NEUTROSOPHIC N-BI-IDEALS IN SEMIGROUPS

K. PORSELVI, B. ELAVARASAN, FLORENTIN SMARANDACHE, AND Y. B. JUN

Abstract. In this paper, we introduce the notion of neutrosophic \mathcal{N} -bi-ideal structure over a semigroup. We characterize semigroups, regular semigroups and intra-regular semigroups in terms of neutrosophic \mathcal{N} -bi-ideal structures. We also show that the intersection of neutrosophic \mathcal{N} -ideals and the neutrosophic \mathcal{N} -product of ideals will coincide for a regular semigroup.

1. Introduction

Throughout this paper, we take a semigroup X as the universe of discourse unless otherwise specified.

Let A and B be subsets of X. Then the multiplication of A and B is defined as $AB = \{ab : a \in A \text{ and } b \in B\}$. A nonempty subset A of X is said to be a subsemigroup of X if $A^2 \subseteq A$. A subsemigroup A of X is called a left (resp., right) ideal of X if $XA \subseteq A$ (resp., $AX \subseteq A$). If A is both a left and a right ideal of X, then A is called a two-sided ideal or ideal of X. For any $a \in X$, $L(a) = \{a, Xa\}$ (resp., $R(a) = \{a, aX\}$) is the principal left (resp., right) ideal of a semigroup X. A semigroup X is called left (resp., right) regular [3] if for each $a \in X$, there exists an element $x \in X$ such that $a = xa^2$ (resp., $a = a^2x$). A semigroup X is called intra-regular if for each $a \in X$ there exists $x \in X$ such that a = axa [5]. A semigroup X is called intra-regular if for each $x \in X$, there exist $x \in X$ such that $x \in X$ such

L.A. Zadeh introduced the concept of fuzzy subsets of a well-defined set in his paper [8] for modeling the vague concepts in the real world. In order to deal with the negative meaning of information, Jun et al. [2] have introduced a new function which is called negative-valued function, and constructed \mathcal{N} -structures. The concept of neutrosophic set has been developed by Smarandache in [6] and [7] as a more general platform which extends the concepts of the classic set and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. M. Khan et al. [4] have introduced the notion of neutrosophic \mathcal{N} -subsemigroup in semigroup and several properties are investigated. They have shown that the homomorphic preimage of neutrosophic \mathcal{N} -subsemigroup is a neutrosophic \mathcal{N} -subsemigroup, and the onto homomorphic image of neutrosophic

¹⁹⁹¹ Mathematics Subject Classification. 03B99, 03E99, 20M12.

 $Key\ words\ and\ phrases.$ Semigroup, neutrosophic $\mathcal N$ -structure, neutrosophic $\mathcal N$ -ideals, neutrosophic $\mathcal N$ -bi-ideals, neutrosophic $\mathcal N$ -product.

 \mathcal{N} -subsemigroup is a neutrosophic \mathcal{N} -subsemigroup. In [1], Elavarasan et al. have introduced the notion of neutrosophic \mathcal{N} -ideals in semigroups and several properties are investigated.

In this paper, we introduce the notion of neutrosophic \mathcal{N} -bi-ideals over a semigroup X and characterize semigroups using neutrosophic \mathcal{N} -bi-ideals. We also discuss several equivalent conditions of neutrosophic \mathcal{N} -ideal structures and regular, intra-regular semigroups.

2. Neutrosophic \mathcal{N} -structures

In this section, we give some definitions of neutrosophic \mathcal{N} -stuctures of a semigroup X that we need in the sequel.

Denote by $\mathscr{F}(X, [-1, 0])$ the collection of functions from a set X to [-1, 0]. We say that an element of $\mathscr{F}(X, [-1, 0])$ is a negative-valued function from X to [-1, 0] (briefly, \mathscr{N} -function on X). By an \mathscr{N} -structure, we mean an ordered pair (X, f) of X and an \mathscr{N} -function f on X.

Definition 2.1. [4] A neutrosophic \mathcal{N} -structure over X is defined to be the structure:

$$X_N := \frac{X}{T_N, I_N, F_N} = \left\{ \frac{x}{(T_N(x), I_N(x), F_N(x))} \mid x \in X \right\}$$

where T_N, I_N and F_N are \mathcal{N} -functions on X which are called the negative truth membership function, the negative indeterminacy membership function and the negative falsity membership function, respectively, on X.

It is clear that every neutrosophic \mathcal{N} -structure X_N over X satisfies the condition: $-3 \leq T_N(x) + I_N(x) + F_N(x) \leq 0$ for all $x \in X$.

Definition 2.2. [4] A neutrosophic \mathcal{N} -structure X_N over X is called a neutrosophic \mathcal{N} -subsemigroup of X if the following condition is valid:

$$(\forall x, y \in X) \begin{pmatrix} T_N(xy) \leq \bigvee \{T_N(x), T_N(y)\} \\ I_N(xy) \geq \bigwedge \{I_N(x), I_N(y)\} \\ F_N(xy) \leq \bigvee \{F_N(x), F_N(y)\} \end{pmatrix}.$$

Let X_N be a neutrosophic \mathcal{N} -structure over X and let $\alpha, \beta, \gamma \in [-1, 0]$ be such that $-3 \le \alpha + \beta + \gamma \le 0$. Consider the following sets:

$$T_N^{\alpha} := \{ x \in X | T_N(x) \le \alpha \}$$

$$I_N^{\beta} := \{ x \in X | I_N(x) \ge \beta \}$$

$$F_N^{\gamma} := \{ x \in X | F_N(x) \le \gamma \}.$$

The set $X_N(\alpha, \beta, \gamma) := \{x \in X | T_N(x) \leq \alpha, I_N(x) \geq \beta, F_N(x) \leq \gamma \}$ is called (α, β, γ) -level set of X_N . Note that $X_N(\alpha, \beta, \gamma) = T_N^{\alpha} \cap I_N^{\beta} \cap F_N^{\gamma}$.

Definition 2.3. [1] A neutrosophic \mathcal{N} -structure X_N over X is called a neutrosophic \mathcal{N} -left (resp., right) ideal of X if the following condition is valid:

$$(\forall x,y \in X) \left(\begin{array}{l} T_N(xy) \leq T_N(y) \ (resp.,T_N(xy) \leq T_N(x)) \\ I_N(xy) \geq I_N(y) \ (resp.,I_N(xy) \geq I_N(x)) \\ F_N(xy) \leq F_N(y) \ (resp.,F_N(xy) \leq F_N(x)) \end{array} \right).$$

A neutrosophic \mathcal{N} -structure X_N over X is called a neutrosophic \mathcal{N} -ideal of X if X_N is both a neutrosophic \mathcal{N} -left and neutrosophic \mathcal{N} -right ideal of X.

