a non-holonomic frame for two important classes of Finsler spaces that are dual in the sense of Randers and Kropina spaces [9]. As Randers and Kropina spaces are members of a bigger class of Finsler spaces, namely the Finsler spaces with(α,β)-metric, it appears a natural question: Does how many Finsler space with(α,β)-metrics have such a nonholonomic frame? The answer is yes, there are many Finsler space with(α,β)-metrics.

In this work, we consider the two special Finsler metrics and we determine the non-holonomic Finsler frames. Each of the frames we found here induces a Finsler connection on TM with torsion and no curvature. But, in Finsler geometry, there are many (α, β) —metrics, in future work we can determine the frames for them also.

References

- [1] Holland P.R., Electromagnetism, Particles and Anholonomy, *Physics Letters*, 91 (6)(1982), 275-278.
- [2] Holland P.R., Anholonomic deformations in the ether: a significance for the electrodynamic potentials. In: Hiley, B.J. Peat, F.D. (eds.), *Quantum Implications*, Routledge and Kegan Paul, London and New York, 295-311 (1987).
- [3] Ingarden R.S., On physical interpretations of Finsler and Kawaguchi spaces, *Tensor N.S.*, 46(1987), 354-360.
- [4] Randers G., On asymmetric metric in the four space of general relativity, *Phys. Rev.*, 59 (1941), 195-199.
- [5] Beil R.G., Comparison of unified field theories, Tensor N.S., 56(1995), 175-183.
- [6] Beil R.G., Equations of motion from Finsler geometric methods, In Antonelli, P.L. (ed), Finslerian Geometries, A meeting of minds, Kluwer Academic Publisher, FTPH, No.109(2000), 95-111.
- [7] Antonelli P.L., Bucataru I., On Holland's frame for Randers space and its applications in physics, In: Kozma, L. (ed), *Steps in Differential Geometry*, Proceedings of the Colloquium on Differential Geometry, Debrecen, Hungary, July 25-30, 2000, Debrecen: Univ. Debrecen, Institute of Mathematics and Informatics, 39-54, (2001).
- [8] Antonelli P.L., Bucataru I., Finsler connections in anholonomic geometry of a Kropina space, *Nonlinear Studies*, 8 (1)(2001), 171-184.
- [9] Hrimiuc D., Shimada H., On the L-duality between Lagrange and Hamilton manifolds, Nonlinear World, 3 (1996), 613-641.
- [10] Ioan Bucataru, Radu Miron, Finsler-Lagrange geometry applications to dynamical systems CEEX ET 3174/2005-2007, and CEEX M III 12595/2007 (2007).
- [11] Matsumoto M., Theory of Finsler spaces with $(\alpha; \beta)$ -metric, Rep. Math. Phys., 31, 43-83, (1992).
- [12] Bucataru I., Nonholonomic frames on Finsler geometry, Balkan Journal of Geometry and

- its Applications, 7 (1)(2002), 13-27.
- [13] Matsumoto M, Foundations of Finsler Geometry and Special Finsler Spaces, Kaishesha Press, Otsu, Japan, 1986.
- [14] Narasimhamurthy S.K., Mallikarjun Y.Kumar, Kavyashree A. R., Nonholonomic frames for Finsler space with special $(\alpha; \beta)$ -metric, *International Journal of Scientific and Research Publications*, 4(1)(2014), 1-7.