SOME MIXED NEUTROSOPHIC SETS

Article · June 2023			
CITATIONS 0		READS 49	
3 authors, including:			
	Saeid Jafari Mathematical and Physical Science Foundation 4200 Slagelse Denmark http://top 500 PUBLICATIONS 2,561 CITATIONS SEE PROFILE		Giorgio Nordo Università degli Studi di Messina 63 PUBLICATIONS 254 CITATIONS SEE PROFILE
Some of the authors of this publication are also working on these related projects:			
Project	Contra continuity in its different aspects View project		
Project	Fibrewise General Topology View project		

SOME MIXED NEUTROSOPHIC SETS

S. JAFARI, G. NORDO AND N. RAJESH

ABSTRACT. In this paper, we introduce and study some subsets in mixed neutrosophic topological spaces.

1. Introduction

Theory of Fuzzy sets [6], Theory of Intuitionistic fuzzy sets [1], Theory of Neutrosophic sets [4] and the theory of Interval Neutrosophic sets [2] can be considered as tools for dealing with uncertainities. However, all of these theories have their own difficulties which are pointed out in [4]. In 1965, Zadeh [6] introduced fuzzy set theory as a mathematical tool for dealing with uncertainties where each element had a degree of membership. The Intuitionistic fuzzy set was introduced by Atanassov [1] in 1983 as a generalization of fuzzy set, where besides the degree of membership and the degree of non-membership of each element. The neutrosophic set was introduced by Smarandache [4] and explained, neutrosophic set is a generalization of Intuitionistic fuzzy set. In 2012, Salama and Alblowi [3], introduced the concept of Neutrosophic topological spaces. They introduced neutrosophic topological space as a generalization of Intuitionistic fuzzy topological space and a Neutrosophic set besides the degree of membership, the degree of indeterminacy and the degree of non-membership of each element.

2. Preliminaries

Definition 2.1. [5] Let X be a non-empty fixed set. A neutrosophic set A is an object having the form $A = \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle$, where $\mu_A(x)$, $\sigma_A(x)$ and $\gamma_A(x)$ represent the degree of member ship function, the degree of indeterminacy, and the degree of non-membership, respectively of each element $x \in X$ to the set A.

Definition 2.2. [3] A neutrosophic topology on a nonempty set X is a family τ of neutrosophic subsets of X which satisfies the following three conditions:

- $(1) \ 0, 1 \in \tau$
- (2) If $g, h \in \tau$, their $g \wedge h \in \tau$,
- (3) If $f_i \in \tau$ for each $i \in I$, then $\forall_{i \in I} f_i \in \tau$.

The pair (X,τ) is called a neutrosophic topological space.

Definition 2.3. Members of τ are called neutrosophic open sets and complement of neutrosophic open sets are called neutrosophic closed sets, where the complement of a neutrosophic set A, denoted by A^c , is 1 - A.

3. Some mixed neutrosophic sets

Definition 3.1. Let (X, τ_1) and (X, τ_2) be two neutrosophic topological spaces. Then the system (X, τ_1, τ_2) is called a mixed neutrosophic topological space.

Definition 3.2. A subset A of a mixed neutrosophic topological space (X, τ_1, τ_2) is said to be:

- (1) (τ_i, τ_j) -regular open if $A = \operatorname{Int}_i(\operatorname{Cl}_j(A))$;
- (2) (τ_i, τ_j) -semiopen if $A \subset \operatorname{Cl}_j(\operatorname{Int}_i(A))$;
- (3) (τ_i, τ_j) -preopen if $A \subset \operatorname{Int}_i(\operatorname{Cl}_i(A))$;
- (4) (τ_i, τ_j) - α -open if $A \subset \operatorname{Int}_i(\operatorname{Cl}_j(\operatorname{Int}_i(A)))$;
- (5) (τ_i, τ_j) -b-open if $A \subset \operatorname{Int}_i(\operatorname{Cl}_j(A)) \cup \operatorname{Cl}_i(\operatorname{Int}_i(A))$;
- (6) (τ_i, τ_j) - β -open if $A \subset \text{Cl}_j(\text{Int}_i(\text{Cl}_j(A)))$;
- (7) (τ_i, τ_j) - δ -open if $\operatorname{Int}_i(\operatorname{Cl}_i(A)) \subset \operatorname{Cl}_i(\operatorname{Int}_i(A))$.

On each definition above, i, j = 1, 2 and $i \neq j$.

The complement of an (i, j)-semiopen (resp. (i, j)-preopen, (i, j)-bopen, (i, j)- β -open, (i, j)-regular open) set is called an (i, j)-semiclosed (resp. (i, j)-preclosed, (i, j)-b-closed, (i, j)- β -closed, (i, j)-regular closed) set.

The family of all (i, j)-regular open (resp. (i, j)-preopen, (i, j)-semiopen, (i, j)-b-open, (i, j)- β -open, (i, j)-regular closed, (i, j)-preclosed, (i, j)-semiclosed, (i, j)-b-closed, (i, j)- β -closed) subsets of (X, τ_1, τ_2) is denoted by (i, j)-RO(X) (resp. (i, j)-PO(X), (i, j)-SO(X), (i, j)-BO(X), (i, j)- $\beta O(X)$, (i, j)-RC(X), (i, j)-PC(X), (i, j)-SC(X), (i, j)-BC(X), (i, j)- $\beta C(X)$).

Theorem 3.3. Let A and B be neutrosophic subsets of (X, τ_1, τ_2) . Then

- (1) A is (τ_1, τ_2) -semiopen if and only if $Cl_2(A) = Cl_2(Int_1(A))$.
- (2) A is (τ_2, τ_1) -semiopen if and only if $Cl_1(A) = Cl_1(Int_2(A))$.
- (3) If $A \in \tau_1$ and B is (τ_1, τ_2) -preopen, then $A \cap B$ is (τ_1, τ_2) -preopen.
- (4) If $A \in \tau_2$ and B is (τ_2, τ_1) -preopen, then $A \cap B$ is (τ_2, τ_1) -preopen.

Proof. The proof is clear.

