Elementary Abelian Regular Coverings of Cube

Furong Wang

(Beijing Wuzi University, Beijing 101149, P.R. China)

Lin Zhang

(Capital University of Economics and Business, Beijing 100070, P. R. China)

 $E-mail: \ wangfurong@bwu.edu.cn, zhanglin@cueb.edu.cn\\$

Abstract: For a give finite connected graph Γ , a group H of automorphisms of Γ and a finite group A, a natural question can be raised as follows: Find all the connected regular coverings of Γ having A as its covering transformation group, on which each automorphism in H can be lifted. In this paper, we classify all the connected regular covering graphs of the cube satisfying the following two properties: (1) the covering transformation group is isomorphic to the elementary Abelian p-groups; (2) the group of fibre-preserving automorphisms acts edge-transitively.

Key Words: Connected graph, graph covering, cube, Smarandachely covering, regular covering.

AMS(2010):

§1. Introduction

All graphs considered in this paper are finite, undirected and simple. For a graph Γ , we use $V(\Gamma)$, $E(\Gamma)$, $A(\Gamma)$ and $Aut(\Gamma)$ to denote its vertex set, edge set, arc set and full automorphism group, respectively. For any $v \in V(\Gamma)$, by N(v) we denote the neighborhood of v in Γ . For an arc $(u, v) \in A(\Gamma)$, we denote the corresponding undirected edge by uv.

A graph $\widetilde{\Gamma}$ is called a *covering* of the graph Γ with projection $p:\widetilde{\Gamma}\to\Gamma$ if there is a surjection $p:V(\widetilde{\Gamma})\to V(\Gamma)$ such that $p|_{N(\widetilde{v})}:N(\widetilde{v})\to N(v)$ is a bijection for any vertex $v\in V(\Gamma)$ and $\widetilde{v}\in p^{-1}(v)$. The graph $\widetilde{\Gamma}$ is called the *covering graph* and Γ is the *base graph*. A $p:\widetilde{\Gamma}\to\Gamma$ is called to be a *Smarandachely covering* of Γ if there exist $u,v\in V(\Gamma)$ such that $|p^{-1}(u)|\neq |p^{-1}(v)|$. Conversely, if $|p^{-1}(v)|=n$ for each $v\in V(\Gamma)$, then such a covering p is said to be n-fold. Each $p^{-1}(v)$ is called a *fibre* of $\widetilde{\Gamma}$. An automorphism of $\widetilde{\Gamma}$ which maps a fibre to a fibre is said to be *fibre-preserving*. The group K of all automorphisms of $\widetilde{\Gamma}$ which fix each of the fibres setwise is called the *covering transformation group*. A covering $p:\widetilde{\Gamma}\to\Gamma$ is said to be *regular* (simply, A-covering) if there is a subgroup A of K acting regularly on each fibre. Moreover, if Γ is connected, then A=K.

A purely combinatorial description of a covering was introduced through a voltage graph

¹Supported by NNSF(10971144) and BNSF(1092010).

²Received December 23, 2010. Accepted February 23, 2011.

by Gross and Tucker [4,5] and also a very similar idea was appeared in Biggs' monograph [1,2]. Let A be a finite group. An (ordinary) voltage assignment (or, A-voltage assignment) of Γ is a function $\phi: A(\Gamma) \to A$ with the property that $\phi(u,v) = \phi(v,u)^{-1}$ for each $(u,v) \in A(\Gamma)$. The values of ϕ are called voltages, and A is called the voltage group. The graph $\Gamma \times_{\phi} A$ derived from ϕ is defined by $V(\Gamma \times_{\phi} A) = V(\Gamma) \times A$ and $E(\Gamma \times_{\phi} A) = \{((u,g),(v,\phi(u,v)g)) \mid (u,v) \in E(\Gamma), g \in A\}$. Clearly, the graph $\Gamma \times_{\phi} A$ is a covering of the graph Γ with the first coordinate projection $p: \Gamma \times_{\phi} A \to \Gamma$, which is called the natural projection. For each $u \in V(\Gamma)$, $\{(u,g) \mid g \in A\}$ is a fibre of $\Gamma \times_{\phi} A$. Moreover, by defining $(u,g')^g:=(u,g'g)$ for any $g \in A$ and $(u,g') \in V(\Gamma \times_{\phi} A)$, A can be identified with a fibre-preserving automorphism subgroup of $\operatorname{Aut}(\Gamma \times_{\phi} A)$ acting regularly on each fibre. Therefore, p can be viewed as a A-covering. Given a spanning tree T of the graph Γ , a voltage assignment ϕ is called T-reduced if the voltages on the tree arcs are identity. Gross and Tucker ([4]) showed that every regular covering of a graph Γ can be derived from an ordinary T-reduced voltage assignment ϕ with respect to an arbitrary fixed spanning tree T of Γ .

