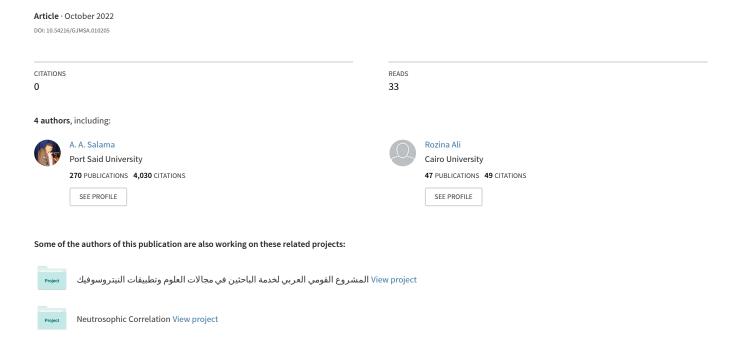
A Study of Neutrosophic Bernoulli's and Recati Differential Equations



A Study of Neutrosophic Bernoulli's and Recati Differential **Equations**

Ahmed A. Salama¹, Malath F Alaswad², Rasha Dallah³, Rozina Ali⁴

Departement of Mathematics and Computer science, port said, Egypt PHD of Mathematics, GaziAntep, Turkey Departement of Mathematics, Albaath University, Homs, Syria Department Of Mathematics, Cairo University, Egypt

Emails: drsalama44@gmail.com; Malaz.Aswad@yahoo.com; rasha.dallah20@gmail.com

rozyyy123n@gmail.com

Abstract

In this paper, we study the neutrosophic Bernouli and Ricatti differential equations by using one dimensional AHisometry. Also, we illustrate many examples to clarify the validity of our work.

Keywords: One-Dimensional Geometric AH-Isometry; Neutrosophi Ricatti Differential Equation.

1.Introduction

Neutrosophic logic. Neutrosophy, Neutrosophic set, Neutrosophic probability, are recently creations of Smarandache, being characterized by having the indeterminacy as component of their framework, and a notable feature of neutrosophic logic is that can be considered a generaliazation of fuzzy logics, encompassing the classical logic as well[1]. Also.F. Smarandache, has defined the concept of continuation of a neutrosophic function in year 2015 in[1], and neutrosophicmereo-limit[1], mereo-continuity. Moreover, in 2014, he has defined the concept of a neutro-oscillator differentialin [3], and mereo-derivative. Finallyin 2013 he introduced neutrosophic integration in [2], and mereo-integral, besides the classical defintions of limit, continuity, deverative, and integral respectively. Among the recent applications there are: neutrosophic crisp set theory in image processing, neutrosophic setsmedical field [6-10], in information geographic systems and possible applications to database. Also, neutrosophic triplet group application to physics. Morever Several researches have made multiple contributions to neutrosophic topology and algebra [14-20, 34-50], Also More researches have made multiple contributions to neutrosophic analysis [21 – 33]. Finally the neutrosophic integration may have application in calculus the areas between two neutrosophic functions.

2. Preliminaries

Definition: Neutrosophic Real Number

Suppose that w is a neutrosophic number, then it takes the following standard form: w = a + bI where a, b are real coefficients, and I represents the indeterminacy, where 0.I = 0 and $I^n = I$ for all positive integers n.

Doi: https://doi.org/10.54216/GJMSA.010205

For example:

$$w = 1 + 2I, w = 3 = 3 + 0I.$$

Definition: Division of neutrosophic real numbers

Suppose that w_1, w_2 are two neutrosophic number, where

$$w_1 = a_1 + b_1 I, w_2 = a_2 + b_2 I$$

Then:

$$\frac{w_1}{w_2} = \frac{a_1 + b_1 I}{a_2 + b_2 I} = \frac{a_1}{a_2} + \frac{a_2 b_1 - a_1 b_2}{a_2 (a_2 + b_2)} I$$