Theorem 3.4. Let A and B be any two neutrosophic subsets of a mixed neutrosophic topological space (X, τ_1, τ_2) . Then

(1) If A is a (τ_1, τ_2) -semiopen or B is a (τ_1, τ_2) -semiopen set, then $\operatorname{Int}_1(\operatorname{Cl}_2(A \cap B)) = \operatorname{Int}_1(\operatorname{Cl}_2(A)) \cap \operatorname{Int}_1(\operatorname{Cl}_2(B))$.

(2) If A is a (τ_2, τ_1) -semiopen or B is a (τ_2, τ_1) -semiopen set, then $\operatorname{Int}_2(\operatorname{Cl}_1(A \cap B)) = \operatorname{Int}_2(\operatorname{Cl}_1(A)) \cap \operatorname{Int}_2(\operatorname{Cl}_1(B))$.

Proof. (1). Clearly, $Int_1(Cl_2(A \cap B)) \subset Int_1(Cl_2(A)) \cap Int_1(Cl_2(B))$. If *A* is a (τ_1, τ_2) -semiopen set, then $Cl_2(A) = Cl_2(Int_1(A))$. Then $Int_1(Cl_2(A)) \cap Int_1(Cl_2(B)) = Int_1(Cl_2(A) \cap Int_1(Cl_2(B))) = Int_1(Cl_2(Int_1(A)) \cap Int_1(Cl_2(B))) \subset Int_1(Cl_2(Int_1(A) \cap Int_1(Cl_2(B))) = Int_1(Cl_2(Int_1(A) \cap Cl_2(B)))) \subset Int_1(Cl_2(Int_1(Cl_2(Int_1(A \cap B))))) \subset Int_1(Cl_2(Int_1(Cl_2(A \cap B)))) \subset Int_1(Cl_2(A \cap B))$. (2). The proof is similar. □

Theorem 3.5. Let A and B be any two neutrosophic subsets of a mixed neutrosophic topological space (X, τ_1, τ_2) . Then

- (1) If B is a (τ_1, τ_2) - α -open set if and only if there exists $B \in \tau_1$ such that $A \subset B \subset \operatorname{Int}_1(\operatorname{Cl}_2(A))$.
- (2) If A is a (τ_1, τ_2) - α -open set and $A \subset B \subset Int_1(Cl_2(A))$, then A is (τ_1, τ_2) - α -open set.
- (3) If B is a (τ_2, τ_1) - α -open set if and only if there exists $B \in \tau_2$ such that $A \subset B \subset \operatorname{Int}_2(\operatorname{Cl}_1(A))$.
- (4) If A is a (τ_2, τ_1) - α -open set and $A \subset B \subset Int_2(Cl_1(A))$, then A is (τ_2, τ_1) - α -open set.

Proof. (1). If $\operatorname{Int}_1(A) = B$, then $B \subset A \subset \operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(A))) = \operatorname{Int}_1(\operatorname{Cl}_2(A))$. Conversely, Let $B \in \tau_1$ and $B \subset A \subset \operatorname{Int}_1(\operatorname{Cl}_2(A))$. Then $\operatorname{Int}_1(B) = B \subset \operatorname{Int}_1(A)$. Hence $A \subset \operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(B))) \subset \operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(A)))$. Thus, B is a (τ_1, τ_2) - α -open set. The other proofs are similar.

Theorem 3.6. Let A and B be any two neutrosophic subsets of a mixed neutrosophic topological space (X, τ_1, τ_2) . Then

- (1) If A is a (τ_1, τ_2) - α -open set and B is a (τ_1, τ_2) - β -open set, then $A \cap B$ is a (τ_1, τ_2) - β -open set.
- (2) If A is a (τ_2, τ_1) - α -open set and B is a (τ_2, τ_1) - β -open set, then $A \cap B$ is a (τ_2, τ_1) - β -open set.
- (3) If A is a (τ_1, τ_2) - α -open set and B is a (τ_1, τ_2) -semiopen set, then $A \cap B$ is a (τ_1, τ_2) -semiopen set.
- (4) If A is a (τ_2, τ_1) - α -open set and B is a (τ_2, τ_1) -semiopen set, then $A \cap B$ is a (τ_2, τ_1) -semiopen set.

Proof. (1). We have $A \cap B \subset \operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(A))) \cap \operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(B))) \subset \operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(A))) \cap \operatorname{Int}_1(\operatorname{Cl}_2(B))) = \operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(A)) \cap \operatorname{Int}_1(\operatorname{Cl}_2(B)))) = \operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(A) \cap \operatorname{Int}_1(\operatorname{Cl}_2(B))))) = \operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(A \cap B))))))))))) \subset \operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(A \cap B)))) \subset \operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(A \cap B))))$. Hence (τ_1, τ_2) -β-open set. The other proofs are similar. □

Theorem 3.7. If A is a neutrosophic subset of a mixed neutrosophic topological space (X, τ_1, τ_2) . Then

- (1) A is (τ_1, τ_2) -semiclosed if and only if $\operatorname{Int}_2(\operatorname{Cl}_1(A)) \subset A$.
- (2) A is (τ_2, τ_1) -semiclosed if and only if $Int_1(Cl_2(A)) \subset A$.
- (3) A is (τ_1, τ_2) -preclosed if and only if $Cl_1(Int_2(A)) \subset A$.
- (4) A is (τ_2, τ_1) -preclosed if and only if $Cl_1(Int_2(A)) \subset A$.
- (5) A is (τ_1, τ_2) - α -closed if and only if $\operatorname{Cl}_2(\operatorname{Int}_1(\operatorname{Cl}_2(A))) \subset A$.
- (6) A is (τ_2, τ_1) - α -closed if and only if $Cl_1(Int_2(Cl_1(A))) \subset A$.
- (7) A is (τ_1, τ_2) - β -closed if and only if $\operatorname{Int}_2(\operatorname{Cl}_1(\operatorname{Int}_2(A))) \subset A$.
- (8) A is (τ_2, τ_1) - β -closed if and only if $Cl_1(Int_2(Cl_1(A))) \subset A$.

Proof. The proofs follow from the respective definitions.

