One Modulo N Gracefulness of Some Arbitrary Supersubdivision and Removal Graphs

V.Ramachandran

(Department of Mathematics, P.S.R Engineering College, Sivakasi, Tamil Nadu, India)

C.Sekar

(Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, Tamil Nadu, India)

E-mail: me.ram111@gmail.com; sekar.acas@gmail.com

Abstract: A graph G is said to be one modulo N graceful (where N is a positive integer) if there is a function ϕ from the vertex set of G to $\{0,1,N,(N+1),2N,(2N+1),\cdots,N(q-1),N(q-1)+1\}$ in such a way that (i) ϕ is 1-1 (ii) ϕ induces a bijection ϕ^* from the edge set of G to $\{1,N+1,2N+1,\cdots,N(q-1)+1\}$ where $\phi^*(uv)=|\phi(u)-\phi(v)|$. In this paper we prove that arbitrary supersubdivision of disconnected path and cycle $P_n \cup C_r$ is one modulo N graceful for all positive integer N. Also we prove that the graph $P_n^+ - v_k^{(1)}$ is one modulo N graceful for every positive integer N.

Key Words: Graceful, modulo N graceful, disconnected graphs, arbitrary supersubdivision graphs, $P_n \bigcup C_n$ and $P_n^+ - v_k^{(1)}$.

AMS(2010): 05C78

§1. Introduction

S. W. Golomb [3] introduced graceful labelling. Odd gracefulness was introduced by R. B. Gnanajothi [4]. C. Sekar [11] introduced one modulo three graceful labelling. In [8,9], we introduced the concept of one modulo N graceful where N is any positive integer. In the case N=2, the labelling is odd graceful and in the case N=1 the labelling is graceful. Joseph A. Gallian [2] surveyed numerous graph labelling methods. Recently G. Sethuraman and P. Selvaraju [5] have introduced a new method of construction called supersubdivision of a graph. Let G be a graph with n vertices and t edges. A graph H is said to be a supersubdivision of G if G is obtained by replacing every edge G if G by the complete bipartite graph G in some positive integer G in such a way that the ends of G is replaced with the two vertices part of G after removing the edge G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if every edge of G is replaced by an arbitrary G if G is equal to G if every edge of G is equal to G if every edge of G is equal to G if every edge of G is equal to G if every edge of G is equal to G if every edge of G is equal to G if every edge of G is equal to G if every edge of G is equal to G if every edge every edge every edge every edge.

G. Sethuraman and P. Selvaraju [6] proved that every connected graph has some supersub-

¹Received July 15, 2014, Accepted March 12, 2015.

division that is graceful. They pose the question as to whether some supersubdivision is valid for disconnected graphs. [10] We proved that an arbitrary supersubdivision of disconnected paths are graceful. Barrientos and Barrientos [1] proved that any disconnected graph has a supersubdivision that admits an α -labeling. They also proved that every supersubdivision of a connected graph admits an α -labeling.

In this paper we prove that arbitrary supersubdivision of disconnected path and cycle $P_n \cup C_r$ is one modulo N graceful for all positive integer N. When N=1 we get an affirmative answer for their question. Also we prove that the graph $P_n^+ - v_k^{(1)}$ is one modulo N graceful for every positive integer N.

§2. Main Results

Definition 2.1 A graph G with q edges is said to be one modulo N graceful (where N is a positive integer) if there is a function ϕ from the vertex set of G to $\{0,1,N,(N+1),2N,(2N+1),\ldots,N(q-1),N(q-1)+1\}$ in such a way that (i) ϕ is 1-1 (ii) ϕ induces a bijection ϕ^* from the edge set of G to $\{1,N+1,2N+1,\ldots,N(q-1)+1\}$ where $\phi^*(uv)=|\phi(u)-\phi(v)|$.

Definition 2.2 In the complete bipartite graph $K_{2,m}$ we call the part consisting of two vertices, the 2-vertices part of $K_{2,m}$ and the part consisting of m vertices the m-vertices part of $K_{2,m}$. Let G be a graph with p vertices and q edges. A graph H is said to be a supersubdivision of G if H is obtained by replacing every edge e of G by the complete bipartite graph $K_{2,m}$ for some positive integer m in such a way that the ends of e are merged with the two vertices part of $K_{2,m}$ after removing the edge e from G. H is denoted by SS(G).