An automorphism α of Γ can be lifted to an automorphism $\tilde{\alpha}$ of a covering graph $\tilde{\Gamma}$ if $p\tilde{\alpha} = \alpha p$, where p is the covering projection from $\tilde{\Gamma}$ to Γ . We say a subgroup of H of $\operatorname{Aut}(\Gamma)$ can be lifted if each element of H can be lifted.

For a given finite connected graph Γ , a group H of automorphisms of Γ and a finite group A, a natural question can be raised as follows: Find all the connected regular coverings of Γ having A as its covering transformation group, on which each automorphism in H can be lifted. In [3], Du, Kawk and Xu investigate the regular coverings with $A = \mathbb{Z}_p^n$, an elementary Abelian group and get some new matrix-theoretical characterizations for an automorphism of the base graph to be lifted, and as one of the applications, they gave a classification of all connected regular coverings of the Petersen graph with the covering transformation group \mathbb{Z}_p^n , whose fibre-preserving automorphism subgroup acts arc-transitively.

In this paper, we use the same method to classify all the connected regular covering graphs of the cube satisfying the following two properties: (1) the covering transformation group is isomorphic to the elementary Abelian p-group; (2) the group of fibre-preserving automorphisms acts edge-transitively.

The cube is identified with the graph Γ as shown in Figure (a). Fix a spanning tree T in Γ as shown in Figure (b). Let $V_1 = \{2, 6, 4, 7, 3, 5\}$. Then the induced subgraph $\Gamma(V_1)$ is a line as shown in Figure (c).

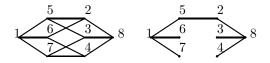


Figure (a): the graph Γ ; (b) a spanning tree T of Γ .

2	6	4	7	3	5
-	-	•	-		-

Figure (c): the induced subgraph $\Gamma(V_1)$

First, we introduce five families of covering graphs $\Gamma \times_{\phi} Z_p^n$ of cube Γ by giving a T-reduced voltage assignment ϕ . Since ϕ is T-reduced, we only need to give the voltages on the cotree arcs (see Figure (c)). Let t denote the transposition of a matrix.

- (1) $X(2,1):=\Gamma \times_{\phi} Z_2$, where $\phi_{26} = \phi_{47} = \phi_{35} = 1$ and $\phi_{46} = \phi_{37} = 0$, $X(p,1):=\Gamma \times_{\phi} Z_p$, where p=3 or $p\equiv 1 \pmod{6}$, $\phi_{26} = \phi_{37} = 1$, $\phi_{46} = \phi_{35} = \frac{1+\sqrt{-3}}{2}$ and $\phi_{47} = 0$.
- (2) $X(p,2) := \Gamma \times_{\phi} Z_p^2$, where $\phi_{26} = \phi_{37} = (0,1)$, $\phi_{46} = \phi_{35} = (1,0)$ and $\phi_{47} = (0,0)$.
- (3) $X(p,3) := \Gamma \times_{\phi} Z_p^3$, where $((\phi_{26})^t, (\phi_{47})^t, (\phi_{35})^t) = I_{3\times 3}$, $\phi_{46} = (0,1,-1)$ and $\phi_{37} = (-1,1,0)$.
- (4) $X(p,4) := \Gamma \times_{\phi} Z_p^4$, where p = 3 or $p \equiv 1 \pmod{6}$, $((\phi_{26})^t, (\phi_{46})^t, (\phi_{47})^t, (\phi_{37})^t) = I_{4\times 4}$ and $\phi_{35} = (\frac{1-\sqrt{-3}}{2}, -1, \frac{1+\sqrt{-3}}{2}, \frac{1-\sqrt{-3}}{2})$.
- (5) $X(p,5) := \Gamma \times_{\phi} Z_p^5$, where $((\phi_{26})^t, (\phi_{46})^t, (\phi_{47})^t, (\phi_{37})^t, (\phi_{35})^t) = I_{5 \times 5}$.