Lemma 3.8. If A is a neutrosophic subset of a mixed neutrosophic topological space (X, τ_1, τ_2) . Then

- (1) $\operatorname{Cl}_i(\operatorname{Int}_i(A)) = \operatorname{Cl}_i(\operatorname{Int}_i(\operatorname{Cl}_i(\operatorname{Int}_i(A))));$
- (2) $\operatorname{Int}_{i}(\operatorname{Cl}_{i}(A)) = \operatorname{Int}_{i}(\operatorname{Cl}_{i}(\operatorname{Int}_{i}(\operatorname{Cl}_{i}(A)))).$

Proof. (1). Clearly, the following holds $\operatorname{Int}_j(A) \subset \operatorname{Cl}_i(\operatorname{Int}_j(A))$. Then $\operatorname{Int}_j(\operatorname{Int}_j(A)) = \operatorname{Int}_j(A) \subset \operatorname{Int}_j(\operatorname{Cl}_i(\operatorname{Int}_j(A)))$ and consequently $\operatorname{Cl}_i(\operatorname{Int}_j(A)) \subset \operatorname{Cl}_i(\operatorname{Int}_j(\operatorname{Cl}_i(\operatorname{Int}_j(A)))$. Conversely, one has that $\operatorname{Int}_j(\operatorname{Cl}_i(\operatorname{Int}_j(A))) \subset \operatorname{Cl}_i(\operatorname{Int}_j(A))$ and hence we have the inclusion $\operatorname{Cl}_i(\operatorname{Int}_j(\operatorname{Cl}_i(\operatorname{Int}_j(A)))) \subset \operatorname{Cl}_i(\operatorname{Cl}_i(\operatorname{Int}_j(A))) = \operatorname{Cl}_i(\operatorname{Int}_j(A))$, and the proof is complete.

(2). Dual to (1).

Proposition 3.9. (1) Every (τ_i, τ_j) - α -open set is (τ_i, τ_j) -semiopen. (2) Every (τ_i, τ_j) -semiopen set is (τ_i, τ_j) -b-open.

Proof. The proof follows from the definitions.

Corollary 3.10. (1) Every (τ_i, τ_j) -semiopen set is (τ_i, τ_j) - δ -open. (2) Every (τ_i, τ_j) -semiopen set is (τ_i, τ_j) -semipreopen.

Remark 3.11. It is clear that (τ_i, τ_j) -semiopenness and (τ_i, τ_j) -preopen-

ness are independent notions.

Theorem 3.12. If $\{A_{\alpha}\}_{{\alpha}\in\Delta}$ is the collection of (τ_i, τ_j) -semiopen sets of (X, τ_1, τ_2) , then $\bigcup_{{\alpha}\in\Delta} A_{\alpha}$ is also a (τ_i, τ_j) -semiopen set.

Proof. Since each A_{α} is (τ_i, τ_j) -semiopen and $A_{\alpha} \subset \bigcup_{\alpha \in \Delta} A_{\alpha}$, implies that $\bigcup_{\alpha \in \Delta} A_{\alpha} \subset \operatorname{Cl}_j(\operatorname{Int}_i(\bigcup_{\alpha \in \Delta} A_{\alpha}))$. Hence $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is also a (τ_i, τ_j) -semiopen set in (X, τ_1, τ_2) .

Proposition 3.13. A subset A of X is (τ_i, τ_j) -semiopen if and only if $\operatorname{Cl}_i(A) = \operatorname{Cl}_i(\operatorname{Int}_i(A))$.

Proof. Let $A \in (\tau_i, \tau_j)$ -SO(X). Then we have $A \subset \operatorname{Cl}_j(\operatorname{Int}_i(A))$. Then $\operatorname{Cl}_j(A) \subset \operatorname{Cl}_j(\operatorname{Int}_i(A))$ and hence $\operatorname{Cl}_j(A) = \operatorname{Cl}_j(\operatorname{Int}_i(A))$. The converse is obvious.

Corollary 3.14. If A is a nonempty (τ_i, τ_j) -semiopen set, then $\operatorname{Int}_i(A) \neq \emptyset$

Proof. Since A is (τ_i, τ_j) -semiopen, by Proposition 3.13, we have $\operatorname{Cl}_j(A) = \operatorname{Cl}_j(\operatorname{Int}_i(A))$. Suppose $\operatorname{Int}_i(A) = \emptyset$. Then we have $\operatorname{Cl}_j(A) = \emptyset$ and hence $A = \emptyset$. This is contrary to the hypothesis. Therefore, $\operatorname{Int}_i(A) \neq \emptyset$.

Proposition 3.15. A subset A is (τ_i, τ_j) -semiopen if and only if there exists $U \in \tau_i$ such that $U \subset A \subset \operatorname{Cl}_j(U)$.

Proof. Let $A \in (\tau_i, \tau_j)$ -SO(X). Then we have $A \subset \operatorname{Cl}_j(\operatorname{Int}(A))$. Take $\operatorname{Int}_i(A) = U$. Then $U \subset A \subset \operatorname{Cl}_j(U)$. Conversely, let U be a τ_i -open set such that $U \subset A \subset \operatorname{Cl}_j(U)$. Since $U \subset A$, $U \subset \operatorname{Int}_i(A)$ and hence $\operatorname{Cl}_j(U) \subset \operatorname{Cl}_j(\operatorname{Int}_i(A))$. Thus, we obtain $A \subset \operatorname{Cl}_j(\operatorname{Int}_i(A))$.

Proposition 3.16. If A is a (τ_i, τ_j) -semiopen set in a mixed neutro-sophic topological space (X, τ_1, τ_2) and $A \subset B \subset \operatorname{Cl}_j(A)$, then B is a (τ_i, τ_j) -semiopen set in (X, τ_1, τ_2) .

Proof. Since A is (τ_i, τ_j) -semiopen, there exists a τ_i -open set U such that $U \subset A \subset \operatorname{Cl}_j(U)$. Then we have $U \subset A \subset B \subset \operatorname{Cl}_j(A) \subset \operatorname{Cl}_j(\operatorname{Cl}_j(U)) = \operatorname{Cl}_j(U)$ and hence $U \subset B \subset \operatorname{Cl}_j(U)$. By Proposition 3.15, we obtain $B \in (\tau_i, \tau_j)$ -SO(X).

Theorem 3.17. A subset A of X is (τ_i, τ_j) -semiopen if and only if it is both (τ_i, τ_j) - δ -open and (τ_i, τ_j) - β -preopen.