Definition:

Let $R(I) = \{a + bI : a, b \in R\}$ where $I^2 = I$ be the neutrosophic field of reals. The one-dimensional isometry (AH-Isometry) is defined as follows

$$T: R(I) \rightarrow R \times R$$

 $T(a+bI) = (a, a+b)$

Remark:

T is an algebraic isomorphism between two rings, it has the following properties:

- 1) T is bijective.
- 2) T preserves addition and multiplication, i.e.:

$$T[(a+bI) + (c+dI)] = T(a+bI) + T(c+dI)$$
And
$$T[(a+bI) \cdot (c+dI)] = T(a+bI) \cdot T(c+dI)$$

Since T is bijective, then it is invertible by:

$$T^{-1}: R \times R \to R(I)$$

$$T^{-1}(a,b) = a + (b-a)I$$

4) T preserves distances, i.e.:

The distance on R(I) can be defined as follows:

Let
$$A = a + bI$$
, $B = c + dI$ be two neutrosophic real numbers, then $L = \|\overline{AB}\| = d[(a + bI, c + dI)] = |a + bI - (c + dI)| = |(a - c) + I(b - d)| = |a - c| + I[|a + b - c - d| - |a - c|].$

On the other hand, we have:

$$T(\|\overrightarrow{AB}\|) = (|a-c|, |(a+b)-(c+d)|) = (d(a,c), d(a+b,c+d)) = d[(a,a+b), (c,c+d)] = d(T(a+b), T(c+d))$$

$$= ||T(\overrightarrow{AB})||.$$

This implies that the distance is preserved up to isometry. i.e. ||T(AB)|| = T(||AB||)

NeutrosophicBernoulli's equation.

In this section is defined a Neutrosophic Bernoulli's equation by Using the One-Dimensional Geometric AH-Isometry and solutions are found for this equation.

Definition

Let $Y = y_1 + y_2 I$, $X = x_1 + x_2 I$ We define the Neutrosophic Bernoulli's equation by Using the One-Dimensional Geometric AH-Isometry as form:

$$\acute{Y} + f(X)Y = g(X)Y^n$$

This equation can be written as follow:

$$(y_1' + I[(y_1 + y_2)' - y_1'])(f(x_1) + I[f(x_1 + x_2) - f(x_1)])(y_1 + y_2I)$$

$$= (g(x_1) + I[g(x_1 + x_2) - g(x_1)])(y_1 + y_2I)^n$$

$$\Rightarrow y_1' + f(x_1)y_1 + I[(y_1 + y_2)' - f(x_1 + x_2)(y_1 + y_2) - (y_1' + f(x_1)y_1)]$$

$$= (g(x_1) + I[g(x_1 + x_2) - g(x_1)])((y_1)^n + I[(y_1 + y_2)^n - (y_1)^n])$$

Method of solution.

1. Take AH-Isometry for the differential equation, we have.

$$T(y_1' + f(x_1)y_1 + I[(y_1 + y_2)' - f(x_1 + x_2)(y_1 + y_2) - (y_1' + f(x_1)y_1)])$$

$$= (g(x_1) + I[g(x_1 + x_2) - g(x_1)])((y_1)^n + I[(y_1 + y_2)^n - (y_1)^n])$$

$$T(y_1' + f(x_1)y_1 + I[(y_1 + y_2)' - f(x_1 + x_2)(y_1 + y_2) - (y_1' + f(x_1)y_1)])$$

$$= T(g(x_1) + I[g(x_1 + x_2) - g(x_1)]) \cdot T((y_1)^n + I[(y_1 + y_2)^n - (y_1)^n])$$

$$[y_1' + f(x_1)y_1, (y_1 + y_2)' - f(x_1 + x_2)(y_1 + y_2)] = [g(x_1), g(x_1 + x_2)].[(y_1)^n, (y_1 + y_2)^n]$$

Then.

$$\begin{cases} y_1' + f(x_1)y_1 = g(x_1)(y_1)^n \dots \dots (1) \\ (y_1 + y_2)' - f(x_1 + x_2)(y_1 + y_2) = g(x_1 + x_2)(y_1 + y_2)^n \dots \dots (2) \end{cases}$$

The equations (1) and (2) are two Bernoulli's differential equation classical.

