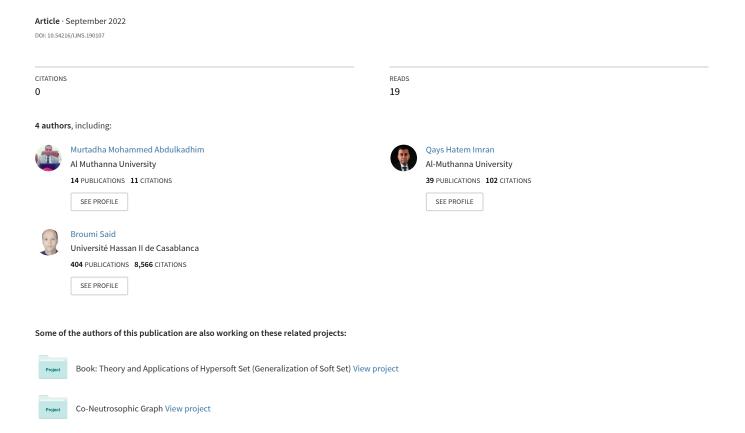
On Neutrosophic Generalized Alpha Generalized Separation Axioms



On Neutrosophic Generalized Alpha Generalized Separation Axioms

Murtadha M. Abdulkadhim¹, Qays H. Imran^{2*}, Amer K. Abed³, Said Broumi⁴

¹Department of Science, College of Basic Education, Al-Muthanna University, Samawah, Iraq ^{2,3}Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq ⁴Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, B.P 7955,

Emails: mu.edu.iq; qays.imran@mu.edu.iq; amer.khrija@mu.edu.iq; broumisaid78@gmail.com

*Correspondence: qays.imran@mu.edu.iq

Abstract

The paper provided a new notion of neutrosophic separation axioms as neutrosophic gag- R_i -space & neutrosophic gag- T_j -space (note that the indexes i & j are natural numbers of the spaces R & T are from 0 to 1 & from 0 to 2 alternately).

Mathematical Subject Classification (2010): 54A40.

Keywords: $N^{g\alpha g}$ -OS; $N^{g\alpha g}$ -CS; $N^{g\alpha g}$ - R_i -space; $i = 0,1 \& N^{g\alpha g}$ - T_i -space; j = 0,1,2.

1. Introduction

F. Smarandache [1,2] furnished the impression of a "neutrosophic set". A. Alblowi et al. [3] offered the evidence of neutrosophic topological space (or artlessly NTS). I. Arokiarani et al. [4] combined the interpretation of neutrosophic α -open subsets of neutrosophic topological spaces. Q. H. Imran et al. [5] proposed neutrosophic semi-open sets in neutrosophic topological spaces. R. Dhavaseelan et al. [6,7] offered the notion of generalized neutrosophic closed sets & neutrosophic α^m -continuity. Md. Hanif PAGE et al. [8] gave the idea of neutrosophic generalized homeomorphism. Q. H. Imran et al. [9] presented the concepts of neutrosophic generalized α g-closed sets & neutrosophic generalized α g-continuous functions. The purpose is to initiate a newfangled idea of neutrosophic separation axioms such as neutrosophic g α g- R_i -space, i=0,1 & neutrosophic g α g- T_j -space, j=0,1,2 & affirm some of their primary characteristics.

Doi: https://doi.org/10.54216/IJNS.190107

2. Preliminaries

During this paper, (\mathcal{X}, ξ) (or artlessly \mathcal{X}) constantly recouple to NTS. The sequel of a neutrosophic open set (N-OS) is named the neutrosophic closed set (N-CS) in (\mathcal{X}, ξ) . For an NS \mathcal{M} in an NTS (\mathcal{X}, ξ) , $Ncl(\mathcal{M})$, $Nint(\mathcal{M})$ & $\mathcal{M}^c = 1_N - \mathcal{M}$ signifies the neutrosophic closure of \mathcal{M} , the neutrosophic interior of \mathcal{M} & the neutrosophic sequel of \mathcal{M} alternately.

Definition 2.1:

A NS \mathcal{M} of a NTS (\mathcal{X}, ξ) is uttered:

- (i) a neutrosophic α -closed set (artlessly N $^{\alpha}$ -CS) if $Ncl(Nint(Ncl(\mathcal{M}))) \sqsubseteq \mathcal{M}$. The supplement of a N $^{\alpha}$ -CS in \mathcal{X} is a neutrosophic α open set (artlessly N $^{\alpha}$ -OS) in \mathcal{X} . The neutrosophic α -closure of a NS \mathcal{M} of a NTS (\mathcal{X}, ξ) is the junction \forall N $^{\alpha}$ -CSs that restrain \mathcal{M} & is signalized by $N^{\alpha}cl(\mathcal{M})$. [4]
- (ii) a neutrosophic g-closed set (artlessly N^g-CS) if $Ncl(\mathcal{M}) \sqsubseteq \mathcal{U}$ if $\mathcal{M} \sqsubseteq \mathcal{U} \& \mathcal{U}$ is a N-OS in \mathcal{X} . The sequel of a N^g-CS in \mathcal{X} is a N^g-OS in \mathcal{X} . [10]
- (iii) a neutrosophic αg -closed set (artlessly $N^{\alpha g}$ -CS) if $N^{\alpha} cl(\mathcal{M}) \sqsubseteq \mathcal{U}$ if $\mathcal{M} \sqsubseteq \mathcal{U} \& \mathcal{U}$ is a N^{α} -OS in \mathcal{X} . The supplement of a $N^{\alpha g}$ -CS in \mathcal{X} is a $N^{\alpha g}$ -OS in \mathcal{X} . [11]
- (iv) a neutrosophic indiscriminate αg -closed set (artlessly $N^{g\alpha g}$ -CS) if $Ncl(\mathcal{M}) \sqsubseteq \mathcal{U}$ if $\mathcal{M} \sqsubseteq \mathcal{U}$ & \mathcal{U} is a $N^{\alpha g}$ -OS in \mathcal{X} . The collection of all $N^{g\alpha g}$ -CSs of a NTS (\mathcal{X}, ξ) is designated by $N^{g\alpha g}$ -C(\mathcal{X}). The sequel of a $N^{g\alpha g}$ -CS in \mathcal{X} is a $N^{g\alpha g}$ -OS in \mathcal{X} . The collection of all $N^{g\alpha g}$ -OSs of a NTS (\mathcal{X}, ξ) is popularized as $N^{g\alpha g}$ -O(\mathcal{X}). [9]

Example 2.2:

Let $\mathcal{X} = \{ \&, \ell \}$ & $\xi = \{ 0_N, \mathcal{A}, \mathcal{B}, 1_N \}$, so NSs $\mathcal{A} = \langle x, (0.6,0.7), (0.1,0.1), (0.4,0.2) \rangle$ & $\mathcal{B} = \langle x, (0.1,0.2), (0.1,0.1), (0.8,0.8) \rangle$, so that (\mathcal{X}, ξ) is a NTS. However, the NS $\mathcal{C} = \langle x, (0.2,0.2), (0.1,0.1), (0.6,0.7) \rangle$ is a N^{\alpha}-CS, N^{\alpha}-CS, N^{\alpha}-CS, N^{\alpha}-CS.