Proof. Let A be a (τ_i, τ_j) -semiopen set, then $A \subset \operatorname{Cl}_j(\operatorname{Int}_i(A)) \subset \operatorname{Cl}_j(\operatorname{Int}_i(\operatorname{Cl}_j(A)))$. This shows that A is (τ_i, τ_j) - β -open. Moreover, $\operatorname{Int}_i(\operatorname{Cl}_j(A)) \subset \operatorname{Cl}_j(A) \subset \operatorname{Cl}_j(\operatorname{Int}_i(A))$. Therefore, A is (τ_i, τ_j) - δ -open. Conversely, let A be (τ_i, τ_j) - δ -open and (τ_i, τ_j) - β -open set, then we have $\operatorname{Int}_i(\operatorname{Cl}_j(A)) \subset \operatorname{Cl}_j(\operatorname{Int}_i(A))$. Thus we obtain that $\operatorname{Cl}_j(\operatorname{Int}_i(\operatorname{Cl}_j(A))) \subset \operatorname{Cl}_j(\operatorname{Int}_i(A))$. Since A is (τ_i, τ_j) - β -open, we have $A \subset \operatorname{Cl}_j(\operatorname{Int}_i(\operatorname{Cl}_j(A))) \subset \operatorname{Cl}_j(\operatorname{Int}_i(A))$ and $A \subset \operatorname{Cl}_j(\operatorname{Int}_i(A))$. Hence A is a (τ_i, τ_j) -semiopen set.

Theorem 3.18. A subset A of X is (τ_i, τ_j) -semiclosed if and only if there exists a τ_i -closed set F such that $\operatorname{Int}_i(F) \subset A \subset F$.

Proof. Suppose that A is (τ_i, τ_j) -semiclosed. Then $\operatorname{Int}_i(\operatorname{Cl}_j(A)) \subset A$. Let $F = \operatorname{Cl}_j(A)$, then F is τ_j -closed set such that $\operatorname{Int}_i(F) \subset A \subset F$. Conversely, let F be a τ_j -closed set such that $\operatorname{Int}_i(F) \subset A \subset F$. But $F \supset \operatorname{Cl}_j(A)$, so $\operatorname{Int}_i(F) \supset \operatorname{Int}_i(\operatorname{Cl}_j(A))$. Hence $\operatorname{Int}_i(\operatorname{Cl}_j(A)) \subset A$. Therefore, A is (τ_i, τ_j) -semiclosed.

Proposition 3.19. A subset A of X is (τ_i, τ_j) - β -closed and (τ_i, τ_j) - δ -open, then it is (τ_i, τ_j) -semiclosed.

Proof. The proof follows from the definitions. \Box

Theorem 3.20. Arbitrary intersection of (τ_i, τ_j) -semiclosed sets is always (τ_i, τ_j) -semiclosed.

Proof. Follows from Theorem 3.12.

Definition 3.21. Let A be subset of a mixed neutrosophic topological space (X, τ_1, τ_2) . Then

- (1) the (τ_i, τ_j) -semiclosure of A is defined as intersection of all (τ_i, τ_j) -semiclosed sets containing A. That is, (τ_i, τ_j) -s $Cl(A) = \bigcap \{F : F \text{ is } (\tau_i, \tau_j)\text{-semiclosed and } A \subset F\}$.
- (2) the (τ_i, τ_j) -semiinterior of A is defined as union of all (τ_i, τ_j) semiopen sets contained in A. That is, (τ_i, τ_j) -s $\operatorname{Int}(A) = \bigcup \{U : U \text{ is } (\tau_i, \tau_j)\text{-semiopen and } U \subset A\}.$

Theorem 3.22. For a subset A of X, the following hold:

- (1) (τ_i, τ_j) -s $Cl(A) = A \cup Int_i(Cl_j(A))$.
- (2) (τ_i, τ_j) -s $\operatorname{Int}(A) = A \cap \operatorname{Cl}_i(\operatorname{Int}_i(A))$.

Proof. The proof follows from the definitions.

4. Extremally disconnected mixed neutrosophic topological spaces

Definition 4.1. A mixed neutrosophic topological space (X, τ_1, τ_2) is said to be

- (1) (τ_i, τ_j) -extremally disconnected if τ_j -closure of every τ_i -open set is τ_i -open in X,
- (2) pairwise extremally disconnected if (X, τ_1, τ_2) is (τ_1, τ_2) -extremally disconnected and (τ_2, τ_1) -extremally disconnected.

Theorem 4.2. A mixed neutrosophic topological space (X, τ_1, τ_2) is pairwise extremally disconnected if and only if for each τ_i -open set A and each τ_i -open set B such that $A \cap B = \emptyset$, τ_i -Cl $(A) \cap \tau_i$ -Cl $(B) = \emptyset$.

Proof. Assume that (X, τ_1, τ_2) is pairwise extremally disconnected. Let A and B, respectively, be τ_1 -open and τ_2 -open sets such that $A \cap B = \emptyset$. Then τ_j -Cl $(A) \in \tau_i$ and hence τ_j -Cl $(A) \cap \tau_i$ -Cl $(B) = \emptyset$. Conversely, let U be a τ_i -open set in X. Then $X \setminus \tau_j$ -Cl(U) is τ_j -open in X. Now, we have

```
U \cap (X \setminus \tau_j \text{-Cl}(U)) = \emptyset
```

- $\Rightarrow \tau_i$ -Cl(U) $\cap \tau_i$ -Cl(X\ τ_i -Cl(U))
- $\Rightarrow \tau_i$ -Cl $(X \setminus \tau_j$ -Cl $(U)) \subset X \setminus \tau_j$ -Cl(U)
- $\Rightarrow \tau_i \text{-Cl}(X \setminus \tau_i \text{-Cl}(U)) = X \setminus \tau_i \text{-Cl}(U)$
- $\Rightarrow (X \setminus \tau_i \text{-Cl}(U)) \text{ is } \tau_i \text{-closed}$
- $\Rightarrow \tau_i$ -Cl(U) is τ_i -open.

Thus (X, τ_1, τ_2) is (τ_i, τ_j) -extremally disconnected. Similarly, (X, τ_1, τ_2) is (τ_j, τ_i) -extremally disconnected. Hence (X, τ_1, τ_2) is pairwise extremally disconnected.