Definition 2.4. A neutrosophic \mathcal{N} -subsemigroup X_N of X is called a neutrosophic \mathcal{N} -bi-ideal of X if the following condition is valid:

$$(\forall x, y \in X) \left(\begin{array}{l} T_N(xyz) \leq T_N(x) \vee T_N(z) \\ I_N(xyz) \geq I_N(x) \wedge I_N(z) \\ F_N(xyz) \leq F_N(x) \vee F_N(z) \end{array} \right).$$

It is clear that every neutrosophic \mathscr{N} -left ideal (resp., right) of X is a neutrosophic \mathscr{N} -bi-ideal of X, but neutrosophic \mathscr{N} -bi-ideal of X need not be a neutrosophic \mathscr{N} -left (resp., right) ideal of X as can be seen by the following example.

Example 2.1. Let $X = \{0, a, b, c\}$ be a semigroup with the following Cayley table:

Then $X_N = \{\frac{0}{(-0.9, -0.1, -0.7)}, \frac{a}{(-0.8, -0.2, -0.5)}, \frac{b}{(-0.7, -0.3, -0.3)}, \frac{c}{(-0.5, -0.4, -0.1)}\}$ is a neutrosophic \mathcal{N} -bi-ideal of X. It can be easily checked that X_N is neither a neutrosophic \mathcal{N} -left ideal nor neutrosophic \mathcal{N} -right ideal of X.

Definition 2.5. [4] For a subset A of X, consider neutrosophic \mathcal{N} -structure $\chi_A(X_N) = \frac{X}{(\chi_A(T)_N, \chi_A(I)_N, \chi_A(F)_N)}$, where

$$\chi_{A}(T)_{N}: X \to [-1, 0], \ x \mapsto \begin{cases} -1 & if \ x \in A \\ 0 & otherwise \end{cases}$$

$$\chi_{A}(I)_{N}: X \to [-1, 0], \ x \mapsto \begin{cases} 0 & if \ x \in A \\ -1 & otherwise \end{cases}$$
 and
$$\chi_{A}(F)_{N}: X \to [-1, 0], \ x \mapsto \begin{cases} -1 & if \ x \in A \\ 0 & otherwise \end{cases}$$

which is called the characteristic neutrosophic \mathcal{N} -structure in X.

Definition 2.6. [4] Let $X_N := \frac{X}{(T_N, I_N, F_N)}$ and $X_M = \frac{X}{(T_M, I_M, F_M)}$ be neutrosophic \mathcal{N} -structures over X. Then

(i) We say that X_M is a neutrosophic \mathscr{N} -substructure over X, denoted by $X_N \subseteq X_M$, if it satisfies: $(\forall x \in X)(T_N(x) \ge T_M(x), \ I_N(x) \le I_M(x), \ F_N(x) \ge F_M(x))$.

If $X_N \subseteq X_M$ and $X_M \subseteq X_N$, we say that $X_N = X_M$.

(ii) The neutrosophic $\mathcal N$ -product of X_N and X_M is defined to be a neutrosophic $\mathcal N$ -structure over X,

$$X_N \odot X_M = \frac{X}{(T_{N \circ M}, I_{N \circ M}, F_{N \circ M})} = \{ \frac{x}{(T_{N \circ M}(x), I_{N \circ M}(x), F_{N \circ M}(x))} \mid x \in X \}, \text{ where }$$

$$T_{N \circ M}(x) = \begin{cases} \bigwedge_{x=yz} \{T_N(y) \lor T_M(z)\} & \text{if } \exists y, z \in X \text{ such that } x = yz \\ 0 & \text{otherwise} \end{cases}$$

$$I_{N \circ M}(x) = \begin{cases} \bigvee_{x=yz} \{I_N(y) \land I_M(z)\} & if \exists y, z \in X \text{ such that } x = yz \\ -1 & otherwise \end{cases}$$

$$F_{N\circ M}(x) = \begin{cases} \bigwedge_{x=yz} \{F_N(y) \vee F_M(z)\} & \text{if } \exists \ y,z \in X \ \text{such that } x=yz \\ 0 & \text{otherwise} \end{cases}$$
 For any $x \in X$, the element $\frac{x}{(T_{N\circ M}(x),I_{N\circ M}(x),F_{N\circ M}(x))}$ is simply denoted by

$$(X_N \odot X_M)(x) := (T_{N \circ M}(x), I_{N \circ M}(x), F_{N \circ M}(x))$$

for the sake of convenience.

We denote $T_{N \circ M}(x), I_{N \circ M}(x), F_{N \circ M}(x)$ by $(T_N \circ T_M)(x), (I_N \circ I_M)(x)$ and $(F_N \circ F_M)(x)$ respectively.

(ii) The intersection of X_N and X_M is defined to be a neutrosophic \mathscr{N} structure

$$X_N \cap X_M = X_{N \cap M} = (X; T_{N \cap M}, I_{N \cap M}, F_{N \cap M}),$$

where

$$(T_N \cap T_M)(x) = T_{N \cap M}(x) = \bigvee \{T_N(x), T_M(x)\},\ (I_N \cap I_M)(x) = I_{N \cap M}(x) = \bigwedge \{I_N(x), I_M(x)\},\ (F_N \cap F_M)(x) = F_{N \cap M}(x) = \bigvee \{F_N(x), F_M(x)\} \text{ for all } x \in X.$$

3. Neutrosophic \mathcal{N} -bi-ideals of a semigroup

In this section, we discuss various properties of Neutrosophic \mathcal{N} -bi-ideals over a semigroup X. It is clear that Neutrosophic \mathcal{N} -left (resp., right) ideal is a Neutrosophic \mathcal{N} -bi-ideal of X. But the converse is also true provided X is regular right duo. We also show that for a regular semigroup X, if every bi-ideal is a right ideal (resp., left) of X, then every neutrosophic \mathcal{N} -bi-ideal is a neutrosophic \mathcal{N} -right (resp., left) ideal of X.

Throughout this section, we consider X_M and X_N are Neutrosophic \mathcal{N} -structures over X.

Theorem 3.1. For any non-empty subset A of X, the following conditions are equivalent:

- (i) A is a bi-ideal of X,
- (ii) The characteristic neutrosophic \mathcal{N} -structure $\chi_A(X_N)$ is a neutrosophic \mathcal{N} -bi-ideal of X.

Proof. Assume that A is a bi-ideal of X. Let $x, y, z \in X$.