2. We find the solution to the equations classical(1) and (2), we have.

 y_1 the solution to the equation (1).

 $(y_1 + y_2)$ the solution to the equation (2).

3. We Take invertible AH-Isometry, then, we have the solution of a Neutrosophic identical linear differential equation.

$$Y = y_1 + y_2 I = T^{-1}(y_1, y_1 + y_2) = y_1 + ((y_1 + y_2) - y_1)I$$

Example Find a solution to the equation:

$$\acute{Y} + \frac{1}{X}Y = XY^3$$

Solution.

Let $Y = y_1 + y_2 I$, $X = x_1 + x_2 I$. Then

$$y_1' + \frac{1}{x_1}y_1 + I\left[(y_1 + y_2)' - \frac{1}{(x_1 + x_2)}(y_1 + y_2) - \left(y_1' + \frac{1}{x_1}y_1\right)\right]$$

$$= (x_1 + I[(x_1 + x_2) - (x_1)])((y_1)^3 + I[(y_1 + y_2)^3 - (y_1)^3])$$

Now, Take AH-Isometry for the differential equation, we have.

$$\begin{cases} y_1' + \frac{1}{x_1} y_1 = x_1 (y_1)^3 \dots \dots (3) \\ (y_1 + y_2)' - \frac{1}{x_1 + x_2} (y_1 + y_2) = (x_1 + x_2) (y_1 + y_2)^3 \dots \dots (4) \end{cases}$$

The solution of equation (3) written as follow:

$$y_1 = \left\{ \frac{1}{\mu(x_1)} \left(a + \int \mu(x_1) g(x_1) dx_1 \right) \right\}^{\frac{1}{-n+1}}$$

$$y_1 = \left\{ \frac{1}{(x_1)^2} \left(a + \int -2(x_1)^3 d(x_1) \right) \right\}^{\frac{-1}{2}}$$

$$y_1 = \left\{ \frac{1}{(x_1)^2} \left(a - \frac{(x_1)^4}{2} \right) \right\}^{\frac{-1}{2}} = \left\{ \frac{a}{(x_1)^2} - \frac{(x_1)^2}{2} \right\}^{\frac{-1}{2}}, \text{ where } a \in R.$$

The solution of equation (4) written as follow:

$$(y_1 + y_2) = \left\{ \frac{1}{(x_1 + x_2)^2} \left(b - \frac{(x_1 + x_2)^4}{2} \right) \right\}^{\frac{-1}{2}} = \left\{ \frac{b}{(x_1 + x_2)^2} - \frac{(x_1 + x_2)^2}{2} \right\}^{\frac{-1}{2}}, \text{ where } b \in R$$

Now, Take invertible AH-Isometry, then, we have the solution of aNeutrosophic identical linear differential equation

$$Y = y_1 + y_2 I = T^{-1} \left(\left\{ \frac{a}{(x_1)^2} - \frac{(x_1)^2}{2} \right\}^{\frac{-1}{2}}, \left\{ \frac{b}{(x_1 + x_2)^2} - \frac{(x_1 + x_2)^2}{2} \right\}^{\frac{-1}{2}} \right)$$

$$Y = y_1 + y_2 I = \left\{ \frac{a}{(x_1)^2} - \frac{(x_1)^2}{2} \right\}^{\frac{-1}{2}} + \left(\left\{ \frac{b}{(x_1 + x_2)^2} - \frac{(x_1 + x_2)^2}{2} \right\}^{\frac{-1}{2}} - \left\{ \frac{a}{(x_1)^2} - \frac{(x_1)^2}{2} \right\}^{\frac{-1}{2}} \right) I$$