Now we state the main theorem of this paper.

Theorem 1.1 Let $\widetilde{\Gamma}$ be a connected regular covering of the cube Γ whose covering transformation group is isomorphic to Z_p^n and whose fibre-preserving automorphism subgroup G acts edgetransitively on $\widetilde{\Gamma}$. Then, $\widetilde{\Gamma}$ is isomorphic to one of the graphs in (1)-(5) listed above. Moreover, for the graphs X(2,1), X(3,1), X(p,2), X(p,3), X(3,4) and X(p,5), $\operatorname{Aut}(\Gamma)$ can be lifted, and so they are 2-arc-transitive; and for the graphs X(p,1) and X(p,4) for $p \equiv 1 \pmod{6}$, the subgroup isomorphic to $A_4 \times Z_2$ can be lifted but $\operatorname{Aut}\Gamma$ cannot, and so they are arc-transitive, in particular, all these five families of graphs are vertex transitive.

§2. Algorithm for the Lifting

In this section, we present the algorithm given by Du, Kwak and Xu [3], which deals with the lifting problem for regular coverings of a graph Γ whose covering transformation group is elementary Abelian.

Throughout this section, let Γ be a connected graph and let $\widetilde{\Gamma} = \Gamma \times_{\phi} Z_p^n$ be a connected regular covering of the Γ . The voltage group Z_p^n will be identified with the additive group of the n-dimensional vector space V(n,p) over the finite field GF(p). Since Γ is connected, the number $\beta(\Gamma) = |E(\Gamma)| - |V(\Gamma)| + 1$ is equal to the number of independent cycles in Γ and it is referred to as the *Betti number* of Γ .

Let $V(\Gamma) = \{0, 1, ..., |V(\Gamma)| - 1\}$. For any arc $(i, j) \in A(\Gamma)$, by $\phi_{i,j}$ we denote the voltage on the arc, which is identified with a row vector in V(n, p). An arc $(i, j) \in A(\Gamma)$ is called positive (resp. negative) if i < j (resp. i > j). For each subset F in $E(\Gamma)$, we denote the set of its arcs, positive arcs and negative arcs by A(F), $A^+(F)$ and $A^-(F)$, respectively, so that $A(F) = A^+(F) \cup A^-(F)$. In particular, if $F = E(\Gamma)$, we prefer to use $A(\Gamma)$, $A^+(\Gamma)$ and $A^-(\Gamma)$ to denote A(F), $A^+(F)$ and $A^-(F)$, respectively. Fix a spanning tree T in the graph Γ and let $E_0 = E(T)$, so that $|E(\Gamma) \setminus E_0|$ is the Betti number $\beta(\Gamma)$ of the graph Γ . From now on, the voltage assignment ϕ is assumed to be T-reduced. By the connectedness of $\widetilde{\Gamma}$, $\{\phi_{i,j} \mid (i,j) \in A^+(E(\Gamma) \setminus E_0)\}$ generates the group Z_p^n . Hence, we get $n \leq \beta(\Gamma)$.

Let E_1 be a set of edges such that $\phi_{A^+(E_1)} = \{\phi_{i,j} \mid (i,j) \in A^+(E_1)\}$ is a basis for the vector space V(n,p), and let $E_2 = E(\Gamma) \setminus (E_0 \cup E_1)$. Let

$$|E_0| = k, \quad |E_1| = n \quad \text{and} \quad |E_2| = m,$$
 (1)

so that the number of edges in Γ is k + n + m.