Definition 2.3 A supersubdivision H of a graph G is said to be an arbitrary supersubdivision of the graph G if every edge of G is replaced by an arbitrary $K_{2,m}$ (m may vary for each edge arbitrarily). H is denoted by ASS(G).

Definition 2.4 Let v_1, v_2, \ldots, v_n be the vertices of a path of length n and $v_1^{(1)}, v_2^{(1)}, \ldots, v_n^{(1)}$ be the pendant vertices attached with v_1, v_2, \ldots, v_n respectively. The removal of a pendant vertex $v_k^{(1)}$ where $1 \leq k \leq n$ from P_n^+ yields the graph $P_n^+ - v_k^{(1)}$.

Theorem 2.5 Arbitrary supersubdivision of disconnected path and cycle $P_n \cup C_r$ is one modulo N graceful provided the arbitrary supersubdivision is obtained by replacing each edge of G by $K_{2,m}$ with $m \ge 2$.

Proof Let P_n be a path with successive vertices v_1, v_2, \dots, v_n and let e_i $(1 \le i \le n-1)$ denote the edge $v_i v_{i+1}$ of P_n . Let C_r be a cycle with successive vertices $v_{n+1}, v_{n+2}, \dots, v_{n+r}$ and let $e_i (n+1 \le i \le n+r)$ denote the edge $v_i v_{i+1}$.

Let H be an arbitrary supersubdivision of the disconnected graph $P_n \cup C_r$ where each edge e_i of $P_n \cup C_r$ is replaced by a complete bipartite graph K_{2,m_i} with $m_i \ge 2$ for $1 \le i \le n-1$ and $n+1 \le i \le n+r$. Here the edge $v_{n+r}v_{n+1}$ is replaced by $k_{2,r-1}$. We observe that H has $M = 2(m_1 + m_2 + \cdots + m_{n-1} + m_{n+1} + \cdots + m_{n+r})$ edges.

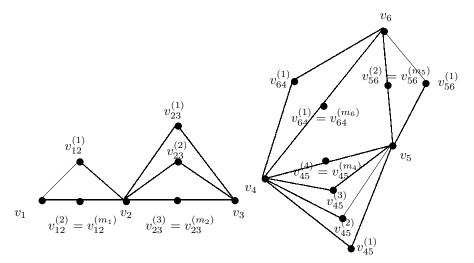


Figure 1 Supersubdivision of $P_3 \cup C_3$

Define

$$\phi(v_i) = N(i-1), \ i = 1, 2, 3, \dots, n,$$

$$\phi(v_i) = N(i), \ i = n+1, n+2, n+3, \dots, n+r, \text{ and for } k = 1, 2, 3, \dots, m_i,$$

$$\phi(v_{i,i+1}^{(k)}) = \begin{cases} N(M-2k+1) + 1 & \text{if } i = 1\\ N(M-2+i) + 1 - 2N(m_1 + m_2 + \dots + m_{i-1} + k - 1) & \text{if } i = 2, 3, \dots n-1\\ N(M-1+i) + 1 - 2N(m_1 + m_2 + \dots + m_{n-1} + k - 1) & \text{if } i = n+1\\ N(M-1+i) + 1 - 2N[(m_1 + m_2 + \dots + m_{n-1}) + (m_{n+1} + \dots + m_{i-1}) + k - 1] & \text{if } i = n+2, n+3, \dots n+r-1 \end{cases}$$