Theorem 4.3. The following are equivalent for a mixed neutrosophic topological space (X, τ_1, τ_2) :

- (1) (X, τ_1, τ_2) is pairwise extremally disconnected.
- (2) For each (τ_i, τ_i) -semiopen set A in X, τ_j -Cl(A) is τ_i -open set.

- (3) For each (τ_i, τ_j) -semiopen set A in X, (τ_j, τ_i) -s Cl(A) is τ_i -open set.
- (4) For each (τ_i, τ_j) -semiopen set A and each (τ_j, τ_i) -semiopen set B with $A \cap B = \emptyset$, τ_j -Cl $(A) \cap \tau_i$ -Cl $(B) = \emptyset$.
- (5) For each (τ_j, τ_i) -semiopen set A in X, τ_j -Cl $(A) = (\tau_j, \tau_i)$ -s Cl(A).
- (6) For each (τ_i, τ_j) -semiopen set A in X, (τ_j, τ_i) -s Cl(A) is τ_j closed set.
- (7) For each (τ_i, τ_j) -semiclosed set A in X, τ_j -Int $(A) = (\tau_j, \tau_i)$ - $s \operatorname{Int}(A)$.
- (8) For each (τ_i, τ_j) -semiclosed set A in X, (τ_j, τ_i) -s Int(A) is τ_j -open set.

Proof. $(1) \Rightarrow (2)$: Clear.

- (1) \Rightarrow (5): Since (τ_j, τ_i) -s Cl $(A) \subset \tau_j$ -Cl(A) for any set A of X, it is sufficient to show that (τ_j, τ_i) -s Cl $(A) \supset \tau_j$ -Cl(A) for any (τ_i, τ_j) -semiopen set A of X. Let $x \notin (\tau_j, \tau_i)$ -s Cl(A). Then there exists a (τ_j, τ_i) -semiopen set W with $x \in W$ such that $W \cap A = \emptyset$. Thus τ_j -Int(W) and τ_i -Int(A) are, respectively, τ_j -open and τ_i -open such that τ_j -Int $(X) \cap \tau_i$ -Int $(A) = \emptyset$. By Theorem 4.2, τ_i -Cl $(\tau_j$ -Int $(W)) \cap \tau_j$ -Cl $(\tau_i$ -Int $(A)) = \emptyset$ and hence $x \notin \tau_j$ -Cl $(\tau_i$ -Int $(A)) = \tau_j$ -Cl(A). Hence τ_j -Cl $(A) \subset (\tau_j, \tau_i)$ -s-Cl(A).
- $(5) \Rightarrow (6)$: Obvious.
- (6) \Rightarrow (5): For any set A in X, $A \subset (\tau_j, \tau_i)$ - $s \operatorname{Cl}(A) \subset \tau_j$ - $\operatorname{Cl}(A)$. Then τ_j - $\operatorname{Cl}(A) = \tau_j$ - $\operatorname{Cl}((\tau_j, \tau_i)$ - $s \operatorname{Cl}(A))$. Since A is (τ_i, τ_j) -semiopen, by (6), (τ_j, τ_i) - $s \operatorname{Cl}(A)$ is τ_j -closed. Hence, τ_j - $\operatorname{Cl}(A) = (\tau_j, \tau_i)$ - $s \operatorname{Cl}(A)$.
- $(6) \Leftrightarrow (8)$: Clear.
- $(7) \Rightarrow (8)$: Obvious.
- (8) \Rightarrow (7): For any subset A of X, τ_j -Int $(A) \subset (\tau_j, \tau_i)$ -s Int $(A) \subset A$ and hence τ_j -Int $(A) = \tau_j$ -Int $((\tau_j, \tau_i)$ -s Int(A)). Since A is (τ_i, τ_j) -semiclosed, by (8), (τ_j, τ_i) -s Int(A) is τ_j -open. Hence τ_j -Int $(A) = (\tau_j, \tau_i)$ -s Int(A).
- (1) \Rightarrow (4): Let A be a (τ_i, τ_j) -open set and B a (τ_j, τ_i) -semiopen set such that $A \cap B = \emptyset$. Then τ_i -Int $(A) \cap \tau_j$ -Int $(B) = \emptyset$ and thus by Theorem 4.2, τ_j -Cl $(\tau_j$ -Int $(A)) \cap \tau_i$ -Cl $(\tau_j$ -Int $(B)) = \emptyset$. Hence τ_j -Cl $(A) \cap \tau_i$ -Cl $(B) = \emptyset$.
- (4) \Rightarrow (2): Let A be a (τ_i, τ_j) -semiopen subset of X. Then $X \setminus \tau_j$ -Cl(A) is (τ_j, τ_i) -semiopen and $A \cap (X \setminus \tau_j$ -Cl(A)). Thus, by (4), τ_j -Cl $(A) \cap \tau_i$ -Cl $(X \setminus \tau_j$ -Cl $(A)) = \emptyset$ which implies τ_j -Cl $(A) \subset \tau_i$ -Int $(\tau_j$ -Cl(A)). Hence, τ_j -Cl $(A) = \tau_i$ -Int $(\tau_j$ -Cl(A)) and consequently τ_j -Cl(A) is τ_i -open in X. (5) \Rightarrow (4): Let A be a (τ_i, τ_j) -semiopen set and B be a (τ_j, τ_i) -semiopen set such that $A \cap B = \emptyset$. Then (τ_j, τ_i) -s Cl(A) is (τ_i, τ_j) -semiopen and
- (τ_i, τ_j) -s Cl(B) is (τ_j, τ_i) -semiopen in X and hence (τ_j, τ_i) -s Cl(A) \cap (τ_j, τ_i) -s Cl(B) = \emptyset . By (5), τ_j -Cl(A) \cap τ_i -Cl(B) = \emptyset .
- $(1) \Rightarrow (3)$: Clear.
- (3) \Rightarrow (1): Let A be a τ_i -open set in (X, τ_1, τ_2) . It is sufficient to prove that τ_j -Cl(A) = (τ_j, τ_i) -s Cl(A). Obviously, (τ_j, τ_i) -s Cl(A) $\subset \tau_j$ -Cl(A).