Remark 2.3 [9]:

In a NTS (X, ξ) , so the subsequent declaration engages, & the contrary of any confession is not true:

- (i) Every N-OS (resp. N-CS) is a $N^{g\alpha g}$ -OS (resp. $N^{g\alpha g}$ -CS).
- (ii) Every $N^{g\alpha g}$ -OS (resp. $N^{g\alpha g}$ -CS) is a N^{g} -OS (resp. N^{g} -CS).
- (iii) Every $N^{g\alpha g}$ -OS (resp. $N^{g\alpha g}$ -CS) is a $N^{\alpha g}$ -OS (resp. $N^{\alpha g}$ -CS).

Definition 2.4 [9]:

The crossroads $\forall N^{g\alpha g}$ -CSs in a NTS (\mathcal{X}, ξ) comprise \mathcal{M} is denominated neutrosophic $g\alpha g$ -closure of \mathcal{M} & is designated by $N^{g\alpha g}cl(\mathcal{M}), N^{g\alpha g}cl(\mathcal{M}) = \prod \{\mathcal{N}: \mathcal{M} \sqsubseteq \mathcal{N}, \mathcal{N} \text{ is a } N^{g\alpha g}\text{-CS}\}.$

3. Neutrosophic $g\alpha g - R_i$ -Spaces, i = 0, 1

Definition 3.1:

The intersection of all N^{gag}-OSs of a NTS (\mathcal{X}, ξ) comprises \mathcal{A} is denominated by the neutrosophic gag-kernel of \mathcal{A} $(N^{gag}ker(\mathcal{A}))$, signifying $N^{gag}ker(\mathcal{A}) = \prod \{\mathcal{M}: \mathcal{M} \in N^{gag} - O(\mathcal{X}) \& \mathcal{A} \sqsubseteq \mathcal{M} \}$.

Definition 3.2:

Let \mathcal{R}_{λ} be a neutrosophic point (NP) of a NTS (\mathcal{X}, ξ) . The N^{gag}-kernel of \mathcal{R}_{λ} , designated by N^{gag}ker($\{\mathcal{R}_{\lambda}\}$) is defined to be the NS N^{gag}ker($\{\mathcal{R}_{\lambda}\}$) = $\Pi\{\mathcal{M}: \mathcal{M} \in \mathbb{N}^{gag} : \mathcal{M}\}$.

Definition 3.3:

In a NTS (\mathcal{X}, ξ) , a NS \mathcal{A} is denominated weakly ultra N^{g α g}-separated from \mathcal{B} if \exists a N^{g α g}-OS \mathcal{M} s.t. $\mathcal{M} \sqcap \mathcal{B} = 0_N$ or $\mathcal{A} \sqcap N^{g\alpha g} cl(\mathcal{B}) = 0_N$.

By definition (3.3), got: For any two distinct NPs ℓ_{λ} & ℓ_{μ} of a NTS (\mathcal{X}, ξ)

- (i) $N^{g\alpha g}cl(\{k_{\lambda}\}) = \{\ell_{\mu} : \{\ell_{\mu}\} \text{ is not weakly ultra } N^{g\alpha g}\text{-separated from } \{k_{\lambda}\}\}.$
- (ii) $N^{g\alpha g} ker(\{\ell_{\lambda}\}) = \{\ell_{\mu} : \{\ell_{\lambda}\}\}$ is not weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\mu}\}\}$.

100

Doi: https://doi.org/10.54216/IJNS.190107

Lemma 3.4:

Let (\mathcal{X}, ξ) be a NTS, then $\ell_{\mu} \in N^{g\alpha g} ker(\{\ell_{\lambda}\})$ iff $\ell_{\lambda} \in N^{g\alpha g} cl(\{\ell_{\mu}\})$ for any $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$.

Proof:

Suppose that $\ell_{\mu} \notin N^{g\alpha g} ker(\{k_{\lambda}\})$. Then $\exists N^{g\alpha g}$ -OS \mathcal{U} comprise k_{λ} s.t. $\ell_{\mu} \notin \mathcal{U}$. Therefore, we have $k_{\lambda} \notin N^{g\alpha g} cl(\{\ell_{\mu}\})$. The same way can prove the contrariwise part.

Definition 3.5:

A NTS (\mathcal{X}, ξ) is denominated neutrosophic $g\alpha g - R_0$ -space (N^{g\alpha g}-R₀-space, for short) if for any N^{g\alpha g}-OS \mathcal{U} & $\mathcal{R}_{\lambda} \in \mathcal{U}$, then N^{g\alpha g} $cl(\{\mathcal{R}_{\lambda}\}) \subseteq \mathcal{U}$.

Definition 3.6:

Theorem 3.7:

Let (\mathcal{X}, ξ) be a NTS. Then (\mathcal{X}, ξ) is a $N^{g\alpha g} - R_0$ -space iff $N^{g\alpha g} cl(\{k_\lambda\}) = N^{g\alpha g} ker(\{k_\lambda\})$, for any $k_\lambda \in \mathcal{X}$.

Let (\mathcal{X}, ξ) be a $N^{g\alpha g} - R_0$ -space. If $N^{g\alpha g} cl(\{\ell_\lambda\}) \neq N^{g\alpha g} ker(\{\ell_\lambda\})$, for any $\ell_\lambda \in \mathcal{X}$, then there exists another NP $\ell_\mu \neq \ell_\lambda$ s.t. $\ell_\mu \in N^{g\alpha g} cl(\{\ell_\lambda\})$ & $\ell_\mu \notin N^{g\alpha g} ker(\{\ell_\lambda\})$ This recouple has there existed a $N^{g\alpha g} - OS \mathcal{U}_{\ell_\lambda}$, $\ell_\mu \notin \mathcal{U}_{\ell_\lambda}$ implies $N^{g\alpha g} cl(\{\ell_\lambda\}) \not\subseteq \mathcal{U}_{\ell_\lambda}$ This ambivalence. Consequently $N^{g\alpha g} cl(\{\ell_\lambda\}) = N^{g\alpha g} ker(\{\ell_\lambda\})$. Contrariwise, let $N^{g\alpha g} cl(\{\ell_\lambda\}) = N^{g\alpha g} ker(\{\ell_\lambda\})$, for any $N^{g\alpha g} - OS \mathcal{U}_{\ell_\lambda} \in \mathcal{U}$, then $N^{g\alpha g} ker(\{\ell_\lambda\}) = N^{g\alpha g} cl(\{\ell_\lambda\}) \subseteq \mathcal{U}$ [by def. (3.1)]. So by def. (3.5), (\mathcal{X}, ξ) is a $N^{g\alpha g} - R_0$ -space.

Theorem 3.8:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - R_0$ -space iff for any $N^{g\alpha g} - CS \mathcal{M} \& k_{\lambda} \in \mathcal{M}$, then $N^{g\alpha g} ker(\{k_{\lambda}\}) \subseteq \mathcal{M}$.