From the definition of ϕ it is clear that

and for $k = 1, 2, 3, \dots, m_{n+r}, \phi(v_{n+r,n+1}^{(k)}) = N(n+r-k+m_{n+r}) + 1$

$$\{\phi(v_i), i=1,2,\cdots,n+r\} \quad \bigcup \{\phi(v_{i,i+1}^{(k)}), i=1,2,\cdots,n+r-1 \text{ and } k=1,2,3,\cdots,m_i\} \\ \bigcup \{\phi(v_{n+r,n+1}^{(k)}), k=1,2,3,\cdots,m_i\} \\ = \{0,N,2N,\cdots,N(n-1)\} \quad \bigcup \{N(n+1),N(n+2),\cdots,N(n+r)\} \\ \bigcup \{N[M-2k+1]+1,N[M-2m_1]+1,N[M-2m_1-2]+1\cdots,N[M-2(m_1+m_2)+1]+1,N[M-2(m_1+m_2)+1]+1,N[M-2(m_1+m_2)+1]+1,N[M-2(m_1+m_2)+1]+1,N[M-2(m_1+m_2)+1]+1,N[M-3+n-2(m_1+m_2+\cdots+m_{n-2})]+1,N[M-5+n-2(m_1+m_2+\cdots+m_{n-2})]+1,\dots,N[M-1+n-2(m_1+m_2+\cdots+m_{n-1})]+1,N[M+n-2(m_1+m_2+\cdots+m_{n-1})]+1,N[M+n-2(m_1+m_2+\cdots+m_{n-1}+1)]+1,\dots,N[M+n-2(m_1+m_2+\cdots+m_{n-1}+1)]+1,N[M+n-2(m_1+m_2+\cdots+m_{n-1}+1)]+1,N[M+n-2(m_1+m_2+\cdots+m_{n-1}+1)]+1,N[M+n-2(m_1+m_2+\cdots+m_{n-1}+1)]+1,N[M+n-2(m_1+m_2+\cdots+m_{n-1}+1)]+1,N[M+n-2(m_1+m_2+\cdots+m_{n-1}+1)]+1,N[M+n-2(m_1+m_2+\cdots+m_{n-1}+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+m_2+1)]+1,N[M+1+n-2(m_1+$$

$$\begin{split} N[M-1+n-2(m_1+m_2+\cdots+m_{n-1}+m_{n+1})]+1,\cdots,\\ N[M+3+n-2(m_1+m_2+\cdots+m_{n-1}+m_{n+1}+m_{n+2})]+1,\\ N[M+2+n-2(m_1+m_2+\cdots+m_{n-1}+m_{n+1}+m_{n+2})]+1,\\ N[M+n-2(m_1+m_2+\cdots+m_{n-1}+m_{n+1}+m_{n+2})]+1,\cdots,\\ N[M+4+n-2(m_1+m_2+\cdots+m_{n-1}+m_{n+1}+m_{n+2}+m_{n+3})]+1,\\ N[M-2+n+r-2(m_1+m_2+\cdots+m_{n-1}+m_{n+1}+m_{n+2}+m_{n+3})]+1,\\ N[M-2+n+r-2[(m_1+m_2+\cdots+m_{n-1})+(m_{n+1}+m_{n+2}+\cdots+m_{n+r-2})]]+1,\\ N[M-4+n+r-2[(m_1+m_2+\cdots+m_{n-1})+(m_{n+1}+m_{n+2}+\cdots+m_{n+r-2})]]+1,\\ \cdots,N[M+n+r-2[(m_1+m_2+\cdots+m_{n-1})+(m_{n+1}+m_{n+2}+\cdots+m_{n+r-1})]]+1,\\ \bigcup\{N(n+r-1+m_{n+r})+1,N(n+r-2+m_{n+r})+1,\cdots,N(n+r)+1\} \end{split}$$

Thus it is clear that the vertices have distinct labels. Therefore ϕ is 1-1. We compute the edge labels as follows:

For
$$k = 1, 2, \dots, m_1$$
, $\phi^*(v_{1,2}^{(k)}v_1) = |\phi(v_{1,2}^{(k)}) - \phi(v_1)| = N(M - 2k + 1) + 1$, $\phi^*(v_{1,2}^{(k)}v_2) = |\phi(v_{1,2}^{(k)}) - \phi(v_2)| = N(M - 2k) + 1$.

For
$$k = 1, 2, \dots, m_i$$
 and $i = 2, 3, \dots, n-1$, $\phi^*(v_{i,i+1}^{(k)}v_i) = |\phi(v_{i,i+1}^{(k)}) - \phi(v_i)| = N(M-2k+1) - 2N(m_1 + m_2 + \dots + m_{i-1}) + 1$, $\phi^*(v_{i,i+1}^{(k)}v_{i+1}) = |\phi(v_{i,i+1}^{(k)}) - \phi(v_{i+1})| = N(M-2k) - 2N(m_1 + m_2 + \dots + m_{i-1}) + 1$.