Let $x \notin (\tau_j, \tau_i)$ -s $\operatorname{Cl}(A)$. Then there exists a (τ_j, τ_i) -semiopen set U with $x \in U$ such that $A \cap U = \emptyset$. Hence (τ_i, τ_j) -s $\operatorname{Cl}(U) \subset (\tau_i, \tau_j)$ -s $\operatorname{Cl}(X \setminus A) = X \setminus A$ and thus (τ_i, τ_j) -s $\operatorname{Cl}(U) \cap A = \emptyset$. Since (τ_i, τ_j) -s $\operatorname{Cl}(U)$ is a τ_j -open set with $x \in (\tau_i, \tau_j)$ -s $\operatorname{Cl}(U)$, $x \notin \tau_j$ -Cl(A). Hence τ_j -Cl $(A) \subset (\tau_j, \tau_i)$ -Cl(A).

Definition 4.4. A point x in a mixed neutrosophic toplogical space (X, τ_1, τ_2) is said to be (τ_i, τ_j) - θ -cluster point of a set A if for every τ_i -open, say, U containing x, τ_j - $\mathrm{Cl}(U) \cap A \neq \emptyset$. The set of all (τ_i, τ_j) - θ -closure of A and will be denoted by (τ_i, τ_j) - $\mathrm{Cl}_{\theta}(A)$. A set A is called (τ_i, τ_j) - θ -closed if $A = (\tau_i, \tau_j)$ - $\mathrm{Cl}_{\theta}(A)$.

Lemma 4.5. For any (τ_j, τ_i) -preopen set A in a mixed neutrosophic topological space (X, τ_1, τ_2) , τ_i - $Cl(A) = (\tau_i, \tau_i)$ - $Cl_{\theta}(A)$.

Proof. It is obvious that τ_i -Cl(A) $\subset (\tau_i, \tau_j)$ -Cl $_{\theta}(A)$, for any subset A of (X, τ_1, τ_2) . Thus, it remains to be shown that (τ_i, τ_j) -Cl $_{\theta}(A) \subset \tau_i$ -Cl(A). If $x \notin \tau_i$ -Cl(A), then there exists a τ_i -open set U containing x such that $U \cap A = \emptyset$ and thus $U \cap \tau_i$ -Cl(A) = \emptyset . But $U \cap \tau_j$ -Int(τ_i -Cl(A)) = \emptyset which implies τ_j -Cl(U) $\cap \tau_j$ -Int(τ_i -Cl(A)) = \emptyset and so τ_j -Cl(U) $\cap A = \emptyset$ since A is (τ_j, τ_i) -preopen. Hence $x \notin (\tau_j, \tau_i)$ -Cl $_{\theta}(A)$ and consequently (τ_j, τ_i) -Cl $_{\theta}(A) \subset \tau_i$ -Cl(A).

Theorem 4.6. The following are equivalent for a mixed neutrosophic topological space (X, τ_1, τ_2) :

- (1) (X, τ_1, τ_2) is pairwise extremally disconnected.
- (2) The τ_i -closure of every (τ_i, τ_i) - β -open set of X is τ_i -open set.
- (3) The (τ_j, τ_i) - θ -closure of every (τ_i, τ_j) -preopen set of X is τ_i -open set.
- (4) The τ_i -closure of every (τ_i, τ_j) -preopen set of X is τ_i -open set.

Proof. (1) \Rightarrow (2): Let A be a (τ_i, τ_j) - β -open set. Then τ_j - $Cl(A) = \tau_j$ - $Cl(\tau_i$ -Int $(\tau_j$ -Cl(A))). Since (X, τ_1, τ_2) is pairwise extremally disconnected. τ_j -Cl(A) is a τ_i -open set.

- (2) \Rightarrow (4): Follows from the fact that every (τ_i, τ_j) -preopen set is (τ_i, τ_j) - β -open.
- $(4) \Rightarrow (1)$: Clear.
- $(3) \Leftrightarrow (4)$: Follows from Lemma 4.5.

Theorem 4.7. A mixed neutrosophic topological space (X, τ_1, τ_2) is pairwise extremally disconnected if and only if every (τ_i, τ_j) -semiopen set is a (τ_i, τ_j) -preopen set.

Proof. Let A be a (τ_i, τ_j) -semiopen set. Then $A \subset \tau_j$ -Cl $(\tau_i$ -Int(A)). Since X is pairwise extremally disconnected, τ_j -Cl $(\tau_i$ -Int(A)) is a τ_i -open set and then $A \subset \tau_j$ -Cl $(\tau_i$ -Int $(A)) = \tau_i$ -Int $(\tau_j$ -Cl $(\tau_i$ -Int $(A))) \subset \tau_i$ -Int $(\tau_j$ -Cl(A)). Hence A is a (τ_i, τ_j) -preopen set. Conversely, let A be a τ_i -open set. Since τ_j -Cl $(A) = \tau_j$ -Cl $(\tau_i$ -Int $(\tau_j$ -Cl(A))). Then τ_j -Cl(A) is (τ_j, τ_i) -regular closed and hence

A is (τ_i, τ_j) -semiopen. By hypothesis, A is (τ_i, τ_j) -propen so that τ_j - $Cl(A) = \tau_i - Int(\tau_i - Cl(A))$. Then $\tau_i - Cl(A)$ is τ_i -open in X and hence X is pairwise extremally disconnected.

Lemma 4.8. For a subset A of a mixed neutrosophic topological space $(X, \tau_1, \tau_2),$

- (1) τ_i -Int $(\tau_i$ -Cl(A)) $\subset (\tau_i, \tau_i)$ -s Cl(A),
- (2) τ_i -Int $((\tau_i, \tau_i)$ -s Cl(A)) = τ_i -Int $(\tau_i$ -Cl(A)).

Proof. (1) Since (τ_i, τ_i) -s Cl(A) is (τ_i, τ_i) -semiclosed, there exists a τ_i closed set U in X such that τ_j -Int $(U) \subset (\tau_i, \tau_j)$ - $s\operatorname{Cl}(A) \subset U$. Then τ_j -Int $(U) \subset (\tau_i, \tau_j)$ -s Cl $(A) \subset \tau_i$ -Cl $(A) \subset U$, and consequently τ_j - $\operatorname{Int}(U) \subset \tau_i\operatorname{-Int}(\tau_i\operatorname{-Cl}(A)) \subset \tau_i\operatorname{-Int}(U)$. Hence, $\tau_i\operatorname{-Int}(\tau_i\operatorname{-Cl}(A)) \subset$ (τ_i, τ_i) -s Cl(A).