If $x \in A$ and $z \in A$, then $xyz \in A$, so $\chi_A(T)_N(xyz) = -1 = \chi_A(T)_N(x) \vee$ $\chi_A(T)_N(z); \ \chi_A(I)_N(xyz) = 0 = \chi_A(I)_N(x) \wedge \chi_A(I)_N(z) \text{ and } \chi_A(F)_N(xyz) = 0$ $-1 = \chi_A(F)_N(x) \vee \chi_A(F)_N(z).$

If $x \notin A$ or $z \notin A$, then $\chi_A(T)_N(xyz) \leq 0 = \chi_A(T)_N(x) \vee \chi_A(T)_N(z)$; $\chi_A(I)_N(xyz) \geq 0$ $-1 = \chi_A(I)_N(x) \wedge \chi_A(I)_N(z)$ and $\chi_A(F)_N(xyz) \leq 0 = \chi_A(F)_N(x) \vee \chi_A(F)_N(z)$. Therefore $\chi_A(X_N)$ is a neutrosophic \mathcal{N} -bi-ideal of X.

Conversely, assume that $\chi_A(X_N)$ is a neutrosophic \mathcal{N} -bi-ideal of X. Let $x, z \in$ A and $y \in X$. Then $\chi_A(T)_N(xyz) \leq \chi_A(T)_N(x) \vee \chi_A(T)_N(z) = -1$; $\chi_A(I)_N(xyz) \geq -1$ $\chi_A(I)_N(x) \wedge \chi_A(I)_N(z) = 0$ and $\chi_A(F)_N(xyz) \leq \chi_A(F)_N(x) \vee \chi_A(F)_N(z) = -1$ which imply $xyz \in A$.

Theorem 3.2. Let N_N be a neutrosophic \mathscr{N} -structure over X and let $\alpha, \beta, \gamma \in [-1,0]$ be such that $-3 \leq \alpha + \beta + \gamma \leq 0$. If X_N is a neutrosophic \mathscr{N} -bi-ideal of X, then the (α, β, γ) -level set of X_N is a neutrosophic bi-ideal of X whenever it is non-empty.

Proof. Assume that $X_N(\alpha, \beta, \gamma) \neq \phi$ for $\alpha, \beta, \gamma \in [-1, 0]$ with $-3 \leq \alpha + \beta + \gamma \leq 0$. Let X_N be a neutrosophic \mathscr{N} -bi-ideal of X and let $x, y, z \in X_N(\alpha, \beta, \gamma)$. Then $T_N(xyz) \leq T_N(x) \vee T_N(z) \leq \alpha$; $I_N(xyz) \geq I_N(x) \wedge I_N(z) \geq \beta$ and $F_N(xyz) \leq F_N(x) \vee F_N(z) \leq \gamma$ which imply $xyz \in X_N(\alpha, \beta, \gamma)$. Therefore $X_N(\alpha, \beta, \gamma)$ is a neutrosophic \mathscr{N} -bi-ideal of X.

Theorem 3.3. Let X_M be a neutrosophic \mathcal{N} -structure over X. Then the following conditions are equivalent:

- (i) X_M is a neutrosophic \mathcal{N} -bi-ideal of X,
- (ii) $X_M \odot X_M \subseteq X_M$ and $X_M \odot \chi_X(X_N) \odot X_M \subseteq X_M$ for any neutrosophic \mathscr{N} -structure X_N .

Proof. Assume that (i) holds. Then by Theorem 4.6 of [4], $X_M \odot X_M \subseteq X_M$. Let X_M be a neutrosophic \mathcal{N} -structure over X and $x \in X$. Assume that there exist $a, b, p, q \in X$ such that x = ab and a = pq. Then

$$(T_{M} \circ \chi_{X}(T)_{N} \circ T_{M})(x) = \bigwedge_{x=ab} \{ (T_{M} \circ \chi_{X}(T)_{N})(a) \vee T_{M}(b) \}$$

$$= \bigwedge_{x=ab} \{ \bigwedge_{a=pq} \{ T_{M}(p) \vee \chi_{X}(T)_{N}(q) \} \vee T_{M}(b) \}$$

$$= \bigwedge_{x=ab} \{ \bigwedge_{a=pq} \{ T_{M}(p) \} \vee T_{M}(b) \}$$

$$= \bigwedge_{x=ab} T_{M}(p_{i}) \vee T_{M}(b) \text{ for some } p_{i} \in X \text{ with } a = p_{i}q_{i}$$

$$\geq \bigwedge_{x=n_{i}a_{i}b} T_{M}(p_{i}q_{i}b) = T_{M}(x), \text{ as } X_{M} \text{ is a neutro-}$$

sophic \mathcal{N} -bi-ideal of X,

$$(I_{M} \circ \chi_{X}(I)_{N} \circ I_{M})(x) = \bigvee_{x=ab} \{(I_{M} \circ \chi_{X}(I)_{N})(a) \wedge I_{M}(b)\}$$

$$= \bigvee_{x=ab} \{\bigvee_{a=pq} \{I_{M}(p) \wedge \chi_{X}(I)_{N}(q)\} \wedge I_{M}(b)\}$$

$$= \bigvee_{x=ab} \{\bigvee_{a=pq} \{I_{M}(p)\} \wedge I_{M}(b)\}$$

$$= \bigvee_{x=ab} \{I_{M}(p_{i}) \wedge I_{M}(b)\} \text{ for some } p_{i} \in X \text{ with } a = p_{i}q_{i}$$

$$\leq \bigvee_{x=p_{i}q_{i}b} I_{M}(p_{i}q_{i}b) = I_{M}(x), \text{ as } X_{M} \text{ is a neutrosophic}$$

 \mathcal{N} -bi-ideal of X,

and
$$(F_M \circ \chi_X(F)_N \circ F_M)(x) = \bigwedge_{x=ab} \{ (F_M \circ \chi_X(F)_N)(a) \vee F_M(b) \}$$

$$= \bigwedge_{x=ab} \{ \bigwedge_{a=pq} \{ F_M(p) \vee \chi_X(F)_N(q) \} \vee F_M(b) \}$$

$$= \bigwedge_{x=ab} \{ \bigwedge_{a=pq} \{ F_M(p) \} \vee F_M(b) \}$$

$$= \bigwedge_{x=ab} F_M(p_i) \vee F_M(b) \text{ for some } p_i \in X \text{ with } a = p_i q_i$$

$$\geq \bigwedge_{x=p_i q_i b} F_M(p_i q_i b) = F_M(x), \text{ as } X_M \text{ is a neutro-}$$

sophic \mathcal{N} -bi-ideal of X.

Otherwise $x \neq ab$ or $a \neq pq$ for all $a, b, p, q \in X$. Then $(T_M \circ \chi_X(T)_N \circ T_M)(x) = 0 \geq T_M(x), (I_M \circ \chi_X(I)_N \circ I_M)(x) = -1 \leq I_M(x)$ and $(F_M \circ \chi_X(F)_N \circ F_M)(x) = 0 \geq F_M(x)$.

Therefore $X_M \odot \chi_X(X_N) \odot X_M \subseteq X_M$ for any neutrosophic \mathscr{N} -structure X_N over X.

Conversely, assume that (ii) holds. Then by Theorem 4.6 of [4], X_M is a neutrosophic \mathcal{N} -subsemigroup of X. Let $x, y, z \in X$ and let a = xyz.