For
$$k = 1, 2, \dots, m_{n+1}, \ \phi^*(v_{n+1, n+2}^{(k)}v_{n+1}) = |\phi(v_{n+1, n+2}^{(k)}) - \phi(v_{n+1})| = N(M-2k+1) - 2N(m_1 + m_2 + \dots + m_{n-1}) + 1, \ \phi^*(v_{n+1, n+2}^{(k)}v_{n+2}) = |\phi(v_{n+1, n+2}^{(k)}) - \phi(v_{n+2})| = N(M-2k) - 2N(m_1 + m_2 + \dots + m_{n-1}) + 1.$$

For
$$k = 1, 2, ..., m_i$$
 and $j = n + 2, n + 3, ..., n + r$, $\phi^*(v_{i,i+1}^{(k)}v_i) = |\phi(v_{i,i+1}^{(k)}) - \phi(v_i)| = N(M-2k+1)-2N\{(m_1+m_2+...+m_{n-1})+(m_{n+1}+m_{n+2}+...+m_{i-1})\}+1$, $\phi^*(v_{i,i+1}^{(k)}v_{i+1}) = |\phi(v_{i,i+1}^{(k)})-\phi(v_{i+1})| = N(M-2k)-2N\{(m_1+m_2+...+m_{n-1})+(m_{n+1}+m_{n+2}+...+m_{i-1})\}+1$.

For
$$k = 1, 2, \dots, m_{n+r}, \ \phi^*(v_{n+r,n+1}^{(k)}v_{n+r}) = |\phi(v_{n+r,n+1}^{(k)}) - \phi(v_{n+r})| = N(m_{n+r} - k) + 1,$$

$$\phi^*(v_{n+r,n+1}^{(k)}v_{n+1}) = |\phi(v_{n+r,n+1}^{(k)}) - \phi(v_{n+1})| = N(m_{n+r} + r - k - 1) + 1.$$

It is clear from the above labelling that the m_i+2 vertices of K_{2,m_i} have distinct labels and the $2m_i$ edges of K_{2,m_i} also have distinct labels for $1 \le i \le n-1$ and $n+1 \le i \le n+r-1$. Therefore the vertices of each $K_{2,m_i}, 1 \le i \le n-1$ and $n+1 \le i \le n+r-1$ in the arbitrary supersubdivision H of $P_n \cup C_r$ have distinct labels and also the edges of each $K_{2,m_i}, 1 \le i \le n-1$ and $n+1 \le i \le n+r-1$ in the arbitrary supersubdivision graph H of $P_n \cup C_r$ have distinct labels. Clearly H is one modulo N graceful. Hence arbitrary supersubdivisions of disconnected path and cycle $P_n \cup C_r$ is one modulo N graceful, for every positive integer N.

Consequently, every disconnected graph has some supersubdivision that is one modulo N graceful. $\hfill\Box$

Example 2.6 A odd graceful labelling of $ASS(P_3 \cup C_4)$ is shown in Figure 2.

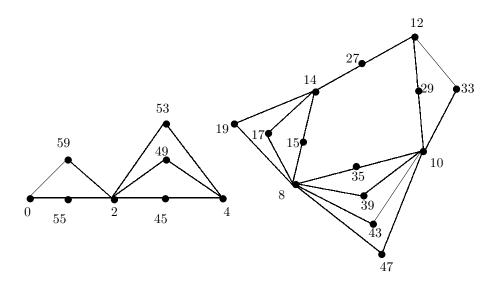


Figure 2

Example 2.7 A graceful labelling of $ASS(P_3 \cup C_3)$ is shown in Figure 3.