By Definition 2.7, we have.

$$Y = y_1 + y_2 I = \left\{ \frac{a}{(x_1)^2} - \frac{(x_1)^2}{2} + \left(\frac{b}{(x_1 + x_2)^2} - \frac{(x_1 + x_2)^2}{2} \right) I \right\}^{\frac{-1}{2}}$$

Doi: https://doi.org/10.54216/GJMSA.010205

$$Y = y_1 + y_2 I = \left\{ \frac{a}{(x_1)^2} + \left(\frac{b}{(x_1 + x_2)^2} \right) I - \frac{(x_1)^2}{2} - \left(\frac{(x_1 + x_2)^2}{2} \right) I \right\}^{\frac{-1}{2}}$$

$$Y = y_1 + y_2 I = \left\{ \frac{a}{(x_1)^2} + \left(\frac{b}{(x_1 + x_2)^2} \right) I - \left[\frac{(x_1)^2}{2} + \left(\frac{(x_1 + x_2)^2}{2} \right) \right] I \right\}^{\frac{-1}{2}}$$

By Definition 2.5, we have.

$$\frac{a}{(x_1)^2} + \left(\frac{b}{(x_1 + x_2)^2}\right)I = \frac{a}{(x_1)^2} + \frac{b}{(x_1 + x_2)^2}I = \frac{a + bI}{(x_1 + x_2I)^2}$$

Then.

$$Y = y_1 + y_2 I = \left\{ \frac{a + bI}{(x_1 + x_2 I)^2} + \frac{-(x_1 + x_2 I)^2}{2} \right\}^{\frac{-1}{2}} = \left\{ \frac{a + bI}{X^2} + \frac{-X^2}{2} \right\}^{\frac{-1}{2}}$$

So that,

$$Y = y_1 + y_2 I = \left\{ \frac{a + bI}{X^2} + \frac{-X^2}{2} \right\}^{\frac{-1}{2}}$$

where $a + bI \in R(I)$.

Example Find a solution to the equation:

$$\dot{Y} + tan(X)Y = sin(X)Y^2$$

Solution.

Let
$$Y = y_1 + y_2 I$$
, $X = x_1 + x_2 I$. Then.

$$y_1' + tan(x_1)y_1 + I[(y_1 + y_2)' + tan(x_1 + x_2)(y_1 + y_2) - (y_1' + tan(x_1)y_1)]$$

$$= (sin(x_1) + I[sin(x_1 + x_2) - sin(x_1)])((y_1)^2 + I[(y_1 + y_2)^2 - (y_1)^2])$$

Now, Take AH-Isometry for the differential equation, we have.

$$\begin{cases} y_1' + tan(x_1)y_1 = sin(x_1)(y_1)^2 \dots \dots (5) \\ (y_1 + y_2)' + tan(x_1 + x_2)(y_1 + y_2) = sin(x_1 + x_2)(y_1 + y_2)^2 \dots \dots (6) \end{cases}$$

The solution of equation (5s) written as follow:

$$y_1 = \left\{ \frac{1}{\mu(x_1)} \left(a + \int \mu(x_1) g(x_1) dx_1 \right) \right\}^{\frac{1}{-n+1}}$$

$$y_1 = \left\{ \frac{1}{\cos(x_1)} \left(a + \int \cos(x_1) \cdot \sin(x_1) d(x_1) \right) \right\}^{-1}$$

$$y_1 = \left\{ \frac{1}{\cos(x_1)} \left(a + \frac{1}{4} \cos 2(x_1) \right) \right\}^{-1} = \left\{ \frac{a}{\cos(x_1)} + \frac{1}{4} \frac{\cos 2(x_1)}{\cos(x_1)} \right\}^{-1}, \text{ where } a \in R.$$