Then $T_M(xyz) \leq (T_M \circ \chi_X(T)_N \circ T_M)(xyz)$

$$= \bigwedge_{a=xyz} \{ (T_M \circ \chi_X(T)_N)(xy) \vee T_M(z) \}$$

$$= \bigwedge_{a=bz} \{ \bigwedge_{b=xy} \{ T_M(x) \vee \chi_X(T)_N(y) \} \vee T_M(z) \}$$

$$= \bigwedge \{ T_M(x) \vee T_M(z) \} \leq T_M(x) \vee T_M(z),$$

$$I_{M}(xyz) \geq (I_{M} \circ \chi_{X}(I)_{N} \circ I_{M})(xyz)$$

$$= \bigvee_{a=xyz} \{ (I_{M} \circ \chi_{X}(I)_{N})(xy) \wedge I_{M}(z) \}$$

$$= \bigvee_{a=bz} \{ \bigvee_{b=xy} \{ I_{M}(x) \wedge \chi_{X}(I)_{N}(y) \} \wedge I_{M}(z) \}$$

$$= \bigvee_{a=xyz} \{ I_{M}(x) \wedge I_{M}(z) \} \geq I_{M}(x) \wedge I_{M}(z),$$

and

$$\begin{split} F_{M}(xyz) &\leq (F_{M} \circ \chi_{X}(F)_{N} \circ F_{M})(xyz) \\ &= \bigwedge_{a=xyz} \left\{ (F_{M} \circ \chi_{X}(F)_{N})(xy) \vee F_{M}(z) \right\} \\ &= \bigwedge_{a=bz} \left\{ \bigwedge_{b=xy} \left\{ F_{M}(x) \vee \chi_{X}(F)_{N}(y) \right\} \vee F_{M}(z) \right\} \\ &= \bigwedge_{a=xyz} \left\{ F_{M}(x) \vee F_{M}(z) \right\} \leq F_{M}(x) \vee F_{M}(z). \end{split}$$

Therefore X_M is a neutrosophic \mathcal{N} -bi-ideal of X.

Definition 3.1. A neutrosophic \mathcal{N} -structure over X is called neutrosophic \mathcal{N} -left (resp., right) duo over X if every neutrosophic \mathcal{N} -left (resp., right) ideal of X is a neutrosophic \mathcal{N} -ideal of X. A semigroup X is called neutrosophic \mathcal{N} -duo if it is both a neutrosophic \mathcal{N} -left duo and a neutrosophic \mathcal{N} -right duo.

Theorem 3.4. Let X be a regular left duo (resp., right duo, duo) of a semigroup. Then the following conditions are equivalent:

- (i) X_M is a neutrosophic \mathcal{N} -bi-ideal of X,
- (ii) X_M is a neutrosophic \mathcal{N} -right ideal (resp., left ideal, ideal) of X.
- Proof. (i) \Rightarrow (ii) Assume that X_M is a neutrosophic \mathscr{N} -bi-ideal of X, and let $a,b\in X$. Since X is regular, we have $a=ata\in aX\cap Xa$ for some $t\in X$ which implies $ab\in (aX\cap Xa)X\subseteq aX\cap Xa$ as X is left duo. So ab=as and ab=s'a for some $s,s'\in X$. Since X is regular, there exists $r\in X$ such that ab=abrab=asrs'a=a(srs')a. Since X_M is a neutrosophic \mathscr{N} -bi-ideal, we have
 - $T_M(ab) = T_M(a(srs')a) \le T_M(a) \lor T_M(a) = T_M(a),$
 - $I_M(ab) = I_M(a(srs')a) \ge I_M(a) \land I_M(a) = I_M(a)$ and
 - $F_M(ab) = F_M(a(srs')a) \le F_M(a) \lor F_M(a) = F_M(a).$
 - Therefore X_M is a neutrosophic \mathcal{N} -right ideal of X.
- $(ii) \Rightarrow (i)$ Assume that X_M is a neutrosophic \mathscr{N} -right ideal (resp., left ideal, ideal) of X. Let $x, y, z \in X$. Then $T_M(xyz) \leq T_M(x) \leq T_M(x) \vee T_M(z)$,
- $I_M(xyz) \ge I_M(x) \ge I_M(x) \wedge I_M(z)$ and
- $F_M(xyz) \le F_M(x) \le F_M(x) \lor F_M(z).$

Therefore X_M is a neutrosophic \mathcal{N} -bi-ideal of X.

Theorem 3.5. Let X be a regular semigroup. Then the following conditions are equivalent:

- (i) X is left duo (resp., right duo, duo),
- (ii) X_M is neutrosophic \mathcal{N} -left duo (resp., right duo, duo).
- Proof. $(i) \Rightarrow (ii)$ Assume that X is left duo. Then for any $a,b \in X$, we have $ab \in (aXa)b \subseteq a(Xa)X \subseteq Xa$ as Xa is a left ideal of X. Since x is regular, there exists $t \in X$ such that ab = ta. Let X_M be a neutrosophic \mathscr{N} -left ideal of X. Then $T_M(ab) = T_M(ta) \leq T_M(a)$, $I_M(ab) = I_M(ta) \geq I_M(a)$ and $F_M(ab) = F_M(ta) \leq F_M(a)$. Thus X_M is a neutrosophic \mathscr{N} -right ideal of X and hence X_M is a neutrosophic \mathscr{N} -left duo.
- $(ii) \Rightarrow (i)$ Assume that X_M is a neutrosophic \mathscr{N} -left duo and let A be any left ideal of X. Then by Theorem 3.5 of [1], $\chi_A(X_M)$ is a neutrosophic \mathscr{N} -left ideal of X. By assumption, $\chi_A(X_M)$ is a neutrosophic \mathscr{N} -ideal of X. Again by Theorem 3.5 of [1], A is a right ideal of X and hence X is left duo.

Theorem 3.6. Let X be a regular semigroup. Then the following conditions are equivalent:

- (i) Every bi-ideal of X is a right ideal (resp., left ideal, ideal) of X,
- (ii) Every neutrosophic \mathcal{N} -bi-ideal is a neutrosophic \mathcal{N} -right ideal (resp., left ideal, ideal) of X.
- *Proof.* $(i) \Rightarrow (ii)$ Assume that (i) holds. Let X_M be a neutrosophic \mathcal{N} -bi-ideal of X and let $a,b \in X$. Then aXa is a bi-ideal of X. By assumption, we have aXa is a right ideal of X. Since X is regular, we have $a \in aXa$. So $ab \in (aXa)X \subseteq aXa$ implies ab = axa for some $x \in X$. Now $T_M(ab) = T_M(axa) \leq T_M(a) \vee T_M(a) = axa$

 $T_M(a)$, $I_M(ab) = I_M(axa) \ge I_M(a) \land I_M(a) = I_M(a)$ and $F_M(ab) = F_M(axa) \le F_M(a) \lor F_M(a) = F_M(a)$. Therefore X_M is a neutrosophic \mathscr{N} -right ideal of X.

