Laplacian Energy of Certain Graphs

P.B.Sarasija and P.Nageswari

Department of Mathematics, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India

E-mail: sijavk@gmail.com

Abstract: Let G be a graph with n vertices and m edges. Let $\mu_1, \mu_2, \dots, \mu_n$ be the eigenvalues of the Laplacian matrix of G. The Laplacian energy $LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$. In this paper, we calculate the exact Laplacian energy of complete graph, complete bipartite graph, path, cycle and friendship graph.

Key Words: Complete graph, complete bipartite graph, path, cycle, friendship graph.

AMS(2010): 05C78

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph G with n vertices and m edges. Let d_i be the degree of the i^{th} vertex of $G, i = 1, 2, \dots, n$.

Definition 1.1([3]) Let $A(G) = [a_{ij}]$ be the (0,1) adjacency matrix, $D(G) = diag(d_1, d_2, \dots, d_n)$, the diagonal matrix with vertex degrees d_1, d_2, \dots, d_n of its vertices v_1, v_2, \dots, v_n of a graph G. Then L(G) = D(G) - A(G) is called the Laplacian matrix of the graph G.

It is symmetric, singular and positive semi - definite. All its eigenvalues $\mu_1, \mu_2, \dots, \mu_n$ are real and nonnegative and form the Laplacian spectrum. It is well known that one of the eigen values is zero.

Definition 1.2([3]) If G is a graph with n vertices and m edges, and its Laplacian eigen values are $\mu_1, \mu_2, \dots, \mu_n$ then the Laplacian energy of G, denoted by LE(G), is $\sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$. i.e., $LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$.

This quantity has a long known chemical application for details see the surveys [1,4,5]. If the graph G has one vertex then the Laplacian energy is zero.

Property 1.3([3])

(1)
$$LE(G) \le \sqrt{2Mn}$$
;

¹Received July 20, 2011. Accepted March 8, 2012.

(2)
$$LE(G) \le \frac{2m}{n} + \sqrt{(n-1)\left[2M - \left(\frac{2m}{n}\right)^2\right]};$$

(3)
$$2\sqrt{M} \le LE(G) \le 2M$$
, where $M = m + \frac{1}{2} \sum_{i=1}^{n} \left(d_i - \frac{2m}{n} \right)^2$.

§2. The Laplacian Energy of Complete Graphs

Definition 2.1([2]) A simple graph in which each pair of distinct vertices is joined by an edge is called a complete graph.

Theorem 2.2 The Laplacian energy of the complete graph K_n on n vertices is 2(n-1).

Proof The eigenvalues of the Laplacian matrix of the complete graph K_n on n vertices and $\frac{n(n-1)}{2}$ edges are $\mu_1=0$ and multiplicity of the eigen values n as n-1, i.e., $\mu_1=0, \mu_2=\mu_3=\cdots=\mu_n=n$. Thus

$$LE(K_n) = \sum_{i=1}^{n} |(\mu_i - (n-1)| = |0 - (n-1)| + (n-1)|n - (n-1)| = 2(n-1).$$

§3. The Laplacian Energy of Complete Bipartite Graphs

Definition 3.1([2]) A bipartite graph is one whose vertex set can be partitioned into two subsets X and Y, so that each edge has one end in X and one end in Y; such a partition(X, Y) is called a bipartition of the graph.

Definition 3.2([2]) A complete bipartite graph is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if |X| = m and |Y| = n, such a graph is denoted by $K_{m,n}$.

Definition 3.3([6]) The Star graph $K_{1,n}$ is a tree on n+1 vertices with one vertex having degree n and the other n vertices having degree 1.

Theorem 3.4 The Laplacian energy of the complete bipartite graph $K_{m,n}$ with m+n vertices and mn edges is

$$\frac{(m+n)^2 + |m-n| (2mn - (m+n))}{(m+n)}.$$

Proof In this graph, the Laplacian spectrum is $\mu_1 = 0$, the multiplicity of the eigen values m as n-1, the multiplicity of the eigen values n as m-1 and $\mu_{m+n} = m+n$.

The Laplacian energy

$$LE(K_{m,n}) = \sum_{i=1}^{n+m} \left| \mu_i - \frac{2mn}{m+n} \right|$$

$$= \left| 0 - \frac{2mn}{m+n} \right| + (n-1)\left| m - \frac{2mn}{m+n} \right|$$

$$+ (m-1)\left| n - \frac{2mn}{m+n} \right| + (m+n) - \frac{2mn}{m+n}$$

$$= \frac{2mn}{m+n} + \frac{m(n-1)}{m+n} \left| m - n \right| + \frac{n(m-1)}{m+n} \left| n - m \right|$$

$$= \frac{(m+n)^2 + |m-n|(2mn - (m+n))}{m+n}.$$

Corollary 3.5 The Laplacian energy of a star graph $K_{1,n}$ is $\frac{2(n^2+1)}{n+1}$.

Proof Let m be replaced by one in Theorem 3.4. We get the following

$$LE(K_{1,n}) = \frac{(1+n)^2 + |1-n|(2n-(1+n))|}{1+n} = \frac{2(n^2+1)}{n+1}.$$

§4. The Laplacian Energy of Paths P_n and Cycles C_n

Definition 4.1 A path P_n with n vertices has $V(P_n) = \{v_1, v_2, \dots, v_n\}$ for its vertex set and $E(P_n) = \{v_1v_2, v_2v_3, \dots, v_{n-1}v_n\}$ is its edge set. This path P_n is said to have length n-1.