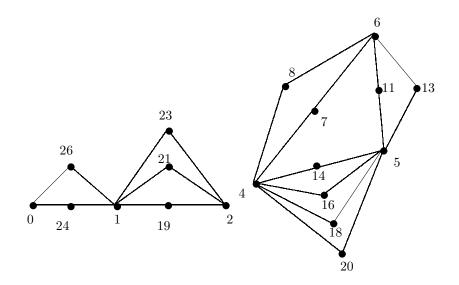


Figure 3

Theorem 2.8 For any pendant vertex $v_k^{(1)} \in V(P_n^+)$, the graph $P_n^+ - v_k^{(1)}$ is one modulo N graceful for every positive integer N.

Proof Let v_1, v_2, \dots, v_n be the vertices of a path of length n and $v_1^{(1)}, v_2^{(1)}, \dots, v_n^{(1)}$ the pendant vertices attached with v_1, v_2, \dots, v_n respectively. Consider the graph $P_n^+ - v_k^{(1)}$, where $1 \leq k \leq n$. It has 2n - 1 vertices and 2n - 2 edges.

Case 1. n is even and k is even

Define

$$\phi(v_{2i-1}) = \begin{cases} N(2n-3) + 1 - 2N(i-1) & \text{for } i = 1, 2, \dots, \frac{k}{2} \\ N(2n-3) + 1 - 2N(\frac{k}{2}-1) - N - 2N(i-(\frac{k}{2}+1)) & \text{for } i = \frac{k}{2} + 1, \dots, \frac{n}{2} \end{cases},$$

$$\phi(v_{2i}) = N(2i-1)$$
 for $i = 1, 2, \dots, \frac{n}{2}$,

$$\phi(v_{2i}^{(1)}) = \begin{cases} 2N(n-2) + 1 - 2N(i-1) & \text{for } i = 1, 2, \dots, \frac{k}{2} - 1\\ 2N(n-2) + 1 - 2N(\frac{k}{2} - 2) - 3N - 2N(i - (\frac{k}{2} + 1)) & \text{for } i = \frac{k}{2} + 1, \frac{k}{2} + 2, \dots, \frac{n}{2} \end{cases},$$

$$\phi(v_{2i-1}^{(1)}) = 2N(i-1)$$
 for $i = 1, 2, \dots, \frac{n}{2}$.

From the definition of ϕ it is clear that

$$\{\phi(v_{2i-1}), \ i=1,2,\cdots,\frac{n}{2}\} \bigcup \{\phi(v_{2i}), \ i=1,2,\cdots,\frac{n}{2}\}$$

$$\bigcup \{\phi(v_{2i}^{(1)}), i=1,2,\cdots,\frac{k}{2}-1,\frac{k}{2}+1,\frac{k}{2}+2,\cdots,\frac{n}{2}\}$$

$$\bigcup \{\phi(v_{2i-1}^{(1)}), \ i=1,2,\cdots,\frac{n}{2}\}$$

$$= \{N(2n-3)+1, N(2n-5)+1,\cdots,N(2n-k-1)+1, N(2n-k-2)+1, N(2n-k-4)+1,\ldots,Nn+1\} \bigcup \{N,3N,\cdots,N(n-1)\}$$

$$\bigcup \{2N(n-2)+1,2N(n-3)+1,\cdots,N(2n-k)+1,N(2n-k-3)+1, N(2n-k-5)+1,\cdots,N(n-1)+1\} \bigcup \{0,2N,\ldots,N(n-2)\}$$

Thus it is clear that the vertices have distinct labels. Therefore ϕ is 1-1. We compute the edge labels as follows.

For
$$i = 1, 2, \dots, \frac{k}{2}$$
, $\phi^*(v_{2i-1}v_{2i}) = |\phi(v_{2i-1}) - \phi(v_{2i})| = N(2n-4i) + 1$, $\phi^*(v_{2i-1}v_{2i-1}^{(1)}) = |\phi(v_{2i-1}) - \phi(v_{2i-1}^{(1)})| = N(2n-4i+1) + 1$.

For
$$i = 1, 2, \dots, \frac{k}{2} - 1$$
, $\phi^*(v_{2i+1}v_{2i}) = |\phi(v_{2i+1}) - \phi(v_{2i})| = N(2n - 4i - 2) + 1$, $\phi^*(v_{2i}^{(1)}v_{2i}) = |\phi(v_{2i}^{(1)}) - \phi(v_{2i})| = N(2n - 4i - 1) + 1$.