Proof:

Let for any \mathcal{M} N^{gag}-CS & $\ell_{\lambda} \in \mathcal{M}$, then $N^{gag}ker(\{\ell_{\lambda}\}) \subseteq \mathcal{M}$ & \mathcal{U} be a N^{gag}-OS, $\ell_{\lambda} \in \mathcal{U}$ then, for any $\ell_{\mu} \notin \mathcal{U}$ implies $\ell_{\mu} \in \mathcal{U}^{c}$ is a N^{gag}-CS implies $N^{gag}ker(\{\ell_{\mu}\}) \subseteq \mathcal{U}^{c}$ [by hypothesis]. Therefore $\ell_{\lambda} \notin N^{gag}ker(\{\ell_{\mu}\})$ implies $\ell_{\mu} \notin N^{gag}cl(\{\ell_{\lambda}\})$ [by lemma (3.4)]. So $N^{gag}cl(\{\ell_{\lambda}\}) \subseteq \mathcal{U}$. Consequently, (\mathcal{X}, ξ) is a N^{gag}- R_{0} -space. Contrariwise, let (\mathcal{X}, ξ) be a N^{gag}- R_{0} -space & \mathcal{M} be a N^{gag}-CS & $\ell_{\lambda} \in \mathcal{M}$. Then for any $\ell_{\mu} \notin \mathcal{M}$ implies $\ell_{\mu} \in \mathcal{M}^{c}$ is a N^{gag}-OS, then $N^{gag}cl(\{\ell_{\mu}\}) \subseteq \mathcal{M}^{c}$ [since (\mathcal{X}, ξ) is a N^{gag}- R_{0} -space], so $N^{gag}ker(\{\ell_{\lambda}\}) = N^{gag}cl(\{\ell_{\lambda}\})$. Consequently $N^{gag}ker(\{\ell_{\lambda}\}) \subseteq \mathcal{M}$.

Corollary 3.9:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - R_0$ -space iff for any \mathcal{U} $N^{g\alpha g} - OS \& \mathcal{R}_{\lambda} \in \mathcal{U}$, then $N^{g\alpha g} cl(N^{g\alpha g} ker(\{\mathcal{R}_{\lambda}\})) \subseteq \mathcal{U}$.

Proof:

Obviously. ■

Theorem 3.10:

Every $N^{g\alpha g}-R_1$ -space is a $N^{g\alpha g}-R_0$ -space.

Proof:

Assume (\mathcal{X}, ξ) is $N^{g\alpha g} - R_1$ -space & let \mathcal{U} be a $N^{g\alpha g} - OS$, $\mathcal{R}_{\lambda} \in \mathcal{U}$, then for any $\ell_{\mu} \notin \mathcal{U}$ then $\ell_{\mu} \in \mathcal{U}^c$ is a $N^{g\alpha g} - CS$ & $N^{g\alpha g} cl(\{\ell_{\mu}\}) \subseteq \mathcal{U}^c$ got $N^{g\alpha g} cl(\{\ell_{\lambda}\}) \neq N^{g\alpha g} cl(\{\ell_{\mu}\})$. Wherefore by def.(3.6), $N^{g\alpha g} cl(\{\ell_{\lambda}\}) \subseteq \mathcal{U}$. Consequently, (\mathcal{X}, ξ) is a $N^{g\alpha g} - R_0$ -space.

Theorem 3.11:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - R_1$ -space iff for any $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ with $N^{g\alpha g} ker(\{\ell_{\lambda}\}) \neq N^{g\alpha g} ker(\{\ell_{\mu}\})$, then there exist $N^{g\alpha g} - CSs = \mathcal{M}_1$, $\mathcal{M}_2 = s.t. = N^{g\alpha g} ker(\{\ell_{\lambda}\}) \sqsubseteq \mathcal{M}_1$, $N^{g\alpha g} ker(\{\ell_{\lambda}\}) \sqcap \mathcal{M}_2 = 0_N = ker(\{\ell_{\mu}\}) \sqsubseteq \mathcal{M}_2$, $N^{g\alpha g} ker(\{\ell_{\mu}\}) \sqcap \mathcal{M}_1 = 0_N & \mathcal{M}_1 \sqcup \mathcal{M}_2 = 1_N$.

101

Doi: https://doi.org/10.54216/IJNS.190107

Proof:

Let (\mathcal{X},ξ) be a $N^{g\alpha g}-R_1$ -space. Then for any $\&kappa_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ with $N^{g\alpha g}ker(\{\&kappa_{\lambda}\}) \neq N^{g\alpha g}ker(\{\ell_{\mu}\})$. Such any $N^{g\alpha g}-R_1$ -space is a $N^{g\alpha g}-R_0$ -space [by Thm. (3.10)], & by Thm. (3.7), $N^{g\alpha g}cl(\{\&kappa_{\lambda}\}) \neq N^{g\alpha g}cl(\{\ell_{\mu}\})$, then there exist $N^{g\alpha g}-OSs\ \mathcal{U}_1,\mathcal{U}_2$ s.t. $N^{g\alpha g}cl(\{\&kappa_{\lambda}\}) \sqsubseteq \mathcal{U}_1$ & $N^{g\alpha g}cl(\{\ell_{\mu}\}) \sqsubseteq \mathcal{U}_2$ & $\mathcal{U}_1 \sqcap \mathcal{U}_2 = 0_N$ [since (\mathcal{X},ξ) is a $N^{g\alpha g}-R_1$ -space], then \mathcal{U}_1^c & \mathcal{U}_2^c are $N^{g\alpha g}-CSs$ s.t. $\mathcal{U}_1^c \sqcup \mathcal{U}_2^c = 1_N$. Put $\mathcal{M}_1 = \mathcal{U}_1^c$ & $\mathcal{M}_2 = \mathcal{U}_2^c$. Consequently $\&kappa_{\lambda} \in \mathcal{U}_1 \sqsubseteq \mathcal{M}_2$ & $\ell_{\mu} \in \mathcal{U}_2 \sqsubseteq \mathcal{M}_1$ so $N^{g\alpha g}ker(\{\&kappa_{\lambda}\}) \sqsubseteq \mathcal{U}_1 \sqsubseteq \mathcal{M}_2$ & $N^{g\alpha g}ker(\{\ell_{\mu}\}) \sqsubseteq \mathcal{U}_2 \sqsubseteq \mathcal{M}_1$.