Definition 4.2 A cycle C_n with n points is a graph with vertex set $V(C_n) = \{v_1, v_2, \dots, v_n\}$ and edge set $E(C_n) = \{v_1v_2, v_2v_3, \dots, v_{n-1}v_n, v_nv_1\}$.

Theorem 4.3 The Laplacian energy of the path P_n with n vertices is $\sum_{i=0}^{n-1} \left| 2 \left[\frac{1}{n} - \cos \left(\frac{\pi i}{n} \right) \right] \right|$.

Proof The eigen values of the Laplacian matrix of P_n are $2\left[1-\cos\left(\frac{\pi i}{n}\right)\right], i=0,1,\cdots,n-1$. Then,

$$LE(P_n) = \sum_{i=0}^{n-1} \left| 2\left[1 - \cos\left(\frac{\pi i}{n}\right)\right] - \frac{2(n-1)}{n} \right| = \sum_{i=0}^{n-1} \left| 2\left[\frac{1}{n} - \cos\left(\frac{\pi i}{n}\right)\right] \right|. \quad \Box$$

Theorem 4.4 The Laplacian energy of the cycle C_n with n vertices is $2\sum_{i=0}^{n-1} \left| \cos\left(\frac{2\pi i}{n}\right) \right|$.

Proof The Laplacian spectrum of the cycle C_n is $2\left[1-\cos\left(\frac{2\pi i}{n}\right)\right]$, $i=0,1,\cdots,(n-1)$. Then

$$LE(C_n) = \sum_{i=0}^{n-1} \left| 2\left[1 - \cos\left(\frac{2\pi i}{n}\right) \right] - 2 \right| = 2\sum_{i=0}^{n-1} \left| \cos\left(\frac{2\pi i}{n}\right) \right|.$$

§5. The Laplacian Energy of Friendship Graphs

Definition 5.1([6]) The friendship graph $F_r(r \ge 1)$ consists of r triangles with a common vertex.

Illustration. The Friendship graph F_4 consists of 4 triangles with a common vertex is as shown in Fig.1.

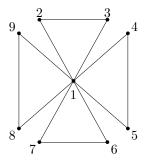


Fig.1 Friendship graph F_4

The Laplacian matrix of F_2 is

$$\begin{bmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 \\ -1 & 0 & 0 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$

Theorem 5.2 The Laplacian energy of the friendship graph F_r is $\frac{8r^2+2r+2}{2r+1}$, where $r \geq 1$.

Proof The friendship graph F_r has 2r + 1 vertices and 3r edges. Its Laplacian matrix has 2r + 1 eigen values. These eigen values are $\mu_1 = 2r + 1$, the multiplicity of the eigen value 3 as r, the multiplicity of the eigen value 1 as r - 1 and $\mu_{2r+1} = 0$.

By definition, the Laplacian energy

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|.$$

Thus,

$$LE(F_r) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right| = \sum_{i=1}^{n} \left| \mu_i - \frac{6r}{2r+1} \right|$$

$$= \left| 2r + 1 - \frac{6r}{2r+1} \right| + r \left| 3 - \frac{6r}{2r+1} \right| + (r-1) \left| 1 - \frac{6r}{2r+1} \right| + \left| 0 - \frac{6r}{2r+1} \right|$$

$$= \left| \frac{4r^2 - 2r + 1}{2r+1} \right| + r \frac{3}{2r+1} + (r-1) \left| \frac{4r-1}{2r+1} \right| + \frac{6r}{2r+1} = \frac{8r^2 + 2r + 2}{2r+1}$$

since $4r^2 + 1 > 2r$ and 1 - 4r < 0.

Corollary 5.1 If G is the friendship graph of n vertices then $LE(G) = \frac{2n^2 - 3n + 3}{n}$.

Proof Replacing r by
$$\frac{n-1}{2}$$
 in Theorem 5.2, we get the result.

Corollary 5.2 If G is the friendship graph of m edges then $LE(G) = \frac{2}{3} \left[\frac{4m^2 + 3m + 9}{2m + 3} \right]$.

Proof Let r be replaced by $\frac{m}{3}$ in Theorem 5.2, we get the result. From [3], $M=m+\frac{1}{2}\sum_{i=1}^{n}\left(d_{i}-\frac{2m}{n}\right)^{2}$. In a friendship graph $M=\frac{r}{2r+1}\left(4r^{2}-2r+7\right)$. Therefore, $2Mn=2r\left(4r^{2}-2r+7\right)$. Hence, using Property 1.3, we get the following

$$2\sqrt{\frac{r}{2r+1}\left(4r^2-2r+7\right)} \le LE(G) \le \frac{2r}{2r+1}\left(4r^2-2r+7\right).$$

References

- [1] R.Balakrishnan, The energy of a graph, Linear Algebra Appl., 387 (2004) 287-295.
- [2] J.A.Bondy and U.S.R. Murty, *Graph Theory with Applications*, North Holland, New York (1976).
- [3] I.Gutman, B.Zhou, Laplacian energy of a graph, *Linear Algebra and its Applications*, 414(2006), 29-37.
- [4] I.Gutman, Total π -electron energy of benzenoid hydrocarbons, *Topics Curr. Chem.*, 162(1992), 29-63.
- [5] I.Gutman, The energy of a graph; old and new results, Algebraic Combinatorics and Applications, Springer, Verlag, Berlin, 2001,196-211.
- [6] R.L.Graham and N.J.A.Slone, On additive bases and harmonious graphs, SIAM J.Alg. Discrete Meth., 1(1980), 382-404.