For
$$i = \frac{k}{2} + 1, \frac{k}{2} + 2, \dots, \frac{n}{2}, \ \phi^*(v_{2i-1}v_{2i}) = | \ \phi(v_{2i-1}) - \phi(v_{2i}) | = N(2n - 4i + 1) + 1,$$

 $\phi^*(v_{2i-1}v_{2i-1}^{(1)}) = | \ \phi(v_{2i-1}) - \phi(v_{2i-1}^{(1)}) | = N(2n - 4i + 2) + 1, \ \phi^*(v_{2i}^{(1)}v_{2i}) = | \ \phi(v_{2i}^{(1)}) - \phi(v_{2i}) | = N(2n - 4i) + 1.$

For
$$i = \frac{k}{2} + 1, \frac{k}{2} + 2, \dots, \frac{n}{2} - 1, \phi^*(v_{2i+1}v_{2i}) = |\phi(v_{2i+1}) - \phi(v_{2i})| = N(2n - 4i - 1) + 1.$$

This show that the edges have the distinct labels $\{1, N+1, 2N+1, \cdots, N(q-1)+1\}$, where q=2n-2. Hence for every positive integer N, $P_n^+ - v_k^{(1)}$ is one modulo N graceful if n is even and k is even.

Example 2.9 A one modulo 10 graceful labelling of $P_{10}^+ - v_6^{(1)}$ is shown in Figure 4.

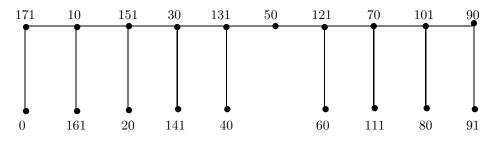


Figure 4

Case 2. n is even and k is odd

Define

$$\phi(v_{2i}) = \begin{cases} N(2i-1) & \text{for } i = 1, 2, \dots, \frac{k-1}{2} \\ N(k-2) + N + 2N(i - (\frac{(k+1)}{2})) & \text{for } i = \frac{k+1}{2}, \frac{k+3}{2}, \dots, \frac{n}{2} \end{cases},$$

$$\phi(v_{2i-1}) = N(2n-3) + 1 - 2N(i-1)$$
 for $i = 1, 2, \dots, \frac{n}{2}$,

$$\phi(v_{2i-1}^{(1)}) = \begin{cases} 2N(i-1) & \text{for } i = 1, 2, \dots, \frac{k-1}{2} \\ 2N(\frac{k-1}{2} - 1) + 3N + 2N(i - (\frac{k+3}{2})) & \text{for } i = \frac{k+3}{2}, \frac{k+5}{2}, \dots, \frac{n}{2} \end{cases},$$

$$\phi(v_{2i}^{(1)}) = 2N(n-2) + 1 - 2N(i-1)$$
 for $i = 1, 2, \dots, \frac{n}{2}$.

The proof is similar to that of Case 1. Hence for every positive integer N, $P_n^+ - v_k^{(1)}$ is one modulo N graceful if n is even and k is odd.

Example 2.10 A one modulo 4 graceful labelling of $P_{12}^+ - v_9^{(1)}$ is shown in Figure 5.

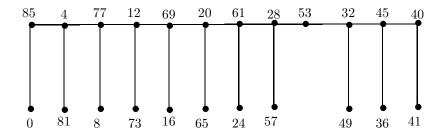


Figure 5

Case 3. n is odd and k is even

Define

$$\phi(v_{2i-1}) = \begin{cases} N(2n-3) + 1 - 2N(i-1) & \text{for } i = 1, 2, \dots, \frac{k}{2} \\ N(2n-3) + 1 - 2N(\frac{k}{2}-1) - N - 2N(i-(\frac{k}{2}+1)) & \text{for } i = \frac{k}{2} + 1, \dots, \frac{n-1}{2} \end{cases},$$

$$\phi(v_{2i}) = N(2i-1)$$
 for $i = 1, 2, \dots, \frac{n-1}{2}$,

$$\phi(v_{2i}^{(1)}) = \begin{cases} 2N(n-2) + 1 - 2N(i-1) & \text{for } i = 1, 2, \dots, \frac{k}{2} - 1 \\ 2N(n-2) + 1 - 2N(\frac{k}{2} - 2) - 3N - 2N(i - (\frac{k}{2} + 1)) & \text{for } i = \frac{k}{2} + 1, \dots, \frac{n-1}{2} \end{cases},$$

$$\phi(v_{2i-1}^{(1)}) = 2N(i-1)$$
 for $i = 1, 2, \dots, \frac{n-1}{2}$.