Let Φ_0 (resp. Φ_1 and Φ_2) be the $k \times n$ (resp. $n \times n$ and $m \times n$) matrix with the row vectors $\phi_{i,j}$ for the arcs (i,j) in $A^+(E_0)$ (resp. $A^+(E_1)$ and $A^+(E_2)$), according to a fixed order of the positive arcs. Since the row vectors of Φ_1 form a basis for V(n,p), there exists an $m \times n$ matrix M, called a *voltage generating matrix* of ϕ , such that

$$\Phi_2 = M\Phi_1. \tag{2}$$

Let

$$\Phi = \begin{pmatrix} \Phi_0 \\ \Phi_1 \\ \Phi_2 \end{pmatrix},$$
(3)

which is a $(k+n+m) \times n$ matrix over GF(p), called a *voltage* (assignment) matrix corresponding to the voltage assignment ϕ . If we take $\phi_{A^+(E_1)}$ so that $\Phi_0 = \mathbf{0}$ and $\Phi_1 = I_{n \times n}$, the $n \times n$ identity matrix, then Φ is called a *reduced form* or a *T-reduced form* of the voltage assignment matrix Φ . From now on one may assume that Φ is in a reduced form without loss of any generality.

Let $\mathbf{V} = V(k+n+m,p)$ be the (k+n+m)-dimensional row vector space over the field GF(p). Hereafter, we denote a vector \mathbf{v} in \mathbf{V} by $(\mathbf{v}_0, \mathbf{v}_1, \mathbf{v}_2) \in Z_p^k \oplus Z_p^n \oplus Z_p^m$, where the coordinates of the vector \mathbf{v}_0 (resp. \mathbf{v}_1 and \mathbf{v}_2) are indexed by arcs in $A^+(E_0)$ (resp. $A^+(E_1)$ and $A^+(E_2)$), according to the same order of row vectors in Φ_0 (Φ_1 and Φ_2).

Given a graph Γ , its spanning tree T, and a positive cotree arc (u, v), there is a unique path from v to u in T which is denoted by $[v, \dots, u]$. We call the closed walk $(u, [v, \dots, u])$ the fundamental cycle belonging to (u, v), and denote it by C(u, v; T). There are n+m fundamental cycles in Γ , where n+m is the Betti number of Γ .

Given a graph Γ and its spanning tree T, we keep the same order for positive arcs as the order of row vectors of the voltage matrix Φ . For each positive cotree arc (u, v), let $\mathbf{p}^{u,v}$ be the k-dimensional row vector over GF(p) whose (i, j)-coordinate $\mathbf{p}^{u,v}_{i,j}$ indexed by the positive tree arc (i, j) of the given order is defined as follows:

$$\mathbf{p}_{i,j}^{u,v} = \begin{cases} 1 & \text{if } (i,j) \text{ is in } C(u,v;T), \\ -1 & \text{if } (j,i) \text{ is in } C(u,v;T), \\ 0 & \text{otherwise.} \end{cases}$$

$$(4)$$

Let P be the $(n+m) \times k$ matrix whose row vectors are $\mathbf{p}^{u,v}$, indexed by the positive cotree arcs (u,v) of the given order. We call P the *incidence matrix* for the fundamental cycles of the graph Γ with respect to the tree T.

Now we state the algorithm for solving lifting problem for the connected regular coverings of a graph Γ whose covering transformation group is elementary Abelian.

- (1st) Choose a fixed spanning tree T in Γ and write down the arcs in $A^+(E_0)$, $A^+(E_1)$ and $A^+(E_2)$ in a certain order so that $\Phi_0 = \mathbf{0}$, $\Phi_1 = I_{n \times n}$ and $\Phi_2 = M$.
- (2nd) Calculate the incidence matrix P for the fundamental cycles of Γ with respect to T.
- (3rd) Assume that the voltage generating matrix $M=(a_{ij})_{m\times n}$, where the entries a_{ij} are unknowns. Let $\Delta=((-M,I_{m\times m})P,-M,I_{m\times m})$, whose columns are indexed by the arcs in $A^+(E_0),A^+(E_1),A^+(E_2)$ according to the given order. We call the matrix Δ the discriminant matrix for a lift of ϕ . For convenience, we write $\Delta_0=(-M,I_{m\times m})P$, $\Delta_1=-M$ and $\Delta_2=I_{m\times m}$, so that $\Delta=(\Delta_0,\Delta_1,\Delta_2)$, as a block matrix.
- (4th) Let $\Delta = (\cdots, \mathbf{c}_{i,j}, \cdots)$, where $c_{i,j}$ is the column indexed by $(i,j) \in A^+(\Gamma)$. For a given $\sigma \in \operatorname{Aut}(\Gamma)$, let $\mathbf{c}_{i,j}^{\sigma} = \mathbf{c}_{i\sigma^{-1},j\sigma^{-1}}$, where we assume that $\mathbf{c}_{i,j} = -\mathbf{c}_{j,i}$ for any arc (i,j). Let $\Delta^{\sigma} = (\cdots, \mathbf{c}_{i,j}^{\sigma}, \cdots)$ for any $(i,j) \in A^+(\Gamma)$, and let $(\Delta^{\sigma})_0$, $(\Delta^{\sigma})_1$ and $(\Delta^{\sigma})_2$ denote the first, the second and the third blocks of the matrix Δ^{σ} respectively, as before. Then one can say that

