Corrigendum: On Set-Semigraceful Graphs

Ullas Thomas

Department of Basic Sciences, Amal Jyothi College of Engineering Koovappally P.O.-686 518, Kottayam, Kerala, India

Sunil C Mathew

Department of Mathematics, St.Thomas College Palai Arunapuram P.O.-686 574, Kottayam, Kerala, India

E-mail: ullasmanickathu@rediffmail.com, sunil@stcp.ac.in

In this short communication we rectify certain errors which are in the paper, On Set-Semigraceful Graphs, *International J. Math. Combin.*, Vol.2(2012), 59-70. The following are the correct versions of the respective results.

Remark 3.2 (5) The Double Stars ST(m, n) where |V| is not a power of 2, are set-semigraceful by Theorem 2.13.

Remark 3.5 (3) The Double Stars ST(m,n) where m is odd and $m+n+2=2^l$, are not set-semigraceful by Theorem 2.12.

Delete the following sentence below Remark 3.9: "In fact the result given by Theorem 3.3 holds for any set-semigraceful graph as we see in the following".

Theorem 4.8([3]) Every graph can be embedded as an induced subgraph of a connected set-graceful graph.

Since every set-graceful graph is set-semigraceful, from the above theorem it follows that

Theorem 4.8A Every graph can be embedded as an induced subgraph of a connected set-semigraceful graph.

However, below we prove:

Theorem 4.8B Every graph can be embedded as an induced subgraph of a connected set-semigraceful graph which is not set-graceful.

Proof Any graph H with $o(H) \leq 5$ and $s(H) \leq 2$ and the graphs P_4 , $P_4 \cup K_1$, $P_3 \cup K_2$ and P_5 are induced subgraphs of the set-semigraceful cycle C_{10} which is not set-graceful. Again any

¹Received January 8, 2013. Accepted March 22, 2013.

graph H' with $3 \le o(H') \le 5$ and $3 \le s(H') \le 9$ can be obtained as an induced subgraph of $H_1 \vee K_1$ for some graph H_1 with $o(H_1) = 5$ and $3 \le s(H_1) \le 9$. Then $3 < \log_2(|E(H_1 \vee K_1)| + 1) < 4$, since $8 \le s(H_1 \vee K_1) < 15$ and hence $H_1 \vee K_1$ is not set-graceful. By Theorem 2.4,

$$4 = \lceil \log_2(|E(H_1 \vee K_1)| + 1) \rceil \leq \gamma(H_1 \vee K_1)$$

$$\leq \gamma(K_6) \text{ (by Theorem 2.5)}$$

$$= 4 \text{ (by Theorem 2.19)}$$

So that $H_1 \vee K_1$ is set-semigraceful. Further, note that K_5 is set-semigraceful but not set-graceful.

Now let G = (V, E); $V = \{v_1, \ldots, v_n\}$ be a graph of order $n \geq 6$. Consider a set-indexer g of G with indexing set $X = \{x_1, \ldots, x_n\}$ defined by $g(v_i) = \{x_i\}$; $1 \leq i \leq n$. Let $S = \{g(e) : e \in E\} \cup \{g(v) : v \in V\}$. Note that |S| = |E| + n. Now take a new vertex u and join with all the vertices of G. Let m be any integer such that $2^{n-1} < m < 2^n - (|E| + n + 1)$. Since $|E| \leq \frac{n(n-1)}{2}$ and $n \geq 6$, such an integer always exists. Take m new vertices u_1, \ldots, u_m and join all of them with u. A set-indexer f of the resulting graph G' can be defined as follows:

$$f(u) = \emptyset$$
, $f(v_i) = g(v_i)$; $1 \le i \le n$.

Besides, f assigns the vertices u_1, \ldots, u_m with any m distinct elements of $2^X \setminus (S \cup \emptyset)$. Thus, $\gamma(G') \leq n$. But we have $2^n > |E| + n + m + 1 > m > 2^{n-1}$ so that $\gamma(G') \geq n$, by Theorem 2.4. Hence,

$$\log_2(|E(G')| + 1) < \lceil \log_2(|E(G')| + 1) \rceil = n = \gamma(G').$$

This shows that G' is set-semigraceful, but not set-graceful.

Corollary 4.16 The double fan $P_k \vee K_2$ where $k = 2^n - m$ and $2^n \geq 3m$; $n \geq 3$ is set-semigraceful.