From the definition of ϕ it is clear that

$$\{\phi(v_{2i-1}), \ i=1,2,\cdots,\frac{n-1}{2}\} \bigcup \{\phi(v_{2i}), \ i=1,2,\cdots,\frac{n-1}{2}\}$$

$$\bigcup \{\phi(v_{2i}^{(1)}), \ i=1,2,\cdots,\frac{k}{2}-1,\frac{k}{2}+1,\frac{k}{2}+2,\cdots,\frac{n-1}{2}\} \bigcup \{\phi(v_{2i-1}^{(1)}), \ i=1,2,\cdots,\frac{n-1}{2}\}$$

$$= \{N(2n-3)+1,N(2n-5)+1,\ldots,N(2n-k-1)+1,N(2n-k-2)+1,$$

$$N(2n-k-4)+1,\ldots,N(n-1)+1\} \bigcup \{N,3N,\ldots,N(n-2)\}$$

$$\bigcup \{2N(n-2)+1,2N(n-3)+1,\ldots,N(2n-k)+1,N(2n-k-3)+1,$$

$$N(2n-k-5)+1,\ldots,Nn+1\} \bigcup \{0,2N,\ldots,N(n-1)\}$$

Thus it is clear that the vertices have distinct labels. Therefore ϕ is 1-1. We compute the edge labels as follows:

For
$$i = 1, 2, \dots, \frac{k}{2}$$
, $\phi^*(v_{2i-1}v_{2i}) = |\phi(v_{2i-1}) - \phi(v_{2i})| = N(2n-4i) + 1$, $\phi^*(v_{2i-1}v_{2i-1}^{(1)}) = |\phi(v_{2i-1}) - \phi(v_{2i-1}^{(1)})| = N(2n-4i+1) + 1$.

For
$$i = 1, 2, \dots, \frac{k}{2} - 1$$
, $\phi^*(v_{2i+1}v_{2i}) = |\phi(v_{2i+1}) - \phi(v_{2i})| = N(2n - 4i - 2) + 1$, $\phi^*(v_{2i}^{(1)}v_{2i}) = |\phi(v_{2i}^{(1)}) - \phi(v_{2i})| = N(2n - 4i - 1) + 1$.

For
$$i = \frac{k}{2} + 1, \frac{k}{2} + 2, \dots, \frac{n-1}{2}, \ \phi^*(v_{2i-1}v_{2i}) = |\phi(v_{2i-1}) - \phi(v_{2i})| = N(2n - 4i + 1) + 1,$$

$$\phi^*(v_{2i}^{(1)}v_{2i}) = |\phi(v_{2i}^{(1)}) - \phi(v_{2i})| = N(2n - 4i) + 1.$$

For
$$i = \frac{k}{2} + 1, \frac{k}{2} + 2, \dots, \frac{n-1}{2}, \phi^*(v_{2i+1}v_{2i}) = |\phi(v_{2i+1}) - \phi(v_{2i})| = N(2n - 4i - 1) + 1.$$

For
$$i = \frac{k}{2} + 1, \frac{k}{2} + 2, \cdots, \frac{n+1}{2}, \phi^*(v_{2i-1}v_{2i-1}^{(1)}) = |\phi(v_{2i-1}) - \phi(v_{2i-1}^{(1)})| = N(2n - 4i + 2) + 1.$$

This show that the edges have the distinct labels $\{1, N+1, 2N+1, \cdots, N(q-1)+1\}$, where q=2n-2. Hence for every positive integer N, $P_n^+ - v_k^{(1)}$ is one modulo N graceful if n is odd and k is even.