(2) Follows easily from (1).

Theorem 4.9. Let A be a subset of a mixed neutrosophic topological space (X, τ_1, τ_2) . Then A is (τ_i, τ_j) -regular open if and only if A is τ_i -open and τ_i -closed.

Proof. Let A be a (τ_i, τ_i) -regular open set of a bitoplogical space (X, τ_1, τ_2) . Then τ_i -Int $(\tau_i$ -Cl(A)) = A. Now, $X \setminus \tau_i$ -Cl(A) and A are, respectively, τ_i -open and τ_i -open such that $(X \setminus \tau_i - \mathrm{Cl}(A)) \cap A = \emptyset$. Since (X, τ_1, τ_2) is pairwise extremally disconnected, by Theorem 4.2, τ_i $Cl(X \setminus \tau_i - Cl(A)) \cap \tau_i - Cl(A) = \emptyset$. Then $\tau_i - Cl(X \setminus \tau_i - Cl(A)) = X \setminus \tau_i - Cl(A)$ Cl(A) and $X \setminus \tau_i$ -Cl(A) is τ_i -closed. Hence, τ_i -Cl(A) is τ_i -open, so that τ_i -Cl(A) = τ_i -Int(τ_i -Cl(A)) = A is τ_i -open and τ_i -closed. The converse is clear.

Lemma 4.10. Let A be a subset of a mixed neutrosophic topological space (X, τ_1, τ_2) . Then we have

- (1) A is (τ_i, τ_j) -preopen if and only if (τ_j, τ_i) -s $Cl(A) = \tau_i$ -Int $(\tau_j$ -Cl(A)).
- (2) A is (τ_i, τ_i) -preopen if and only if (τ_i, τ_i) -s Cl(A) is (τ_i, τ_i) regular open.
- (3) A is (τ_i, τ_j) -regular open if and only if A is (τ_i, τ_j) -preopen and (τ_i, τ_i) -semiclosed.

Proof. (1). Let A b e a (τ_i, τ_j) -preopen set. Then (τ_j, τ_i) -s $Cl(A) \subset$ (τ_j, τ_i) -s Cl $(\tau_i$ -Int $(\tau_j$ -Cl(A))). Since τ_i -Int $(\tau_j$ -Cl(A)) is (τ_j, τ_i) -semiclosed, (τ_j, τ_i) -s Cl(A) $\subset \tau_i$ -Int $(\tau_j$ -Cl(A)). Hence, by Lemma 4.8 (1), (τ_j, τ_i) $s\operatorname{Cl}(A) = \tau_i\operatorname{-Int}(\tau_i\operatorname{-Cl}(A))$. The converse is obvious.

- (2). Let (τ_i, τ_i) -s Cl(A) be a (τ_i, τ_i) -regular open set. Then we have (τ_i, τ_i) -s $\mathrm{Cl}(A) = \tau_i$ -Int $(\tau_i$ -Cl (τ_i, τ_i) -s Cl(A)) and hence (τ_i, τ_i) -s Cl $(A) \subset$ τ_i -Int $(\tau_j$ -Cl $(\tau_j$ -Cl $(A))) = \tau_i$ - Int $(\tau_j$ -Cl(A)). By Lemma 4.8 (1), we have (τ_i, τ_i) -s Cl(A) = τ_i -Int(τ_i -Cl(A)). Hence, A is a (τ_i, τ_i) -preopen set from (1). The converse follows from (1).
- (3). Let A be a (τ_i, τ_j) -preopen and a (τ_j, τ_i) -semiclosed set. Then by

(2), A is (τ_i, τ_j) -regular open in X. Conversely, let A be a (τ_i, τ_j) -regular open set. Then $A = \tau_i$ -Int $(\tau_j$ -Cl(A)) and thus τ_i -Int $(\tau_j$ -Cl $(A)) = (\tau_j, \tau_i)$ -s Cl(A) = A. Hence A is (τ_i, τ_j) -preopen and (τ_j, τ_i) -semiclosed.

Theorem 4.11. In a mixed neutrosophic topological space (X, τ_1, τ_2) , the following are equivalent:

- (1) X is pairwise extremally disconnected.
- (2) (τ_j, τ_i) -s Cl(A) = (τ_j, τ_i) -Cl_{\theta}(A) for every (τ_i, τ_j) -preopen (or (τ_i, τ_j) -semiopen) set A in X.
- (3) (τ_j, τ_i) -s Cl(A) = τ_j -Cl(A) for every (τ_i, τ_j) - β -open set A in X.

Proof. (1) \Rightarrow (2): Since (τ_j, τ_i) -s $\operatorname{Cl}(A) \subset (\tau_j, \tau_i)$ -Cl $_{\theta}(A)$ for any subset A of X, it is sufficient to show that (τ_j, τ_i) -Cl $_{\theta}(A) \subset (\tau_j, \tau_i)$ -s $\operatorname{Cl}(A)$ for any (τ_i, τ_j) -preopen or (τ_i, τ_j) -semiopen set A of X. Let $x \notin (\tau_j, \tau_i)$ -s $\operatorname{Cl}(A)$. Then there exists a (τ_j, τ_i) -semiopen set U with $x \in U$ such that $U \cap A = \emptyset$ and thus there exists a τ_j -open set V such that $V \subset U \subset \tau_j$ -Cl(V) with $V \cap A = \emptyset$ which implies $V \cap \tau_j$ -Cl $(A) = \emptyset$. This means $V \cap \tau_i$ -Int $(\tau_j$ -Cl $(A)) = \emptyset$ and hence τ_i -Cl $(V) \cap \tau_i$ -Int $(\tau_j$ -Cl $(A)) = \emptyset$. Now, if A is (τ_i, τ_j) -preopen, then $A \subset \tau_i$ -Int $(\tau_j$ -Cl(A)) and hence τ_i -Cl $(V) \cap A = \emptyset$. If A is (τ_i, τ_j) -semiopen, since X is pairwise extremally disconnected, τ_i -Cl(V) is τ_j -open and thus τ_i -Cl $(V) \cap \tau_j$ -Cl $(\tau_i$ -Int $(\tau_j$ -Cl $(A))) = \emptyset$ which implies τ_i -Cl $(V) \cap A = \emptyset$. Hence, in any case, $x \notin (\tau_j, \tau_i)$ -Cl $_{\theta}(A)$.