Contrariwise, let for any $\&k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ with $N^{g\alpha g} ker(\{\&k_{\lambda}\}) \neq N^{g\alpha g} ker(\{\ell_{\mu}\})$, there exist $N^{g\alpha g}$ -CSs \mathcal{M}_1 , \mathcal{M}_2 s.t. $N^{g\alpha g} ker(\{\&k_{\lambda}\}) \sqsubseteq \mathcal{M}_1$, $N^{g\alpha g} ker(\{\&k_{\lambda}\}) \sqcap \mathcal{M}_2 = 0_N$ & $N^{g\alpha g} ker(\{\ell_{\mu}\}) \sqsubseteq \mathcal{M}_2$, $N^{g\alpha g} ker(\{\ell_{\mu}\}) \sqcap \mathcal{M}_1 = 0_N$ & $\mathcal{M}_1 \sqcup \mathcal{M}_2 = 1_N$, then \mathcal{M}_1^c & \mathcal{M}_2^c are $N^{g\alpha g}$ -OSs s.t. $\mathcal{M}_1^c \sqcap \mathcal{M}_2^c = 0_N$. Put $\mathcal{M}_1^c = \mathcal{U}_2$ & $\mathcal{M}_2^c = \mathcal{U}_1$. Consequently, $N^{g\alpha g} ker(\{\&k_{\lambda}\}) \sqsubseteq \mathcal{U}_1$ & $N^{g\alpha g} ker(\{\&k_{\lambda}\}) \sqsubseteq \mathcal{U}_2$ & $\mathcal{U}_1 \sqcap \mathcal{U}_2 = 0_N$, so that $\&k_{\lambda} \in \mathcal{U}_1$ & $\ell_{\mu} \in \mathcal{U}_2$ implies $\&k_{\lambda} \notin N^{g\alpha g} cl(\{\&k_{\lambda}\})$, then $N^{g\alpha g} cl(\{\&k_{\lambda}\}) \sqsubseteq \mathcal{U}_1$ & $N^{g\alpha g} cl(\{\&k_{\lambda}\}) \sqsubseteq \mathcal{U}_2$. Consequently, (\mathcal{X}, ξ) is a $N^{g\alpha g} - \mathcal{R}_1$ -space.

Corollary 3.12:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - R_1$ -space iff for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ with $N^{g\alpha g} cl(\{k_{\lambda}\}) \neq N^{g\alpha g} cl(\{\ell_{\mu}\})$ there exist disjoint $N^{g\alpha g} - OSs \ \mathcal{U}, \mathcal{V} \text{ s.t. } N^{g\alpha g} cl(N^{g\alpha g} ker(\{k_{\lambda}\})) \subseteq \mathcal{U} \ \& N^{g\alpha g} cl(N^{g\alpha g} ker(\{\ell_{\mu}\})) \subseteq \mathcal{V}.$

Proof

Let (\mathcal{X}, ξ) be a $N^{gag} - R_1$ -space & let $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ with $N^{gag} cl(\{\ell_{\lambda}\}) \neq N^{gag} cl(\{\ell_{\mu}\})$, then there exist disjoint N^{gag} -OSs \mathcal{U}, \mathcal{V} s.t. $N^{gag} cl(\{\ell_{\lambda}\}) \sqsubseteq \mathcal{U}$ & $N^{gag} cl(\{\ell_{\mu}\}) \sqsubseteq \mathcal{V}$. Likewise, (\mathcal{X}, ξ) is a $N^{gag} - R_0$ -space [by theorem (3.10)] implies that any $\ell_{\lambda} \in \mathcal{X}$, then $N^{gag} cl(\{\ell_{\lambda}\}) = N^{gag} ker(\{\ell_{\lambda}\})$ [by Thm. (3.7)], but $N^{gag} cl(\{\ell_{\lambda}\}) = N^{gag} cl(N^{gag} cl(\{\ell_{\lambda}\})) = N^{gag} cl(N^{gag} cl(\{\ell_{\lambda}\}))$.

Consequently $N^{g\alpha g}cl(N^{g\alpha g}ker(\{\ell_{\lambda}\})) \subseteq \mathcal{U} \& N^{g\alpha g}cl(N^{g\alpha g}ker(\{\ell_{\mu}\})) \subseteq \mathcal{V}$.

Contrariwise, let $\forall k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ with $N^{g\alpha g}cl(\{k_{\lambda}\}) \neq N^{g\alpha g}cl(\{\ell_{\mu}\})$ there exist disjoint $N^{g\alpha g}$ -OSs \mathcal{U}, \mathcal{V} s.t. $N^{g\alpha g}cl(N^{g\alpha g}ker(\{k_{\lambda}\})) \sqsubseteq \mathcal{U}$ & $N^{g\alpha g}cl(N^{g\alpha g}ker(\{\ell_{\mu}\})) \sqsubseteq \mathcal{V}$. Since $\{k_{\lambda}\} \sqsubseteq N^{g\alpha g}ker(\{k_{\lambda}\})$, then $N^{g\alpha g}cl(\{k_{\lambda}\}) \sqsubseteq N^{g\alpha g}ker(\{k_{\lambda}\})$ for any $k_{\lambda} \in \mathcal{X}$. So we get $N^{g\alpha g}cl(\{k_{\lambda}\}) \sqsubseteq \mathcal{U}$ & $N^{g\alpha g}cl(\{\ell_{\mu}\}) \sqsubseteq \mathcal{V}$. Consequently, (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - R_1 -space. \blacksquare

4. Neutrosophic $g\alpha g$ - T_i -Spaces, j = 0, 1, 2

Definition 4.1:

Let (X, ξ) be a NTS, X is denominated:

- (i) neutrosophic $g\alpha g T_0$ -space ($N^{g\alpha g} T_0$ -space, for short) iff any couple of distinct NPs in \mathcal{X} , $\exists N^{g\alpha g}$ -OS in \mathcal{X} comprises one & not the other.
- (ii) neutrosophic $g\alpha g T_1$ -space ($N^{g\alpha g} T_1$ -space, for short) iff for any couple of distinct NPs k_λ & ℓ_μ of \mathcal{X} , there exist $N^{g\alpha g}$ -OSs \mathcal{M} , \mathcal{N} comprise k_λ & ℓ_μ alternately s.t. $\ell_\mu \notin \mathcal{M}$ & $k_\lambda \notin \mathcal{N}$.
- (iii) neutrosophic $g\alpha g$ - T_2 -space ($N^{g\alpha g}$ - T_2 -space, for short) iff for any couple of distinct NPs k_λ & ℓ_μ of \mathcal{X} , there exist disjoint $N^{g\alpha g}$ -OSs \mathcal{M} , \mathcal{N} in \mathcal{X} s.t. $k_\lambda \in \mathcal{M}$ & $\ell_\mu \in \mathcal{N}$.

Remark 4.2:

Every $N^{g\alpha g} - T_k$ -space is a $N^{g\alpha g} - T_{k-1}$ -space, k = 1, 2.

Proof:

Obviously.

Theorem 4.3:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - T_0$ -space iff either $\ell_\mu \notin N^{g\alpha g} ker(\{\ell_\lambda\})$ or $\ell_\lambda \notin N^{g\alpha g} ker(\{\ell_\mu\})$, for any $\ell_\lambda \neq \ell_\mu \in \mathcal{X}$.

Proof.

Let (\mathcal{X}, ξ) be a $N^{g\alpha g}$ - T_0 -space then for any $\ell_\lambda \neq \ell_\mu \in \mathcal{X}$, there exists a $N^{g\alpha g}$ -OS \mathcal{M} s.t. $\ell_\lambda \in \mathcal{M}, \ell_\mu \notin \mathcal{M}$ or $\ell_\lambda \notin \mathcal{M}, \ell_\mu \in \mathcal{M}$. Consequently either $\ell_\lambda \in \mathcal{M}, \ell_\mu \notin \mathcal{M}$ implies $\ell_\mu \notin N^{g\alpha g} ker(\{\ell_\lambda\})$ or $\ell_\lambda \notin \mathcal{M}, \ell_\mu \in \mathcal{M}$ implies $\ell_\lambda \notin N^{g\alpha g} ker(\{\ell_\mu\})$.