Example 2.11 A one modulo 3 graceful labelling of $P_{13}^+ - v_2^{(1)}$ is shown in Figure 6.

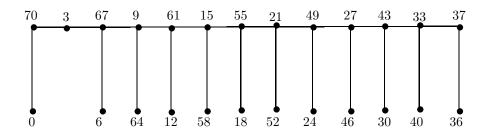


Figure 6

Case 4. n is odd and k is odd

Define

$$\phi(v_{2i}) = \begin{cases} N(2i-1) & \text{for } i = 1, 2, \dots, \frac{k-1}{2} \\ N(k-2) + N + 2N(i - (\frac{(k+1)}{2})) & \text{for } i = \frac{k+1}{2}, \frac{k+3}{2}, \dots, \frac{n-1}{2} \end{cases},$$

$$\phi(v_{2i-1}) = N(2n-3) + 1 - 2N(i-1)$$
 for $i = 1, 2, \dots, \frac{n-1}{2}$,

$$\phi(v_{2i-1}^{(1)}) = \begin{cases} 2N(i-1) & \text{for } i = 1, 2, \dots, \frac{k-1}{2} \\ 2N(\frac{k-1}{2} - 1) + 3N + 2N(i - (\frac{k+3}{2})) & \text{for } i = \frac{k+3}{2}, \frac{k+5}{2}, \dots, \frac{n-1}{2} \end{cases},$$

$$\phi(v_{2i}^{(1)}) = 2N(n-2) + 1 - 2N(i-1) \text{ for } i = 1, 2, \dots, \frac{n-1}{2}.$$

The proof is similar to that of Case 3. Hence for every positive integer N, $P_n^+ - v_k^{(1)}$ is one modulo N graceful if n is odd and k is odd.

Example 2.12 A one modulo 5 graceful labelling of $P_{11}^+ - v_5^{(1)}$ is shown in Figure 7.

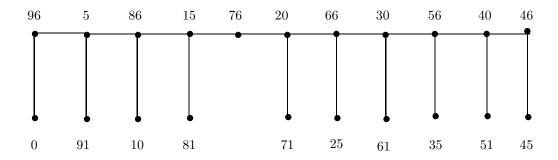


Figure 7

§3. Conclusion

Subdivision or supersubdivision or arbitrary supersubdivision of certain graphs which are not graceful may be graceful. The method adopted in making a graph one modulo N graceful will provide a new approach to have graceful labelling of graphs and it will be helpful to attack standard conjectures and unsolved open problems.

References

- [1] C. Barrientos and S. Barrientos, On graceful supersubdivisions of graphs, *Bull. Inst. Combin. Appl.*, 70 (2014) 77-85.
- [2] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, *The Electronic Journal of Combinatorics*, **18** (2011), #DS6.
- [3] S.W.Golomb, How to number a graph in Graph theory and computing R.C. Read, ed., Academic press, New York (1972)23-27.
- [4] R. B. Gnanajothi, *Topics in Graph Theory*, Ph.D. Thesis, Madurai Kamaraj University, 1991.
- [5] G. Sethuraman and P. Selvaraju, Gracefulness of arbitrary supersubdivisions of graphs, *Indian J. Pure Appl. Math.*, 32 (2001) 1059-1064.
- [6] G. Sethuraman and P. Selvaraju, Super-subdivisions of connected graphs are graceful, preprint.
- [7] Z. Liang, On the gracefulness of the graph $C_m \cup P_n$, Ars Combin., 62(2002), 273-280.
- [8] V. Ramachandran, C. Sekar, One modulo N gracefullness of arbitrary supersubdivisions of graphs, *International J. Math. Combin.*, Vol.2 (2014) 36-46.
- [9] V. Ramachandran, C. Sekar, One modulo N gracefulness of supersubdivision of ladder, *Journal of Discrete Mathematical Sciences and Cryptography* (Accepted).
- [10] C. Sekar and V. Ramachandren, Graceful labelling of arbitrary supersubdivision of disconnected graph, *Ultra Scientist*, 25(2)A (2013) 315-318.
- [11] C. Sekar, Studies in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University, 2002.