 $(ii) \Rightarrow (i)$ Assume that (ii) holds and let A be any bi-ideal of X. Then by Theorem 3.1, $\chi_A(X_M)$ is a neutrosophic \mathscr{N} -bi-ideal of X for a neutrosophic \mathscr{N} -structure X_M over X. By assumption, $\chi_A(X_M)$ is a neutrosophic \mathscr{N} -right ideal of X. By Theorem 3.5 of [1], A is a right ideal of X.

Theorem 3.7. Let X be a semigroup. Then the following conditions are equivalent:

- (i) X is regular,
- (ii) $X_M \cap X_N = X_M \odot X_N \odot X_M$ for every neutrosophic \mathcal{N} -bi-ideal X_M and every neutrosophic \mathcal{N} -ideal X_N of X.
- *Proof.* (i) \Rightarrow (ii) Assume that X is regular, and let X_M be a neutrosophic \mathscr{N} -bi-ideal and X_N a neutrosophic \mathscr{N} -ideal of X. Then by Theorem 3.3, we have $X_M \odot X_N \odot X_M \subseteq X_M$ and $X_M \odot X_N \odot X_M \subseteq X_N$. So $X_M \odot X_N \odot X_M \subseteq X_M \cap X_N$. Let $a \in X$. Since X is regular, there exists $x \in S$ such that a = axa = axaxa.

Now
$$T_{M \circ N \circ M}(a) = \bigwedge_{a=uv} \{T_M(u) \vee T_{N \circ M}(v)\}$$

$$= \bigwedge_{a=av} \{T_M(a) \vee \{\bigwedge_{v=xaxa} \{T_N(xax) \vee T_M(a)\}\}\}$$

$$\leq \bigwedge_{a=av} \{T_M(a) \vee T_N(a)\}$$

$$\leq T_M(a) \vee T_N(a) = T_{M \cap N}(a),$$

$$I_{M \circ N \circ M}(a) = \bigvee_{a=uv} \{I_M(u) \wedge I_{N \circ M}(v)\}$$

$$= \bigvee_{a=av} \{I_M(a) \wedge \{\bigvee_{v=xaxa} \{I_N(xax) \wedge I_M(a)\}\}\}$$

$$\geq \bigvee_{a=av} \{I_M(a) \wedge I_N(a)\}$$

$$\geq I_M(a) \wedge I_N(a) = I_{M \cap N}(a) \text{ and }$$

$$F_{M \circ N \circ M}(a) = \bigwedge_{a=uv} \{F_M(u) \vee F_{N \circ M}(v)\}$$

$$= \bigwedge_{a=av} \{F_M(a) \vee \{\bigwedge_{v=xaxa} \{F_N(xax) \vee F_M(a)\}\}\}$$

$$\leq \bigwedge_{a=av} \{F_M(a) \vee F_N(a)\}$$

$$\leq F_M(a) \vee F_N(a) = F_{M \cap N}(a).$$

Thus $X_{M\cap N}\subseteq X_M\odot X_N\odot X_M$ and hence $X_{M\cap N}=X_M\odot X_N\odot X_M$ for every neutrosophic $\mathscr N$ -bi-ideal X_M and every neutrosophic $\mathscr N$ -ideal X_N of X.

 $(ii)\Rightarrow (i)$ Assume that (ii) holds. Then $X_M\cap\chi_X(X_N)=X_M\odot\chi_X(X_N)\odot X_M$. But $X_M\cap\chi_X(X_N)=X_M$, so $X_M=X_M\odot\chi_X(X_N)\odot X_M$ for every neutrosophic $\mathscr N$ -bi-ideal X_M of X. Let $a\in X$. Then by Theorem 3.1, $\chi_{B(a)}(X_M)$ is a neutrosophic $\mathscr N$ -bi-ideal of X. So $\chi_{B(a)}(T)_M=\chi_{B(a)}(T)_M\circ\chi_X(T)_N\circ\chi_{B(a)}(T)_M=\chi_{B(a)XB(a)}(T)_M$, $\chi_{B(a)}(I)_M=\chi_{B(a)}(I)_M\circ\chi_X(I)_N\circ\chi_{B(a)}(I)_M=\chi_{B(a)XB(a)}(I)_M$ and $\chi_{B(a)}(F)_M=\chi_{B(a)}(F)_M\circ\chi_X(F)_N\circ\chi_{B(a)}(F)_M=\chi_{B(a)XB(a)}(F)_M$. Since $a\in B(a)$, we have $\chi_{B(a)XB(a)}(T)_M(a)=\chi_{B(a)}(T)_M(a)=\chi_{B(a)}(T)_M(a)=0$ and $\chi_{B(a)XB(a)}(F)_M(a)=\chi_{B(a)}(F)_M(a)=-1$, which imply $a\in B(a)XB(a)$. Therefore X is regular.

Theorem 3.8. Let X be a semigroup. Then the following conditions are equivalent:

- (i) X is regular,
- (ii) $X_M \cap X_N \subseteq X_M \odot X_N$ for every neutrosophic \mathcal{N} -bi-ideal X_M and every neutrosophic \mathcal{N} -left ideal X_N of X.

Proof. $(i) \Rightarrow (ii)$ Assume that X is regular and let X_M be a neutrosophic \mathcal{N} -bi-ideal and X_N a neutrosophic \mathcal{N} -left ideal of X. Let $a \in X$. Then there exists $x \in X$ such that a = axa.

Now
$$T_{M \circ N}(a) = \bigwedge_{a=uv} \{T_M(u) \vee T_N(v)\} \leq T_M(a) \vee T_N(xa)$$

$$\leq T_M(a) \vee T_N(a) = T_{M \cap N}(a),$$

$$I_{M \circ N}(a) = \bigvee_{a=uv} \{I_M(u) \wedge I_N(v)\} \ge I_M(a) \wedge I_N(xa)$$

$$\ge I_M(a) \wedge I_N(a) = I_{M \cap N}(a), \text{ and }$$

$$F_{M \circ N}(a) = \bigwedge_{a=uv} \{F_M(u) \vee F_N(v)\} \leq F_M(a) \vee F_N(xa)$$

$$\leq F_M(a) \vee F_N(a) = F_{M \cap N}(a).$$

Therefore $X_{M \cap N} \subseteq X_M \odot X_N$.