Contrariwise, let either $\ell_{\mu} \notin N^{g\alpha g} ker(\{\ell_{\lambda}\})$ or $\ell_{\lambda} \notin N^{g\alpha g} ker(\{\ell_{\mu}\})$, for any $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$. Then there exists a N^{gag}-OS \mathcal{M} s.t. $\ell_{\lambda} \in \mathcal{M}$, $\ell_{\mu} \notin \mathcal{M}$ or $\ell_{\lambda} \notin \mathcal{M}$, $\ell_{\mu} \in \mathcal{M}$. Consequently, (\mathcal{X}, ξ) is a N^{gag}- T_0 -space.

102

Doi: https://doi.org/10.54216/IJNS.190107

Theorem 4.4:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - T_0$ -space iff either $N^{g\alpha g} ker(\{\ell_{\lambda}\})$ is weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\mu}\}$ or $N^{g\alpha g} ker(\{\ell_{\mu}\})$ is weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\lambda}\}$ for any $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$.

Proof:

Let (\mathcal{X}, ξ) be a $N^{g\alpha g}$ - T_0 -space then for any $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$, there exists a $N^{g\alpha g}$ -OS \mathcal{M} s.t. $\ell_{\lambda} \in \mathcal{M}$, $\ell_{\mu} \notin \mathcal{M}$ or $\ell_{\lambda} \notin \mathcal{M}$, $\ell_{\mu} \in \mathcal{M}$. Now if $\ell_{\lambda} \in \mathcal{M}$, $\ell_{\mu} \notin \mathcal{M}$ implies $N^{g\alpha g} ker(\{\ell_{\lambda}\})$ is weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\mu}\}$. Or if $\ell_{\lambda} \notin \mathcal{M}$, $\ell_{\mu} \in \mathcal{M}$ implies $N^{g\alpha g} ker(\{\ell_{\mu}\})$ is weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\lambda}\}$.

Contrariwise, let either $N^{g\alpha g}ker(\{\ell_{\lambda}\})$ be weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\mu}\}$ or $N^{g\alpha g}ker(\{\ell_{\mu}\})$ be weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\lambda}\}$. Then there exists a $N^{g\alpha g}$ -OS \mathcal{M} s.t. $N^{g\alpha g}ker(\{\ell_{\lambda}\}) \subseteq \mathcal{M}$ & $\ell_{\mu} \notin \mathcal{M}$ or $N^{g\alpha g}ker(\{\ell_{\mu}\}) \subseteq \mathcal{M}$, $\ell_{\lambda} \notin \mathcal{M}$ implies $\ell_{\lambda} \in \mathcal{M}$, $\ell_{\mu} \notin \mathcal{M}$ or $\ell_{\lambda} \notin \mathcal{M}$, $\ell_{\mu} \in \mathcal{M}$. Consequently, (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_0 -space. \blacksquare

Theorem 4.5:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - T_1$ -space iff for any $\mathcal{R}_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$, $N^{g\alpha g} ker(\{\mathcal{R}_{\lambda}\})$ is weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\mu}\}$ & $N^{g\alpha g} ker(\{\ell_{\mu}\})$ is weakly ultra $N^{g\alpha g}$ -separated from $\{\mathcal{R}_{\lambda}\}$.

Proof:

Let (\mathcal{X}, ξ) be a $N^{g\alpha g}$ - T_1 -space, then for any $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$, there exist $N^{g\alpha g}$ -OSs \mathcal{U}, \mathcal{V} s.t. $\ell_{\lambda} \in \mathcal{U}$, $\ell_{\mu} \notin \mathcal{U}$ & $\ell_{\lambda} \notin \mathcal{V}$, $\ell_{\mu} \in \mathcal{V}$. Implies $N^{g\alpha g} ker(\{\ell_{\lambda}\})$ is weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\mu}\}$ & $N^{g\alpha g} ker(\{\ell_{\mu}\})$ is weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\lambda}\}$.

Contrariwise, let $N^{g\alpha g}ker(\{\ell_{\lambda}\})$ be weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\mu}\}$ & $N^{g\alpha g}ker(\{\ell_{\mu}\})$ be weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\lambda}\}$. Then there exist $N^{g\alpha g}$ -OSs U, V s.t. $N^{g\alpha g}ker(\{\ell_{\lambda}\}) \subseteq U, \ell_{\mu} \notin U$ & $N^{g\alpha g}ker(\{\ell_{\mu}\}) \subseteq V, \ell_{\lambda} \notin V$ implies $\ell_{\lambda} \in U, \ell_{\mu} \notin U$ & $\ell_{\lambda} \notin V, \ell_{\mu} \in V$. Consequently, (X, ξ) is a $N^{g\alpha g}$ - T_1 -space.

Theorem 4.6:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - T_1$ -space iff for any $\mathcal{R}_{\lambda} \in \mathcal{X}$, $N^{g\alpha g} ker(\{\mathcal{R}_{\lambda}\}) = \{\mathcal{R}_{\lambda}\}$.

Proof:

Let (\mathcal{X}, ξ) be a $N^{g\alpha g} - T_1$ -space & let $N^{g\alpha g} ker(\{k_{\lambda}\}) \neq \{k_{\lambda}\}$. Then $N^{g\alpha g} ker(\{k_{\lambda}\})$ contains other NPs distinct from k_{λ} say ℓ_{μ} . So $\ell_{\mu} \in N^{g\alpha g} ker(\{k_{\lambda}\})$ implies $N^{g\alpha g} ker(\{k_{\lambda}\})$ is not weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\mu}\}$. Wherefore by Thm. (4.5), (\mathcal{X}, ξ) is not a $N^{g\alpha g} - T_1$ -space, this is ambivalence. Consequently, $N^{g\alpha g} ker(\{k_{\lambda}\}) = \{k_{\lambda}\}$.

Contrariwise, let $N^{g\alpha g}ker(\{k_{\lambda}\}) = \{k_{\lambda}\}$, for any $k_{\lambda} \in \mathcal{X}$ & let (\mathcal{X}, ξ) be not a $N^{g\alpha g}-T_1$ -space. Then by Thm. (4.5), $N^{g\alpha g}ker(\{k_{\lambda}\})$ is not weakly ultra $N^{g\alpha g}$ -separated from $\{\ell_{\mu}\}$ for some $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$, this recouple has that for every $N^{g\alpha g}$ -OS \mathcal{M} contains $N^{g\alpha g}ker(\{k_{\lambda}\})$ then $\ell_{\mu} \in \mathcal{M}$ implies $\ell_{\mu} \in \Pi\{\mathcal{M} \in N^{g\alpha g}-O(\mathcal{X}): k_{\lambda} \in \mathcal{M}\}$ implies $\ell_{\mu} \in N^{g\alpha g}ker(\{k_{\lambda}\})$, this is ambivalence. Consequently, (\mathcal{X}, ξ) is a $N^{g\alpha g}-T_1$ -space.

Theorem 4.7:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - T_1$ -space iff for any $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}, \ell_{\mu} \notin N^{g\alpha g} ker(\{\ell_{\lambda}\}) \& \ell_{\lambda} \notin N^{g\alpha g} ker(\{\ell_{\mu}\})$.

Proof.