$$\sigma$$
 can be lifted $\iff (\Delta^{\sigma})_1 + (\Delta^{\sigma})_2 M = \mathbf{0} \iff \Delta_1^{\sigma} + \Delta_2^{\sigma} M = \mathbf{0}.$ (5)

Proof of Theorem 1.1

Let $E_0 = E(T)$ and $E = E(\Gamma) \setminus E_0$. Give an ordering for the arcs in $A^+(E_0)$ and $A^+(E)$ as follows:

$$A^+(E_0) = \{15, 16, 17, 25, 28, 38, 48\},\$$

 $A^+(E) = \{26, 46, 47, 37, 35\}.$

Give fundamental cycles in Γ as follows:

$$C(2,6;T) = (2,6,1,5,2),$$

$$C(4,6;T) = (4,6,1,5,2,8,4),$$

$$C(4,7;T) = (4,7,1,5,2,8,4),$$

$$C(3,7;T) = (3,7,1,5,2,8,3),$$

$$C(3,5;T) = (3,5,2,8,3).$$

It is well-known that $\operatorname{Aut}(\Gamma) \cong S_4 \times Z_2$. Take four automorphisms of Γ as follows: $\alpha = (243)(567)$, $\beta = (14)(23)(58)(67)$, $\gamma = (18)(27)(36)(45)$ and $\delta = (23)(67)$.

It is easy to check that $M = <\alpha, \beta>$ is subgroup of $\operatorname{Aut}(\Gamma)$ isomorphic to $A_4, N = < M, \gamma>$ is subgroup of $\operatorname{Aut}(\Gamma)$ isomorphic to $A_4 \times Z_2$, and $< N, \delta> = \operatorname{Aut}(\Gamma)$. Thus we have:

- (1) M can be lifted if and only if α and β can be lifted;
- (2) N can be lifted if and only if α , β and γ can be lifted;
- (3) Aut(Γ) can be lifted if and only if α , β , γ and δ can be lifted.

Since $\beta(\Gamma) = 5$, we get $n \leq 5$. If n = 5, then Γ is nothing but X(p, 5) and by [6, Theorem 2.11], $\operatorname{Aut}(\Gamma)$ can be lifted. So, in what follows, we assume n < 5 and divide our proof into four cases for each n with $1 \leq n \leq 4$.

3.1 The Case of n=1

Suppose that n = 1. Then $K = Z_p = V(1, p)$. Since the element (18)(25)(36)(47) of Aut(Γ) maps 2, 6, 4, 7, 3, 5 to 5, 3, 7, 4, 6, 2, respectively, without loss of any generality, we have the following three essentially different cases for the set E_1 and E_2 :

- (1) $E_1 = \{26\}$ and $E_2 = \{46, 47, 37, 35\};$
- (2) $E_1 = \{46\}$ and $E_2 = \{26, 47, 37, 35\}$;
- (3) $E_1 = \{47\}$ and $E_2 = \{26, 46, 37, 35\}$.

Case (1): $E_1 = \{26\}$ and $E_2 = \{46, 47, 37, 35\}$.