 $(ii)\Rightarrow (i)$ Assume that (ii) holds, and let X_M be a neutrosophic \mathscr{N} -right ideal and X_N a neutrosophic \mathscr{N} -left ideal of X. Since every neutrosophic \mathscr{N} -right ideal of X is a neutrosophic \mathscr{N} -bi-ideal of X, X_M is a neutrosophic \mathscr{N} -bi-ideal of X. Then by assumption, we have $X_{M\cap N}\subseteq X_M\odot X_N$. By Theorem 3.8 and Theorem 3.9 of [1], we can get $X_M\odot X_N\subseteq X_N$ and $X_M\odot X_N\subseteq X_M$ and so $X_M\odot X_N\subseteq X_M\cap X_N=X_{M\cap N}$. Therefore $X_M\odot X_N=X_{M\cap N}$.

Let K be a right ideal and L be a left ideal of X and $a \in K \cap L$. Then $\chi_K(X_M) \odot \chi_L(X_M) = \chi_K(X_M) \cap \chi_L(X_M)$ which implies $\chi_{KL}(X_M) = \chi_{K\cap L}(X_M)$. Since $a \in K \cap L$, we have $\chi_{K\cap L}(T)_M(a) = -1 = \chi_{KL}(T)_M(a)$, $\chi_{K\cap L}(I)_M(a) = 0 = \chi_{KL}(I)_M(a)$ and $\chi_{K\cap L}(F)_M(a) = -1 = \chi_{KL}(F)_M(a)$ which imply $a \in KL$. Thus $K \cap L \subseteq KL \subseteq K \cap L$ and hence $K \cap L = KL$. Therefore X is regular. \square

Theorem 3.9. Let X be a semigroup. Then the following conditions are equivalent:

- (i) X is regular,
- (ii) $X_{M\cap N}\subseteq X_M\odot X_N$ for every neutrosophic \mathscr{N} -bi-ideal X_M and every neutrosophic \mathscr{N} -right ideal X_N of X.

Proof. It is similar to the proof of Theorem 3.8.

Theorem 3.10. Let X be a semigroup. Then the following conditions are equivalent:

- (i) X is regular,
- (ii) $X_L \cap X_M \cap X_N \subseteq X_L \odot X_M \odot X_N$ for every neutrosophic \mathcal{N} -right ideal X_L , every neutrosophic \mathcal{N} -bi-ideal X_M and every neutrosophic \mathcal{N} -left ideal X_N of X.

Proof. (i) \Rightarrow (ii) Assume that X is regular and let X_L be a neutrosophic \mathcal{N} -right ideal, X_N a neutrosophic \mathcal{N} -left ideal and X_M a neutrosophic \mathcal{N} -bi-ideal of X. Let $a \in X$. Then there exists $x \in X$ such that a = axa = axaxa.

Now
$$T_{L \circ M \circ N}(a) = \bigwedge_{\substack{a=uv \\ \leq T_L(a) \vee \{T_M(a) \vee T_N(xa)\} \\ \leq T_L(a) \vee \{T_M(a) \vee T_N(xa)\} \\ \leq T_L(a) \vee T_M(a) \vee T_N(a) = T_{L \cap M \cap N},$$

$$I_{L \circ M \circ N}(a) = \bigvee_{\substack{a=uv \\ \geq I_L(a) \wedge \{I_M(a) \wedge I_N(xa)\}}} \{I_L(u) \wedge I_M(a) \wedge I_N(xa)\}$$

$$\geq I_L(a) \wedge I_M(a) \wedge I_N(a) = I_{L \cap M \cap N},$$
and $F_{L \circ M \circ N}(a) = \bigwedge_{a=uv} \{F_L(u) \vee F_{M \circ N}(v)\} \leq F_L(ax) \vee F_{M \circ N}(axa)$

$$\leq F_L(a) \vee \{F_M(a) \vee F_N(xa)\}$$

$$\leq F_L(a) \vee F_M(a) \vee F_N(a) = F_{L \cap M \cap N}.$$

Therefore $X_L \cap X_M \cap X_N \subseteq X_L \odot X_M \odot X_N$.

 $(ii)\Rightarrow (i)$ Assume that (ii) holds, and let X_L and X_N be a neutrosophic \mathscr{N} -right, left ideal respectively, and X_M a neutrosophic \mathscr{N} -structure over X. Then by Theorem 3.1, $\chi_X(X_M)$ is a neutrosophic \mathscr{N} -bi-ideal of X. Then $X_L\cap X_N=X_L\cap \chi_X(X_M)\cap X_N\subseteq X_L\odot \chi_X(X_M)\odot X_N\subseteq X_L\odot X_N$. Again by Theorem 3.8 and 3.9 of [1], $X_L\odot X_N\subseteq X_L\cap X_N$ and so $X_L\odot X_N=X_L\cap X_N$.

Let K, L be a right, left ideal of X respectively and let $a \in K \cap L$. Then $\chi_K(X_M) \odot \chi_L(X_M) = \chi_K(X_M) \cap \chi_L(X_M)$. By Theorem 3.6 of [1], we have $\chi_{KL}(X_M) = \chi_{K\cap L}(X_M)$. Since $a \in K\cap L$, we get $\chi_{KL}(T)_M(a) = \chi_{K\cap L}(T)_M(a) = -1$, $\chi_{KL}(I)_M(a) = \chi_{K\cap L}(I)_M(a) = 0$ and $\chi_{KL}(F)_M(a) = \chi_{K\cap L}(F)_M(a) = -1$ which imply $a \in KL$. Thus $K \cap L \subseteq KL \subseteq K \cap L$ and hence $K \cap L = KL$. Therefore X is regular.

Theorem 3.11. Let X be a semigroup. Then the following conditions are equivalent:

- (i) X is regular and intra-regular,
- (ii) $X_M \cap X_N \subseteq X_M \odot X_N$ for every neutrosophic \mathcal{N} -bi-ideals X_M and X_N of X.

Proof. $(i) \Rightarrow (ii)$ Assume that X is regular and intra-regular, and X_M , X_N be neutrosophic \mathcal{N} -bi-ideals of X. Let $a \in X$. Since X is regular, there exists $x \in X$ such that a = axa = axaxa. Again since X is intra-regular, there exist $y, z \in X$ such that $a = ya^2z$. Then a = axyaazxa. Now

$$T_{M \circ N}(a) = \bigwedge_{a=uv} \{T_M(u) \vee T_N(v)\} \leq T_M(axya) \vee T_N(azxa)$$

$$\leq \{T_M(a) \vee T_M(a)\} \vee \{T_N(a) \vee T_N(a)\}$$

$$\leq T_M(a) \vee T_N(a) = T_{M \cap N}(a),$$

$$I_{M \circ N}(a) = \bigvee_{a=uv} \{I_M(u) \land I_N(v)\} \ge I_M(axya) \land I_N(azxa)$$

$$\ge \{I_M(a) \land I_M(a)\} \land \{I_N(a) \land I_N(a)\}$$

$$\geq I_M(a) \wedge I_N(a) = I_{M \cap N}(a), \text{ and}$$

$$F_{M \circ N}(a) = \bigwedge_{a = uv} \{F_M(u) \vee F_N(v)\} \leq F_M(axya) \vee F_N(azxa)$$

$$\leq \{F_M(a) \vee F_M(a)\} \vee \{F_N(a) \vee F_N(a)\}$$

$$\leq F_M(a) \vee F_N(a) = F_{M \cap N}(a).$$

Therefore $X_M \cap X_N \subseteq X_M \odot X_N$ for every neutrosophic \mathcal{N} -bi-ideals X_M and X_N of X.