Let (\mathcal{X}, ξ) be a $N^{g\alpha g}$ - T_1 -space then for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$, $\exists N^{g\alpha g}$ -OSs \mathcal{U}, \mathcal{V} s.t. $k_{\lambda} \in \mathcal{U}$, $\ell_{\mu} \notin \mathcal{U}$ & $\ell_{\mu} \in \mathcal{V}$, $k_{\lambda} \notin \mathcal{V}$. Implies $\ell_{\mu} \notin N^{g\alpha g} ker(\{k_{\lambda}\})$ & $k_{\lambda} \notin N^{g\alpha g} ker(\{\ell_{\mu}\})$.

Contrariwise, let $\ell_{\mu} \notin N^{g\alpha g} ker(\{k_{\lambda}\}) \& k_{\lambda} \notin N^{g\alpha g} ker(\{\ell_{\mu}\})$, for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$. Then $\exists N^{g\alpha g}$ -OSs \mathcal{U}, \mathcal{V} s.t. $k_{\lambda} \in \mathcal{U}, \ell_{\mu} \notin \mathcal{U} \& \ell_{\mu} \in \mathcal{V}, k_{\lambda} \notin \mathcal{V}$. Consequently, (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_1 -space.

Theorem 4.8:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - T_1$ -space iff for any $\ell \lambda_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ implies $N^{g\alpha g} ker(\{\ell_{\lambda}\}) \cap N^{g\alpha g} ker(\{\ell_{\mu}\}) = 0_N$.

Proof:

Let (\mathcal{X}, ξ) be a $N^{g\alpha g} - T_1$ -space. Then $N^{g\alpha g} ker(\{\ell_{\lambda}\}) = \{\ell_{\lambda}\}$ & $N^{g\alpha g} ker(\{\ell_{\mu}\}) = \{\ell_{\mu}\}$ [by Thm. (4.6)]. Consequently, $N^{g\alpha g} ker(\{\ell_{\lambda}\}) \sqcap N^{g\alpha g} ker(\{\ell_{\mu}\}) = 0_N$.

103

Doi: https://doi.org/10.54216/IJNS.190107

Contrariwise, let for any $\&kappi_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ implies $N^{g\alpha g} ker(\{\&kaple^{k}_{\lambda}\}) \cap N^{g\alpha g} ker(\{\ell_{\mu}\}) = 0_{N}$ & let (\mathcal{X}, ξ) be not $N^{g\alpha g} - T_{1}$ -space, then for any $\&kappi_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ implies $\ell_{\mu} \in N^{g\alpha g} ker(\{\&kaple^{k}_{\lambda}\})$ or $\&kappi_{\lambda} \in N^{g\alpha g} ker(\{\&kaple^{k}_{\lambda}\}) \cap N^{g\alpha g} ker(\{\&kaple^{k}_{\mu}\}) \neq 0_{N}$. This is ambivalence. Consequently, (\mathcal{X}, ξ) is a $N^{g\alpha g} - T_{1}$ -space.

Proposition 4.9:

A NTS (\mathcal{X}, ξ) is $N^{g\alpha g} - T_1$ -space iff (\mathcal{X}, ξ) is a $N^{g\alpha g} - T_0$ -space & $N^{g\alpha g} - R_0$ -space.

Proof:

Let (\mathcal{X},ξ) be a $N^{g\alpha g}-T_1$ -space & let $\mathcal{k}_\lambda \in \mathcal{U}$ be a $N^{g\alpha g}-OS$, then for any $\mathcal{k}_\lambda \neq \ell_\mu \in \mathcal{X}$, $N^{g\alpha g}ker(\{\ell_\lambda\}) \sqcap N^{g\alpha g}ker(\{\ell_\mu\}) = 0_N$ [by Thm. (4.8)] implies $\mathcal{k}_\lambda \notin N^{g\alpha g}ker(\{\ell_\mu\})$ & $\ell_\mu \notin N^{g\alpha g}ker(\{\ell_\lambda\})$, this recouple tos $N^{g\alpha g}cl(\{\ell_\lambda\}) = \{\ell_\lambda\}$, wherefore $N^{g\alpha g}cl(\{\ell_\lambda\}) \subseteq \mathcal{U}$. Consequently, (\mathcal{X},ξ) is a $N^{g\alpha g}-R_0$ -space. Contrariwise, let (\mathcal{X},ξ) be a $N^{g\alpha g}-T_0$ -space & $N^{g\alpha g}-R_0$ -space, then for any $\mathcal{k}_\lambda \neq \ell_\mu \in \mathcal{X} \exists N^{g\alpha g}-OS \mathcal{U}$ s.t. $\mathcal{k}_\lambda \in \mathcal{U}$, $\ell_\mu \notin \mathcal{U}$ or $\mathcal{k}_\lambda \notin \mathcal{U}$, $\ell_\mu \in \mathcal{U}$. Say $\mathcal{k}_\lambda \in \mathcal{U}$, $\ell_\mu \notin \mathcal{U}$ since (\mathcal{X},ξ) is a $N^{g\alpha g}-R_0$ -space, then $N^{g\alpha g}cl(\{\ell_\lambda\}) \subseteq \mathcal{U}$, this recouple tos $\exists N^{g\alpha g}-OS \mathcal{V}$ s.t. $\ell_\mu \in \mathcal{V}$, $\mathcal{k}_\lambda \notin \mathcal{V}$. Consequently, (\mathcal{X},ξ) is a $N^{g\alpha g}-T_1$ -space.

Theorem 4.10:

A NTS (X, ξ) is $N^{g\alpha g}$ - T_2 -space iff

- (i) (\mathfrak{X}, ξ) is a $N^{g\alpha g}$ - T_0 -space & $N^{g\alpha g}$ - R_1 -space.
- (ii) (X, ξ) is a $N^{g\alpha g}$ - T_1 -space & $N^{g\alpha g}$ - R_1 -space.

Proof:

(i) Let (\mathcal{X},ξ) be a $N^{g\alpha g}-T_2$ -space, then it is a $N^{g\alpha g}-T_0$ -space. Wherefore (\mathcal{X},ξ) is a $N^{g\alpha g}-T_2$ -space, then for any $\&_\lambda \neq \ell_\mu \in \mathcal{X}$, there exist disjoint $N^{g\alpha g}$ -OSs \mathcal{U},\mathcal{V} s.t. $\&_\lambda \in \mathcal{U}$ & $\ell_\mu \in \mathcal{V}$ implies $\&_\lambda \notin N^{g\alpha g}cl(\{\ell_\mu\})$ & $\ell_\mu \notin N^{g\alpha g}cl(\{\ell_\lambda\})$, therefore $N^{g\alpha g}cl(\{\ell_\lambda\}) = \{\&_\lambda\} \subseteq \mathcal{U}$ & $N^{g\alpha g}cl(\{\ell_\mu\}) = \{\ell_\mu\} \subseteq \mathcal{V}$. Consequently, (\mathcal{X},ξ) is a $N^{g\alpha g}-R_1$ -space.