Proof Let $G = P_k \vee K_2$; $K_2 = (u_1, u_2)$. By Theorem 2.4, $\gamma(G) \geq \lceil \log_2(|E| + 1) \rceil = \lceil \log_2(3(2^n - m) + 1) \rceil = n + 2$. But, $3m \leq 2^n \Rightarrow m < 2^{n-1} - 1$. Therefore,

$$2^{n} - (2^{n-1} - 2)) \le 2^{n} - m < 2^{n} - 1$$

$$\Rightarrow 2^{n-1} + 1 \le 2^{n} - m - 1 < 2^{n} - 2$$

$$\Rightarrow 2^{n-1} + 1 \le k - 1 < 2^{n} - 2; \quad k = 2^{n} - m$$

$$\Rightarrow 2^{n-1} + 1 \le |E(P_{k})| < 2^{n}$$

$$\Rightarrow \lceil \log_{2}(|E(P_{k})| + 1) \rceil = n$$

$$\Rightarrow \gamma(P_{k}) = n$$

since P_k is set-semigraceful by Remark 3.2(3).

Let f be a set-indexer of P_k with indexing set $X = \{x_1, \dots, x_n\}$. Define a set-indexer g of G with indexing set $Y = X \cup \{x_{n+1}, x_{n+2}\}$ as follows:

$$g(v) = f(v)$$
 for every $v \in V(P_k)$, $g(u_1) = \{x_{n+1}\}$ and $g(u_2) = \{x_{n+2}\}$.

Corollary 4.17 The graph $K_{1,2^n-1} \vee K_2$ is set-semigraceful.

Proof The proof follows from Theorems 4.15 and 2.33.

Theorem 4.18 Let C_k where $k = 2^n - m$ and $2^n + 1 > 3m$; $n \ge 2$ be set-semigraceful. Then the graph $C_k \lor K_2$ is set-semigraceful.

Proof Let $G = C_k \vee K_2$; $K_2 = (u_1, u_2)$. By theorem 2.4, $\gamma(G) \geq \lceil \log_2(|E| + 1) \rceil = \lceil \log_2(3(2^n - m) + 2) \rceil = n + 2$. But, $3m \leq 2^n + 1 \Rightarrow m < 2^{n-1}$. Therefore,

$$2^{n} - (2^{n-1} - 1)) \le 2^{n} - m < 2^{n}$$

$$\Rightarrow 2^{n-1} + 1 \le k < 2^{n}; \quad k = 2^{n} - m$$

$$\Rightarrow 2^{n-1} + 1 \le |E(C_{k})| < 2^{n}$$

$$\Rightarrow \lceil \log_{2}(|E(C_{k})| + 1) \rceil = n$$

$$\Rightarrow \gamma(C_{k}) = n$$

since C_k is set-semigraceful.

Let f be a set-indexer of C_k with indexing set $X = \{x_1, \ldots, x_n\}$. Define a set-indexer g of G with indexing set $Y = X \cup \{x_{n+1}, x_{n+2}\}$ as follows:

$$g(v) = f(v)$$
 for every $v \in V(C_k)$, $g(u_1) = \{x_{n+1}\}$ and $g(u_2) = \{x_{n+2}\}$.

Corollary 4.21 W_n where $2^m - 1 \le n \le 2^m + 2^{m-1} - 2$; $m \ge 3$ is set-semigraceful.

Proof The proof follows from Theorem 3.15 and Corollary 4.20.

Theorem 4.22 If W_{2k} where $\frac{2^{n-1}}{3} \le k < 2^{n-2}$; $n \ge 4$ is set-semigraceful, then the gear graph of order 2k + 1 is set-semigraceful.

Proof Let G be the gear graph of order 2k + 1. Then by theorem 2.4,

$$\lceil \log_2(3k+1) \rceil \le \gamma(G) \le \gamma(W_{2k})$$
 (by Theorem 2.5)
= $\lceil \log_2(4k+1) \rceil$ (since W_{2k} is set – semigraceful)
= $\lceil \log_2(3k+1) \rceil$

since

$$\frac{2^{n-1}}{3} \le k < 2^{n-2} \qquad \Rightarrow 2^{n-1} \le 3k < 4k < 2^n$$
$$\Rightarrow 2^{n-1} + 1 \le 3k + 1 < 4k + 1 \le 2^n.$$

Thus

$$\gamma(G) = \lceil \log_2(|E| + 1) \rceil.$$

So that G is set-semigraceful.