In this case, the incidence matrix is:

$$P = \begin{pmatrix} (1,5) & (1,6) & (1,7) & (2,5) & (2,8) & (3,8) & (4,8) \\ (2,6) & 1 & -1 & 0 & -1 & 0 & 0 & 0 \\ (4,6) & 1 & -1 & 0 & -1 & 1 & 0 & -1 \\ 1 & 0 & -1 & -1 & 1 & 0 & -1 \\ 1 & 0 & -1 & -1 & 1 & -1 & 0 \\ (3,7) & 0 & 0 & 0 & -1 & 1 & -1 & 0 \end{pmatrix}.$$

Let $D = (D_0, D_1, D_2)$ be the discriminant matrix with $D_0 = (-M, I_{4\times 4})P$, $D_1 = (-M)$ and $D_2 = (I_{4\times 4})$ with a voltage generating matrix $M = (a, b, c, d)^t$. A direct computation gives that $D_0 = (-M, I_{4\times 4})P$ is equal to

$$D_0 = \begin{pmatrix} (1,5) & (1,6) & (1,7) & (2,5) & (2,8) & (3,8) & (4,8) \\ -a+1 & a-1 & 0 & a-1 & 1 & 0 & -1 \\ -b+1 & b & -1 & b-1 & 1 & 0 & -1 \\ -c+1 & c & -1 & c-1 & 1 & -1 & 0 \\ -d & d & 0 & d-1 & 1 & -1 & 0 \end{pmatrix}.$$

For an automorphism σ of Γ can be lifted if and only if

$$\Delta_1^{\sigma} + \Delta_2^{\sigma} M = (c_{26})^{\sigma} + (c_{46}c_{47}c_{37}c_{35})^{\sigma} M = \mathbf{0}.$$
 (6)

Inserting $\alpha = (243)(567)$ to (6), we have

$$\mathbf{0} = D_1^{\alpha} + D_2^{\alpha} M = (c_{26})^{\alpha} + (c_{46}c_{47}c_{37}c_{35})^{\alpha} M$$

$$= (c_{35}) + (c_{25}c_{26}c_{46}c_{47}) M$$

$$= \begin{pmatrix} a^2 - a - ab + c \\ ab - a - b^2 + d \\ ac - a - bc \\ ad - a - bd + 1 \end{pmatrix} = (x_{i,j}).$$

Inserting $\beta = (14)(23)(58)(67)$ to (6), we have

$$\mathbf{0} = D_1^{\beta} + D_2^{\beta} M = (c_{26})^{\beta} + (c_{46}c_{47}c_{37}c_{35})^{\beta} M$$

$$= (c_{37}) + (c_{17}c_{16}c_{26}c_{28})M$$

$$= \begin{pmatrix} ab - b - ac + d \\ -a + b^2 - bc + d \\ -a + bc - c^2 + d + 1 \\ bd - cd + d \end{pmatrix} = (y_{ij}).$$

Now assume that α and β can be lifted. By $y_{41}=0$, we distinguish two cases: (1) d=0; (2) b-c+1=0. If (1) happens, by $x_{41}=0$ and $x_{11}=0$, we have a=1 and b=c. But it doesn't satisfy $y_{21}=0$. If (2) happens, by $y_{11}=0$, we have -a-b+d=0. By $x_{21}=0$, we distinguish two subcases: (i) a-b+1=0; (ii) b=0. If (i) happens, by $(x_{ij})=0$, we have that either a=c=0, b=d=1 and p=2 or a=d=2, b=0, c=1 and p=3. If (ii) happens, we have c=1 and a=d. By $x_{11}=0$, we have $a^2-a+1=0$. Thus the solution of $(x_{ij})=(y_{ij})=0$ are: a=c=0, b=d=1 and p=2; or $a=d=\frac{1\pm\sqrt{-3}}{2}$, b=0, c=1 and p=3 or $p\equiv 1 \pmod{6}$. Or equivalently,

$$M_1 = (0, 1, 0, 1)^t, p = 2;$$

$$M_{21} = (\frac{1+\sqrt{-3}}{2}, 0, 1, \frac{1+\sqrt{-3}}{2})^t, \ p = 3 \ or \ p \equiv 1 \pmod{6};$$

$$M_{22} = (\frac{1-\sqrt{-3}}{2}, 0, 1, \frac{1-\sqrt{-3}}{2})^t, \ p = 3 \ or \ p \equiv 1 \pmod{6}.$$

By X(2,1), X(p,1) and X'(p,1), we denote the covering graphs determined by M_1 , M_{21} and M_{22} , respectively. In particular, X(p,1) and X'(p,1) are the same one if p=3.