Contrariwise, let (\mathcal{X}, ξ) be a N^{gag}- T_0 -space & N^{gag}- R_1 -space, then for any $k_\lambda \neq \ell_\mu \in \mathcal{X}$, there exists a N^{gag}-OS \mathcal{U} s.t. $k_\lambda \in \mathcal{U}$, $\ell_\mu \notin \mathcal{U}$ or $\ell_\mu \in \mathcal{U}$, $k_\lambda \notin \mathcal{U}$, got N^{gag} - $cl(\{k_\lambda\}) \neq N^{gag}$ - $cl(\{\ell_\mu\})$, since (\mathcal{X}, ξ) is a N^{gag}- R_1 -space [by hypothesis], then there exists disjoint N^{gag}-OSs \mathcal{M}, \mathcal{N} s.t. $k_\lambda \in \mathcal{M}$ & $\ell_\mu \in \mathcal{N}$. Consequently, (\mathcal{X}, ξ) is a N^{gag}- T_2 -space.

(ii) Similarly to (i), $N^{g\alpha g}-T_2$ -space is a $N^{g\alpha g}-T_1$ -space & $N^{g\alpha g}-R_1$ -space.

Contrariwise, let (\mathcal{X}, ξ) be a $N^{g\alpha g}$ - T_1 -space & $N^{g\alpha g}$ - R_1 -space, then for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$, $\exists N^{g\alpha g}$ -OSs \mathcal{U}, \mathcal{V} s.t. $k_{\lambda} \in \mathcal{U}$, $\ell_{\mu} \notin \mathcal{U}$ & $\ell_{\mu} \in \mathcal{V}$, $k_{\lambda} \notin \mathcal{V}$ implies $N^{g\alpha g} cl(\{k_{\lambda}\}) \neq N^{g\alpha g} cl(\{\ell_{\mu}\})$, since (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - R_1 -space, then there exist disjoint $N^{g\alpha g}$ -OSs \mathcal{M}, \mathcal{N} s.t. $k_{\lambda} \in \mathcal{M}$ & $\ell_{\mu} \in \mathcal{N}$. Consequently, (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - R_2 -space.

Corollary 4.11:

A N^{gag}-T₀-space is N^{gag}-T₂-space iff for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ with N^{gag} $ker(\{k_{\lambda}\}) \neq N^{gag}ker(\{\ell_{\mu}\})$, then $\exists N^{gag}$ -CSs \mathcal{M}_{1} , \mathcal{M}_{2} s.t. $N^{gag}ker(\{k_{\lambda}\}) \sqsubseteq \mathcal{M}_{1}, N^{gag}ker(\{k_{\lambda}\}) \sqcap \mathcal{M}_{2} = 0_{N}$ & $N^{gag}ker(\{\ell_{\mu}\}) \sqsubseteq \mathcal{M}_{2}, N^{gag}ker(\{\ell_{\mu}\}) \sqcap \mathcal{M}_{1} = 0_{N}$ & $\mathcal{M}_{1} \sqcup \mathcal{M}_{2} = 1_{N}$.

Proof:

By Thm. (3.11) & Thm. (4.10).

Corollary 4.12:

A $N^{g\alpha g}-T_1$ -space is $N^{g\alpha g}-T_2$ -space iff one of the following satisfies:

- (i) for any $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ with $N^{g\alpha g}cl(\{\ell_{\lambda}\}) \neq N^{g\alpha g}cl(\{\ell_{\mu}\})$, then there exist $N^{g\alpha g}$ -OSs \mathcal{U}, \mathcal{V} s.t. $N^{g\alpha g}cl(N^{g\alpha g}ker(\{\ell_{\lambda}\})) \subseteq \mathcal{U} \& N^{g\alpha g}cl(N^{g\alpha g}ker(\{\ell_{\mu}\})) \subseteq \mathcal{V}$.
- (ii) for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ with $N^{g\alpha g} ker(\{k_{\lambda}\}) \neq N^{g\alpha g} ker(\{\ell_{\mu}\})$, then there exist $N^{g\alpha g}$ -CSs \mathcal{M}_1 , \mathcal{M}_2 s.t. $N^{g\alpha g} ker(\{k_{\lambda}\}) \sqsubseteq \mathcal{M}_1$, $N^{g\alpha g} ker(\{k_{\lambda}\}) \sqcap \mathcal{M}_2 = 0_N$ & $N^{g\alpha g} ker(\{\ell_{\mu}\}) \sqsubseteq \mathcal{M}_2$, $N^{g\alpha g} ker(\{\ell_{\mu}\}) \sqcap \mathcal{M}_1 = 0_N$ & $\mathcal{M}_1 \sqcup \mathcal{M}_2 = 1_N$.

Proof:

- (i) By corollary (3.12) & Thm. (4.10).
- (ii) By Thm. (3.11) & Thm. (4.10). ■

Theorem 4.13:

A $N^{g\alpha g}$ - R_1 -space is $N^{g\alpha g}$ - T_2 -space iff one of the following satisfies:

Doi: https://doi.org/10.54216/IJNS.190107

- (i) for any $k_{\lambda} \in \mathcal{X}$, $N^{g\alpha g} ker(\{k_{\lambda}\}) = \{k_{\lambda}\}$.
- (ii) for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$, $N^{g\alpha g} ker(\{\ell_{\mu}\}) \neq N^{g\alpha g} ker(\{\ell_{\mu}\})$ implies $N^{g\alpha g} ker(\{\ell_{\lambda}\}) \cap N^{g\alpha g} ker(\{\ell_{\mu}\}) = 0_N$.
- (iii) for any $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$, either $\ell_{\lambda} \notin N^{g\alpha g} ker(\{\ell_{\mu}\})$ or $\ell_{\mu} \notin N^{g\alpha g} ker(\{\ell_{\lambda}\})$.
- (iv) for any $\mathcal{R}_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ then $\mathcal{R}_{\lambda} \notin N^{g\alpha g} ker(\{\ell_{\mu}\}) \ \& \ \ell_{\mu} \notin N^{g\alpha g} ker(\{\ell_{\lambda}\}).$

Proof:

(i) Assume (\mathcal{X}, ξ) is a N^{gag}- T_2 -space. So (\mathcal{X}, ξ) is a N^{gag}- T_1 -space & N^{gag}- R_1 -space [by Thm. (4.10)]. Wherefore by Thm. (4.6), N^{gag}ker($\{k_{\lambda}\}$) = $\{k_{\lambda}\}$ for any $k_{\lambda} \in \mathcal{X}$.

Contrariwise, let for any $k_{\lambda} \in \mathcal{X}$, $N^{g\alpha g} ker(\{k_{\lambda}\}) = \{k_{\lambda}\}$, then by Thm. (4.6), (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_1 -space. Likewise, (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_1 -space by hypothesis. Wherefore by Thm. (4.10), (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_2 -space.

(ii) Let (\mathcal{X}, ξ) be a $N^{g\alpha g}$ - T_2 -space. Then (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_1 -space [by remark (4.2)]. Wherefore by Thm. (4.8), $N^{g\alpha g} ker(\{\ell_{\lambda}\}) \sqcap N^{g\alpha g} ker(\{\ell_{\mu}\}) = 0_N$ for any $\ell_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$.