Doi: https://doi.org/10.54216/GJMSA.010205

The solution of equation (6) written as follow:

$$(y_1 + y_2) = \left\{ \frac{1}{\cos(x_1 + x_2)} \left(b + \frac{1}{4} \cos 2(x_1 + x_2) \right) \right\}^{-1} = \left\{ \frac{b}{\cos(x_1 + x_2)} + \frac{1}{4} \frac{\cos 2(x_1 + x_2)}{\cos(x_1)} \right\}^{-1}, \text{ where } b \in \mathbb{R}$$

Now, Take invertible AH-Isometry, then, we have the solution of a Neutrosophic identical linear differential equation

$$\begin{split} Y &= y_1 + y_2 I = T^{-1} \left(\left\{ \frac{a}{\cos(x_1)} + \frac{1}{4} c \frac{\cos 2(x_1)}{\cos(x_1)} \right\}^{-1}, \left\{ \frac{b}{\cos(x_1 + x_2)} + \frac{1}{4} \frac{\cos 2(x_1 + x_2)}{\cos(x_1)} \right\}^{-1} \right) \\ Y &= y_1 + y_2 I = \left\{ \frac{a}{\cos(x_1)} + \frac{1}{4} \frac{\cos 2(x_1)}{\cos(x_1)} \right\}^{-1} \\ &+ \left(\left\{ \frac{b}{\cos(x_1 + x_2)} + \frac{1}{4} \frac{\cos 2(x_1 + x_2)}{\cos(x_1)} \right\}^{-1} - \left\{ \frac{a}{\cos(x_1)} + \frac{1}{4} \frac{\cos 2(x_1)}{\cos(x_1)} \right\}^{-1} \right) I \end{split}$$

we have.

$$Y = y_1 + y_2 I = \left\{ \frac{a}{\cos(x_1)} + \frac{1}{4} \frac{\cos 2(x_1)}{\cos(x_1)} + \left(\frac{b}{\cos(x_1 + x_2)} + \frac{1}{4} \frac{\cos 2(x_1 + x_2)}{\cos(x_1)} \right) I \right\}^{-1}$$

$$Y = y_1 + y_2 I = \left\{ \frac{a}{\cos(x_1)} + \left(\frac{b}{\cos(x_1 + x_2)} \right) I + \frac{1}{4} \frac{\cos(x_1)}{\cos(x_1)} + \left(\frac{1}{4} \frac{\cos(x_1 + x_2)}{\cos(x_1)} \right) I \right\}^{-1} I$$

we have.

$$\frac{a}{\cos(x_1)} + \left(\frac{b}{\cos(x_1 + x_2)}\right)I = \frac{a}{\cos(x_1)} + \frac{b}{\cos(x_1 + x_2)}I = \frac{a + bI}{\cos(x_1 + x_2I)}$$

Then.

$$Y = y_1 + y_2 I = \left\{ \frac{a + bI}{\cos(x_1 + x_2 I)} + \frac{1}{4} \frac{\cos(x_1 + x_2 I)}{\cos(x_1 + x_2 I)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(2X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos(X)}{\cos(X)} \right\}^{-1} = \left\{ \frac{a + bI}{\cos(X$$

So that,

$$Y = y_1 + y_2 I = \left\{ \frac{a + bI}{\cos(X)} + \frac{1}{4} \frac{\cos 2X}{\cos X} \right\}^{-1}$$

where $a + bI \in R(I)$.

NeutrosophicRecati equation.

In this section is defined a NeutrosophicRecatiequation by Using the One-Dimensional Geometric AH-Isometry and solutions are found for this equation.

Definition.