Inserting $\gamma = (18)(27)(36)(45)$ to (6), we have

$$\mathbf{0} = D_1^{\gamma} + D_2^{\gamma} M = (c_{26})^{\gamma} + (c_{46}c_{47}c_{37}c_{35})^{\gamma} M$$

$$= (c_{73}) + (c_{53}c_{52}c_{62}c_{64})M$$

$$= \begin{pmatrix} b - ab + ac - d \\ b - b^2 + bc \\ b - bc + c^2 - 1 \\ -a + b - bd + cd \end{pmatrix}.$$

Clearly, the matrices M_1 , M_{21} and M_{22} satisfy this equation and γ can be lifted, and so the group N can be lifted.

Inserting $\delta = (23)(67)$ to (6), we have

$$\mathbf{0} = D_1^{\delta} + D_2^{\delta} M = (c_{26})^{\delta} + (c_{46}c_{47}c_{37}c_{35})^{\delta} M$$

$$= (c_{37}) + (c_{47}c_{46}c_{26}c_{25})M$$

$$= \begin{pmatrix} b - ac + ad - d \\ a - bc + bd - d \\ -c^2 + cd - d + 1 \\ -cd + d^2 - d \end{pmatrix}.$$

Clearly, the matrix M_1 satisfy this equation and δ can be lifted. But the matrices M_{21} and M_{22} satisfy this equation and δ can be lifted when p=3. So, for graphs X(2,1) and X(3,1), Aut(Γ) can be lifted.

Finally, we show that for $p \equiv 1 \pmod{6}$, the graphs X(p,1) and X'(p,1) are isomorphic as graphs. Let $V := V(X(p,1)) = V(X'(p,1)) = \{(i;x) \mid 1 \leq i \leq 8, \ x \in GF(p)\}$. Let $R = (\frac{-1+\sqrt{-3}}{2})$, and let $\zeta = (18)(25)(36)(47) \in \operatorname{Aut}(\Gamma)$. Define a permutation Υ on V by $(i;x)^{\Upsilon} = (i^{\zeta};(x)R)$. A direct checking shows that Υ is isomorphism from X(p,1) to X'(p,1).

Cases (2) and (3): By a computation similar to case (1), we can get the graph X(p,1) in case (2) and the graph X(2,1) in the case (3).

3.2 The case of n = 2, 3, and 4

In this subsection, the case n = 2, 3, and 4 will be described briefly.

Case n = 2. In the case, $K = \mathbb{Z}_p^2 = V(2, p)$. As before, without loss we may assume one of the following happens:

- (1) $E_1 = \{46, 37\}$ and $E_2 = \{26, 47, 35\}$;
- (2) $E_1 = \{26, 46\}$ and $E_2 = \{47, 37, 35\}$;
- (3) $E_1 = \{26, 47\}$ and $E_2 = \{46, 37, 35\}$;
- (4) $E_1 = \{26, 37\}$ and $E_2 = \{46, 47, 35\}$;
- (5) $E_1 = \{26, 35\}$ and $E_2 = \{46, 47, 37\}$;
- (6) $E_1 = \{46, 47\}$ and $E_2 = \{26, 37, 35\}$.

For the case of (1), let

$$M = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{pmatrix}.$$

be a voltage generating matrix. Then a computation similar to case n = 1 gives that $Aut(\Gamma)$ can be lifted if and only if $a_1 = a_2 = b_2 = b_3$ and $b_1 = a_3 = 1$. Accordingly, we can get the graph X(p, 2).

In the Cases of (2), (3), (4), (5) and (6), the group M can not be lifted.