- (2) \Rightarrow (1): First let A be a (τ_i, τ_j) -preopen set in X. By Lemmas 4.10 and 4.5, we have τ_i -Int $(\tau_j$ -Cl $(A)) = (\tau_j, \tau_i)$ -s Cl $(A) = (\tau_j, \tau_i)$ -Cl $(A) = \tau_j$ -Cl(A). Then τ_j -Cl(A) is τ_i -open and hence by Theorem 4.6, X is pairwise extremally disconnected. Next, let A be a (τ_i, τ_j) -semiopen set in X. Then (τ_j, τ_i) -Cl $(A) \subset \tau_j$ -Cl $(A) \subset (\tau_j, \tau_i)$ -Cl $(A) = (\tau_j, \tau_i)$ -s Cl(A) and thus (τ_j, τ_i) -s Cl $(A) = \tau_j$ -Cl(A). Hence, X is pairwise extremally disconnected from Theorem 4.6.
- (1) \Rightarrow (3): Let A be a (τ_i, τ_j) - β -open set in X. Since X is pairwise extremally disconnected, by Theorem 4.6, τ_j -Cl(A) is τ_i -open in X. Hence, by Lemma 4.10, (τ_i, τ_i) -S Cl(A) = τ_j -Cl(A).
- (3) \Rightarrow (1): Let U and V, respectively, be τ_i -open and τ_j -open sets such that $U \cap V = \emptyset$. Then $U \subset X \setminus V$ which implies (τ_j, τ_i) -s $\operatorname{Cl}(U) \subset (\tau_j, \tau_i)$ -s $\operatorname{Cl}(X \setminus V) = X \setminus V$ and hence (τ_j, τ_i) -s $\operatorname{Cl}(U) \cap V = \emptyset$. Since (τ_j, τ_i) -s $\operatorname{Cl}(U)$ is (τ_i, τ_j) -semiopen in X, (τ_j, τ_i) -s $\operatorname{Cl}(U) \cap (\tau_i, \tau_j)$ -s $\operatorname{Cl}(V) = \emptyset$. Then by (3) τ_j -Cl $(U) \cap \tau_i$ -Cl $(V) = \emptyset$ and hence by Theorem 4.2, X is pairwise extremally disconnected.

Theorem 4.12. In a mixed neutrosophic topological space (X, τ_1, τ_2) , the following are equivalent:

- (1) X is pairwise extremally disconnected.
- (2) For each (τ_i, τ_j) - β -open set A in X and each (τ_j, τ_i) -semiopen set B in X such that $A \cap B = \emptyset$, τ_i - $Cl(A) \cap \tau_j$ - $Cl(B) = \emptyset$

(3) For each (τ_i, τ_j) -preopen set A in X and each (τ_j, τ_i) -semiopen set B in X such that $A \cap B = \emptyset$, τ_i -Cl $(A) \cap \tau - j$ -Cl $(B) = \emptyset$.

Proof. (1) \Rightarrow (2): Let A be a (τ_i, τ_j) - β -open set and B a (τ_j, τ_i) -semiopen set such that $A \cap B = \emptyset$. Then $A \cap \tau_j$ -Int $(B) = \emptyset$ and hence τ_j -Cl $(A) \cap \tau_j$ -Int $(B) = \emptyset$. By Theorem 4.6, τ_j -Cl(A) is a τ_i -open set in X and hence τ_j -Cl $(A) \cap \tau_i$ -Cl $(\tau_j$ -Int $(B)) = \emptyset$. Since B is (τ_j, τ_i) -semiopen in X, τ_i -Cl $(B) = \tau_i$ -Cl $(\tau_j$ -Int(B)). Thus τ_j -Cl $(A) \cap \tau_i$ -Cl $(B) = \emptyset$.

 $(2) \Rightarrow (3)$: Straightforward.

(3) \Rightarrow (1): Let A be a τ_i -open set and B a τ_j -open set such that $A \cap B = \emptyset$. Since every τ_i -open set is a (τ_i, τ_j) -semiopen set and every τ_j -open set is a (τ_i, τ_j) -semiopen set and every τ_j -open set is a (τ_i, τ_j) -preopen set, τ_j -Cl $(A) \cap \tau_i$ -Cl $(B) = \emptyset$. Hence by Theorem 4.2, X is pairwise extremally disconnected.

REFERENCES

- K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96.
- [2] F. G. Lupianez, Interval Neutrosophic Sets and Topology, Proceedings of 13th WSEAS, International conference on Applied Mathematics (MATH'08) Kybernetes, 38 (2009), 621-624.
- [3] A. A. Salama, S. A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, 3(4), 2012, PP 31-35.
- [4] F. Smarandache. Neutrosophic Set: A Generalization of Intuitionistic Fuzzy set, Journal of Defense Resourses Management. 1 (2010), 107-116.
- [5] F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, 1999.
- [6] L. A. Zadeh, Fuzzy Sets, Inform and Control 8 (1965), 338-353.

College of Vestsjaelland South, Herrestraede 11, and, Mathematical and Physical Science Foundation,, 4200 Slagelse, Denmark. *Email address*: jafaripersia@gmail.com

DIPARTIMENTO DI SCIENZE MATEMATICHE E INFORMATICHE, SCIENZE FISICHE E SCIENZE DELLA TERRA DELL' UUNIVERSITÀ DELGLI STUDI DI MESSINA, VIALE FERDINANDO STANGO D'ALCONTRES, 31 - 98166 MESSINA, ITALY.

Email address: giorgio.nordo@unime.it

DEPARTMENT OF MATHEMATICS, RAJAH SERFOJI GOVT. COLLEGE, THANJAVUR-613005, TAMILNADU, INDIA.

Email address: nrajesh_topology@yahoo.co.in