 $(ii) \Rightarrow (i)$ Assume that (ii) holds, and let X_M be a neutrosophic \mathscr{N} -right ideal and X_N a neutrosophic \mathscr{N} -left ideal of X. Then X_M and X_N are neutrosophic \mathscr{N} -bi-ideals of X. Then by assumption, we have $X_{M\cap N} \subseteq X_M \odot X_N$. By Theorem 3.8 and Theorem 3.9 of [1], we can get $X_M \odot X_N \subseteq X_N$ and $X_M \odot X_N \subseteq X_M$ and so $X_M \odot X_N \subseteq X_M \cap X_N$. Therefore $X_M \odot X_N = X_M \cap X_N$.

Let P be a right ideal and Q a left ideal of X and let $a \in P \cap Q$. Then $\chi_P(X_M) \cap \chi_Q(X_M) = \chi_P(X_M) \odot \chi_Q(X_M)$. By Theorem 3.6 of [1], $\chi_{P \cap Q}(X_M) = \chi_{PQ}(X_M)$. Since $a \in P \cap Q$, we have $\chi_{P \cap Q}(T)_M(a) = -1 = \chi_{PQ}(T)_M(a)$, $\chi_{P \cap Q}(I)_M(a) = 0 = \chi_{PQ}(I)_M(a)$ and $\chi_{P \cap Q}(F)_M(a) = -1 = \chi_{PQ}(F)_M(a)$ which imply $a \in PQ$. Thus $P \cap Q \subseteq PQ \subseteq P \cap Q$ and hence $P \cap Q = PQ$. Therefore X is regular.

Also, for $a \in X$, $\chi_{B(a)}(X_M) \cap \chi_{B(a)}(X_M) = \chi_{B(a)}(X_M) \odot \chi_{B(a)}(X_M)$. By Theorem 3.8 and Theorem 3.9 of [1], we can get $\chi_{B(a)}(X)_M = \chi_{B(a)B(a)}(X)_M$. Since $\chi_{B(a)}(T)_M(a) = -1 = \chi_{B(a)}(F)_M(a)$ and $\chi_{B(a)}(I)_M(a) = 0$, we can get $\chi_{B(a)B(a)}(T)_M(a) = -1 = \chi_{B(a)B(a)}(F)_M(a)$ and $\chi_{B(a)B(a)}(I)_M(a) = 0$ which imply $a \in B(a)B(a)$. Therefore X is intra-regular.

Theorem 3.12. Let X be a semigroup. Then the following conditions are equivalent:

- (i) X is regular and intra-regular,
- (ii) $X_M \cap X_N \subseteq (X_M \odot X_N) \cap (X_N \odot X_M)$ for every neutrosophic \mathcal{N} -bi-ideals X_M and X_N of X.
- *Proof.* $(i) \Rightarrow (ii)$ Assume that X is regular and intra-regular, and let X_M , X_N be neutrosophic \mathscr{N} -bi-ideals of X. Then by Theorem 3.11, $X_M \cap X_N \subseteq X_M \odot X_N$. Similarly we can prove that $X_N \cap X_M \subseteq X_N \odot X_M$. Therefore $X_M \cap X_N \subseteq (X_M \odot X_N) \cap (X_N \odot X_M)$ for every neutrosophic \mathscr{N} -bi-ideals X_M and X_N of X.
- $(ii) \Rightarrow (i)$ Assume that (ii) holds, and let X_M and X_N be neutrosophic \mathcal{N} -bi-ideals of X. Then $X_M \cap X_N \subseteq X_M \odot X_N$. By Theorem 3.11, X is regular and intra-regular.

Theorem 3.13. Let X be a semigroup. Then the following conditions are equivalent:

- (i) X is regular and intra-regular,
- (ii) $X_M \cap X_N \subseteq X_M \odot X_N \odot X_M$ for every neutrosophic \mathcal{N} -bi-ideals X_M and X_N of X.
- *Proof.* $(i) \Rightarrow (ii)$ Assume that X is regular and intra-regular, and let X_M , X_N be neutrosophic \mathcal{N} -bi-ideals of X. Let $a \in X$. Since X is regular, there exists $x \in X$ such that a = axa = axaxaxa. Again since X is intra-regular, there exist $y, z \in X$ such that $a = ya^2z = (axya)(azxya)(azxya)$. Now

$$\begin{split} T_{M\circ N\circ M}(a) &= \bigwedge_{a=uv} \{T_M(u) \vee T_{N\circ M}(v)\} \\ &= \bigwedge_{a=(axya)v} \{T_M(axya) \vee \{\bigwedge_{v=pq} \{T_N(p) \vee T_M(q)\}\} \\ &\leq T_M(axya) \vee T_N(azxya) \vee T_M(azxa) \\ &\leq T_M(a) \vee T_N(a) \vee T_M(a) = T_M(a) \vee T_N(a) = T_{M\cap N}(a), \\ I_{M\circ N\circ M}(a) &= \bigvee_{a=uv} \{I_M(u) \wedge I_{N\circ M}(v)\} \\ &= \bigvee_{a=(axya)v} \{I_M(axya) \wedge \{\bigvee_{v=pq} \{I_N(p) \wedge I_M(q)\}\} \\ &\geq I_M(axya) \wedge I_N(azxya) \wedge I_M(azxa) \\ &\geq I_M(a) \wedge I_N(a) \wedge I_M(a) = I_M(a) \wedge I_N(a) = I_{M\cap N}(a), \text{ and } \\ F_{M\circ N\circ M}(a) &= \bigwedge_{a=uv} \{F_M(u) \vee F_{N\circ M}(v)\} \\ &= \bigwedge_{a=(axya)v} \{F_M(axya) \vee \{\bigwedge_{v=pq} \{F_N(p) \vee F_M(q)\}\} \\ &\leq F_M(axya) \vee F_N(azxya) \vee F_M(azxa) \\ &\leq F_M(a) \vee F_N(a) \vee F_M(a) = F_M(a) \vee F_N(a) = F_{M\cap N}(a). \end{split}$$
 Therefore $X_M \cap X_N \subseteq X_M \odot X_N \odot X_M$ for every neutrosophic \mathscr{N} -bi-ideals

Therefore $X_M \cap X_N \subseteq X_M \odot X_N \odot X_M$ for every neutrosophic \mathscr{N} -bi-ideals X_M and X_N of X.