Contrariwise, assume that for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$, $N^{g\alpha g} ker(\{k_{\lambda}\}) \neq N^{g\alpha g} ker(\{\ell_{\mu}\})$ implies $N^{g\alpha g} ker(\{\ell_{\lambda}\}) \sqcap N^{g\alpha g} ker(\{\ell_{\mu}\}) = 0_N$. So by Thm. (4.8), (\mathcal{X}, ξ) is a $N^{g\alpha g} - T_1$ -space, likewise (\mathcal{X}, ξ) is a $N^{g\alpha g} - R_1$ -space by hypothesis. Wherefore by Thm. (4.10), (\mathcal{X}, ξ) is a $N^{g\alpha g} - T_2$ -space.

(iii) Let (\mathcal{X}, ξ) be a $N^{g\alpha g}$ - T_2 -space. Then (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_0 -space [by remark (4.2)]. Wherefore by Thm. (4.3), either $k_{\lambda} \notin N^{g\alpha g} ker(\{\ell_{u}\})$ or $\ell_{u} \notin N^{g\alpha g} ker(\{\ell_{\lambda}\})$ for any $k_{\lambda} \neq \ell_{u} \in \mathcal{X}$.

Contrariwise, assume that for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$, either $k_{\lambda} \notin N^{g\alpha g} ker(\{\ell_{\mu}\})$ or $\ell_{\mu} \notin N^{g\alpha g} ker(\{k_{\lambda}\})$ for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$. So by Thm. (4.3), (\mathcal{X}, ξ) is a $N^{g\alpha g} - T_0$ -space, likewise (\mathcal{X}, ξ) is a $N^{g\alpha g} - R_1$ -space by hypothesis. Consequently, (\mathcal{X}, ξ) is a $N^{g\alpha g} - T_2$ -space [by Thm. (4.10)].

(iv) Let (\mathcal{X}, ξ) be a $N^{g\alpha g}$ - T_2 -space. Then (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_1 -space & $N^{g\alpha g}$ - R_1 -space [by Thm. (4.10)]. Wherefore by Thm. (4.7), $\mathcal{R}_{\lambda} \notin N^{g\alpha g} ker(\{\ell_{u}\})$ & $\ell_{u} \notin N^{g\alpha g} ker(\{\ell_{u}\})$.

Contrariwise, let for any $k_{\lambda} \neq \ell_{\mu} \in \mathcal{X}$ then $k_{\lambda} \notin N^{g\alpha g} ker(\{\ell_{\mu}\}) \& \ell_{\mu} \notin N^{g\alpha g} ker(\{k_{\lambda}\})$. Then by Thm. (4.7), (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_1 -space. Likewise, (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_2 -space by hypothesis. Wherefore by Thm. (4.10), (\mathcal{X}, ξ) is a $N^{g\alpha g}$ - T_2 -space.

Remark 4.14:

Any $N^{g\alpha g}$ -separation axiom is defined as the conjunction of two weaker neutrosophic axioms: $N^{g\alpha g}$ - T_k -space = $N^{g\alpha g}$ - R_{k-1} -space & $N^{g\alpha g}$

Remark 4.15:

The relevance between $N^{g\alpha g}$ -separation axioms can be illustrated as a matrix. Therefore, a_{ij} refers to this relation. As the following matrix impersonation shows:

&	$N^{g\alpha g}$ - T_0	$N^{g\alpha g}$ - T_1	$N^{g\alpha g}$ - T_2	$N^{g\alpha g}-R_0$	$N^{g\alpha g}$ - R_1
$N^{g\alpha g}$ - T_0	$N^{g\alpha g}$ - T_0	$N^{g\alpha g}$ - T_1	$N^{g\alpha g}$ - T_2	$N^{g\alpha g}$ - T_1	$N^{g\alpha g}$ - T_2
$N^{g\alpha g}$ - T_1	$N^{g\alpha g}$ - T_1	$N^{g\alpha g}$ - T_1	$N^{g\alpha g}$ - T_2	$N^{g\alpha g}$ - T_1	$N^{g\alpha g}$ - T_2
$N^{g\alpha g}$ - T_2					
$N^{g\alpha g}-R_0$	$N^{g\alpha g}$ - T_1	$N^{g\alpha g}$ - T_1	$N^{g\alpha g}$ - T_2	$N^{g\alpha g}-R_0$	$N^{g\alpha g}$ - R_1
$N^{g\alpha g}-R_1$	$N^{g\alpha g}$ - T_2	$N^{g\alpha g}$ - T_2	$N^{g\alpha g}$ - T_2	$N^{g\alpha g}-R_1$	$N^{g\alpha g}$ - R_1

Matrix Representation

Figure 4.1: The relation between $N^{g\alpha g}$ -separation axioms

5. Conclusions

We have provided some new concepts of neutrosophic separation axioms, such as neutrosophic $g\alpha g - R_i$ -space, i = 0,1 & neutrosophic $g\alpha g - T_i$ -space, = 0,1,2. Furthermore, likewise proved some of their related attributes.

Funding: There is no external grant for this work.

Acknowledgments: The authors are appreciative of the Referees for their constructive comments.

Conflicts of Interest: There are no conflicts of interest declared by the authors.

References

- [1] F. Smarandache, A unifying field in logics: neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability. American Research Press, Rehoboth, NM, (1999).
- [2] F. Smarandache, Neutrosophy & neutrosophic logic, first international conference on neutrosophy, neutrosophic logic, set, probability, & statistics, University of New Mexico, Gallup, NM 87301, USA (2002).
- [3] M. Parimala , M. Karthika , Florentin Smarandache , Said Broumi, On αω-closed sets and its connectedness in terms of neutrosophic topological spaces, International Journal of Neutrosophic Science, 2 (2020), 82-88
- [4] I. Arokiarani, R. Dhavaseelan, S. Jafari & M. Parimala, On Some New Notions & Functions in Neutrosophic Topological Spaces. Neutrosophic Sets and Systems, 16(2017), 16-19.
- [5] Q. H. Imran, F. Smarandache, R. K. Al-Hamido & R. Dhavaseelan, On neutrosophic semi-α-open sets. Neutrosophic Sets and Systems, 18(2017), 37-42.
- [6] R. Dhavaseelan & S. Jafari, Generalized Neutrosophic closed sets. New trends in Neutrosophic theory and applications, 2(2018), 261-273.
- [7] R. Dhavaseelan, R. Narmada Devi, S. Jafari & Q. H. Imran, Neutrosophic α^m -continuity. Neutrosophic Sets and Systems, 27(2019), 171-179.
- [8] Md. Hanif PAGE & Q. H. Imran, Neutrosophic generalized homeomorphism. Neutrosophic Sets and Systems, 35(2020), 340-346.
- [9] Q. H. Imran, R. Dhavaseelan, A. H. M. Al-Obaidi & M. H. Page, On neutrosophic generalized alpha generalized continuity. Neutrosophic Sets and Systems, 35(2020), 511-521.
- [10] A. Pushpalatha & T. Nandhini, Generalized closed sets via neutrosophic topological spaces. Malaya Journal of Matematik, 7(1), (2019), 50-54.
- [11]D. Jayanthi, α Generalized Closed Sets in Neutrosophic Topological Spaces. International Journal of Mathematics Trends and Technology (IJMTT)- Special Issue ICRMIT March (2018), 88-91.

Doi: https://doi.org/10.54216/IJNS.190107