Case n = 3. In this case, $K = \mathbb{Z}_p^3 = V(3, p)$. Without any loss of generality, we may assume one of the following happens:

- (1) $E_1 = \{26, 47, 35\}$ and $E_2 = \{46, 37\}$;
- (2) $E_1 = \{26, 46, 47\}$ and $E_2 = \{37, 35\}$;
- (3) $E_1 = \{26, 46, 37\}$ and $E_2 = \{47, 35\}$;
- (4) $E_1 = \{26, 46, 35\}$ and $E_2 = \{47, 37\}$;
- (5) $E_1 = \{46, 47, 37\}$ and $E_2 = \{26, 35\}$;
- (6) $E_1 = \{26, 47, 37\}$ and $E_2 = \{46, 35\}$.

For the case of (1), one can show that $Aut(\Gamma)$ can be lifted if and only if the voltage generation matrix

$$M = \left(\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 1 & 0 \end{array}\right).$$

Thus, we get the graph X(p,3).

In the case (2), (3), (4), (5) and (6), the group M can not be lifted.

Case n = 4. In this case, $K = \mathbb{Z}_p^4 = V(4, p)$. Without any loss of generality, we may divide our discussion into mutually exclusive three cases as followings:

Case (1): $E_1 = \{26, 46, 47, 37\}$ and $E_2 = \{35\}$.

Let $D = (D_0, D_1, D_2)$ be the discriminant matrix with $D_0 = (-M, I_{1\times 1})P$, $D_1 = (-M)$ and $D_2 = (I_{1\times 1})$ with a voltage generating matrix M = (a, b, c, d).

The group $Aut(\Gamma)$ can be lifted if and only if

$$M_1 = (\frac{1-\sqrt{-3}}{2}, -1, \frac{1+\sqrt{-3}}{2}, \frac{1-\sqrt{-3}}{2}), \ p = 3 \ or \ p \equiv 1 \pmod{6};$$

$$M_2 = (\frac{1+\sqrt{-3}}{2}, -1, \frac{1-\sqrt{-3}}{2}, \frac{1+\sqrt{-3}}{2}), \ p = 3 \ or \ p \equiv 1 \pmod{6}.$$

By X(p,4) and X'(p,4), we denote the covering graphs determined by M_1 and M_2 , respectively. In particular, X(p,4) and X'(p,4) are the same one if p=3.

For $p \equiv 1 \pmod{6}$, the graphs X(p,4) and X'(p,4) are isomorphic as graphs. Let V :=

 $V(X(p,4)) = V(X'(p,4)) = \{(i; x, y, z, w) \mid 1 \le i \le 8, x, y, z, w \in GF(p)\}.$ Let

$$R = \left(\begin{array}{cccc} c_2 - 1 & 1 & -c_2 & c_2 - 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \end{array}\right).$$

And let and let $\zeta = (18)(25)(36)(47) \in \operatorname{Aut}(\Gamma)$. Define a permutation Υ on V by $(i; x, y, z, w)^{\Upsilon} = (i^{\zeta}; (x, y, z, w)R)$. A direct checking shows that Υ is isomorphism from X(p, 4) to X'(p, 4).

Case (2): $E_1 = \{26, 46, 47, 35\}$ and $E_2 = \{37\}$, and $\{\phi_{26}, \phi_{46}, \phi_{47}, \phi_{37}\}$, $\{\phi_{46}, \phi_{47}, \phi_{37}, \phi_{35}\}$ are linear dependant, hence letting

$$M = (0, b, c, 0).$$

Now, one can show that M cannot be lifted.

By a similar computation, in case (3) , $E_1 = \{26, 46, 37, 35\}$ and $E_2 = \{47\}$, and the group M can not be lifted.

Combining subsection 3.1 and 3.2, we finish the proof of Theorem 1.1. \Box

References

- [1] N.L. Biggs, Algebraic graph theory, Cambridge University Press, Cambridge, 1974.
- [2] N.L. Biggs, Homological coverings of graphs, J. London Math. Soc. 30(1984), 1–14.
- [3] S.F. Du, J.H. Kwak and M.Y. Xu, Linear criteria for liftings of automorphisms of the elementary abelian regular coverings, to appear in *Linear Algebra and Its applications*, 2003.
- [4] J.L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assignments, *Discrete Math.* **18**(1977) 273–283.
- [5] J.L. Gross and T.W. Tucker, *Topological Graph Theory*, Wiley-Interscience, New York, 1987.