 $(ii) \Rightarrow (i)$ Assume that (ii) holds, and let $a \in X$. Then

 $(\chi_{B(a)}(X_M) \cap \chi_{B(a)}(X_M) \subseteq \chi_{B(a)}(X_M) \odot \chi_{B(a)}(X_M) \odot \chi_{B(a)}(X_M).$

So $\chi_{B(a)}(X_M) \subseteq \chi_{B(a)B(a)B(a)}(X_M)$.

Therefore $(\chi_{B(a)}(T)_M)(a) \ge (\chi_{B(a)B(a)B(a)}(T)_M)(a)$,

 $(\chi_{B(a)}(I)_M)(a) \le (\chi_{B(a)B(a)B(a)}(I)_M)(a)$ and

 $(\chi_{B(a)}(F)_M)(a) \ge (\chi_{B(a)B(a)B(a)}(F)_M)(a).$

Since $\chi_{B(a)}(T)_M(a) = -1 = \chi_{B(a)}(F)_M(a)$ and $\chi_{B(a)}(I)_M(a) = 0$, we get $\chi_{B(a)B(a)B(a)}(T)_M(a) = -1 = \chi_{B(a)B(a)B(a)}(F)_M(a)$, $\chi_{B(a)B(a)B(a)}(I)_M(a) = 0$ which imply $a \in B(a)B(a)B(a)$. Thus X is regular and intra-regular.

Theorem 3.14. Let X be a semigroup. Then the following conditions are equivalent:

- (i) X is intra-regular,
- (ii) For each neutrosophic \mathcal{N} -ideal X_M of X, we have $X_M(a) = X_M(a^2)$ for all $a \in X$.
- Proof. (i) \Rightarrow (ii) Assume that X is intra-regular, and X_M is a neutrosophic \mathcal{N} -ideal of X and $a \in X$. Then there exist $y,z \in X$ such that $a = ya^2z$. Now $T_M(a) = T_M(ya^2z) \leq T_M(a^2z) \leq T_M(a^2) \leq T_M(a)$ and so $T_M(a) = T_M(a)$, $I_M(a) = I_M(ya^2z) \geq I_M(a^2z) \geq I_M(a^2) \geq I_M(a)$ and so $I_M(a) = I_M(a^2)$, and $F_M(a) = F_M(ya^2z) \leq F_M(a^2z) \leq F_M(a^2) \leq F_M(a)$ and so $F_M(a) = F_M(a)$. Therefore $X_M(a) = X_M(a^2)$ for all $a \in X$.
- $(ii) \Rightarrow (i)$ Assume that (ii) holds and $a \in X$. Then $I(a^2)$ is an ideal of X. By Theorem 3.5 of [1], $\chi_{I(a^2)}(X_M)$ is a neutrosophic \mathscr{N} -ideal of X. By assumption, $\chi_{I(a^2)}(X_M)(a) = \chi_{I(a^2)}(X_M)(a^2)$. Since $\chi_{I(a^2)}(T)_M(a^2) = -1 = \chi_{I(a^2)}(F)_M(a^2)$

and $\chi_{I(a^2)}(I)_M(a^2) = 0$, we get $\chi_{I(a^2)}(T)_M(a) = -1 = \chi_{I(a^2)}(F)_M(a)$ and $\chi_{I(a^2)}(I)_M(a) = 0$ which imply $a \in I(a^2)$ and so X is intra-regular.

Theorem 3.15. Let X be a semigroup. Then the following conditions are equivalent:

- (i) X is left (resp., right) regular,
- (ii) For each neutrosophic \mathcal{N} -left (resp., right) ideal X_M , we have $X_M(a) = X_M(a^2)$ for all $a \in X$.
- Proof. (i) \Rightarrow (ii) Assume that X is left regular. Then there exist $y \in X$ such that $a = ya^2$. Let X_M be a neutrosophic \mathscr{N} -left ideal of X. Then $T_M(a) = T_M(ya^2) \leq T_M(a)$ and so $T_M(a) = T_M(a^2)$, $I_M(a) = I_M(ya^2) \geq I_M(a)$ and so $I_M(a) = I_M(a^2)$, and $F_M(a) = F_M(ya^2) \leq F_M(a)$ and so $F_M(a) = F_M(a^2)$. Thus $X_M(a) = X_M(a^2)$ for all $a \in X$.
- $(ii) \Rightarrow (i)$ Assume that (ii) holds and let X_M be a neutrosophic \mathscr{N} -left ideal of X. Then for any $a \in X$, we have $\chi_{L(a^2)}(T)_M(a) = \chi_{L(a^2)}(T)_M(a^2) = -1$, $\chi_{L(a^2)}(I)_M(a) = \chi_{L(a^2)}(I)_M(a^2) = 0$ and $\chi_{L(a^2)}(F)_M(a) = \chi_{L(a^2)}(F)_M(a^2) = -1$ which imply $a \in L(a^2)$ and hence X is left regular. \square

Corollary 3.1. Let X be a regular right duo (resp., left duo) semigroup. Then the following conditions are equivalent:

- (i) X is left regular,
- (ii) For each neutrosophic \mathcal{N} -bi-ideal X_M , we have $X_M(a) = X_M(a^2)$ for all $a \in X$.

Proof. It follows from Theorem 3.4 and Theorem 3.15.

References

- [1] B. Elavarasan, F. Smarandache and Y. B.Jun, Neutrosophic *N*-ideals in semigroups (submitted).
- [2] Y. B. Jun, K. J. Lee and S. Z. Song, N-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417 – 437.
- [3] N. Kehayopulu, A note on strongly regular ordered semigroups, Sci. Math. 1(1) (1998), 33 36.
- [4] M. Khan, S. Anis, F. Smarandache and Y. B.Jun, Neutrosophic \mathcal{N} -structures and their applications in semigroups, Annals of Fuzzy Mathematics and Informatics (Reprint).
- $[5]\,$ J. N. Mordeson, D. S. Malik and N. Kuroki, Regular semigroups, Fuzzy Semigroups (2003), 59-100.
- [6] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, (1999).
- [7] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, *Int. J. Pure Appl. Math.* **24** (3) (2005), 287 297.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338 353.

K. Porselvi

Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, Tamilnadu, India.

E-mail address: porselvi94@yahoo.co.in

B. Elavarasan

Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, Tamilnadu, India.

 $\hbox{E-mail address: } \verb|belavarasan@gmail.com| \\$

Florentin Smarandache

 $Department\ of\ Mathematics,\ University\ of\ New\ Mexico,\ 705\ Gurley\ Ave.,\\ Gallup,\ NM\ 87301,\ USA.$

E-mail address: fsmarandache@gmail.com

Y. B. Jun

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea.

E-mail address: skywine@gmail.com