Let $Y = y_1 + y_2 I$, $X = x_1 + x_2 I$ We define the Neutrosophic Recati equation by Using the One-Dimensional Geometric AH-Isometry as form:

$$\acute{Y} + f(X)Y^2 + g(X)Y + h(X) = 0$$

And takes a particular solution:

$$Z = z_1 + z_2 I = r(X) = r(x_1 + x_2 I)$$

This equation can be written as follow:

$$(y_1' + I[(y_1 + y_2)' - y_1'])(f(x_1) + I[f(x_1 + x_2) - f(x_1)])(y_1 + y_2I)^2 + (g(x_1) + I[g(x_1 + x_2) - g(x_1)])(y_1 + y_2I) + h(x_1) + I[h(x_1 + x_2) - h(x_1)] = 0$$

$$y_1' + f(x_1)(y_1)^2 + I[(y_1 + y_2)' - f(x_1 + x_2)(y_1 + y_2) - (y_1' + f(x_1)(y_1)^2)] + (g(x_1) + I[g(x_1 + x_2) - g(x_1)])((y_1) + I[(y_1 + y_2) - (y_1)]) + h(x_1) + I[h(x_1 + x_2) - h(x_1)] = 0$$

And:

$$Z = z_1 + z_2 I = r(x_1 + x_2 I) = r(x_1) + I[r(x_1 + x_2) - r(x_1)]$$

Method of solution.

1. Take AH-Isometry for the differential equation, and Take AH-Isometry for a particular solution, we have.

$$T(y_1' + f(x_1)(y_1)^2 + I[(y_1 + y_2)' - f(x_1 + x_2)(y_1 + y_2) - (y_1' + f(x_1)(y_1)^2)]$$

$$+ (g(x_1) + I[g(x_1 + x_2) - g(x_1)])((y_1) + I[(y_1 + y_2) - (y_1)]) + h(x_1)$$

$$+ I[h(x_1 + x_2) - h(x_1)]) = T(0)$$

$$[y_1' + f(x_1)(y_1)^2 + g(x_1)y_1 + h(x_1), (y_1 + y_2)' + f(x_1 + x_2)(y_1 + y_2)^2 + g(x_1 + x_2)(y_1 + y_2) + h(x_1 + x_2)]$$
= [0,0]

Then.

$$\begin{cases} y_1' + f(x_1)(y_1)^2 + g(x_1)y_1 + h(x_1) = 0 \dots \dots (7) \\ (y_1 + y_2)' + f(x_1 + x_2)(y_1 + y_2)^2 + g(x_1 + x_2)(y_1 + y_2) + h(x_1 + x_2) = 0 \dots \dots (8) \end{cases}$$

And:

$$T(z_1 + z_2 I) = T(r(x_1) + I[r(x_1 + x_2) - r(x_1)])$$

$$[z_1,(z_1+z_2)]=[r(x_1),r(x_1+x_2)]$$

$$\begin{cases} z_1 = r(x_1) \dots \dots (9) \\ (z_1 + z_2) = r(x_1 + x_2) \dots \dots (10) \end{cases}$$

The equations (7) and (8) are two Recati differential equation classical with two a particular solution (9) and (10).

2. We find the solution to the equations classical (7) and (8), we have.

 y_1 the solution to the equation (7).

 $(y_1 + y_2)$ the solution to the equation (8).

3. We Take invertible AH-Isometry, then, we have the solution of a Neutrosophic identical linear differential equation .

$$Y = y_1 + y_2 I = T^{-1}(y_1, y_1 + y_2) = y_1 + ((y_1 + y_2) - y_1)I$$

Example Find the general solution for the following neutrosophic ricati equation:

$$\dot{Y} + \left(\frac{\cos X}{1 - \sin X \cos X}\right) Y^2 + \left(\frac{-1}{1 - \sin X \cos X}\right) Y + \frac{\sin X}{1 - \sin X \cos X} = 0$$

If a particular solution is:

$$Z = z_1 + z_2 I = \cos X$$

Solution.

Let
$$Y = y_1 + y_2 I$$
, $X = x_1 + x_2 I$. Then.

$$\begin{split} y_1' + \frac{\cos x_1}{1 - \sin x_1 \cdot \cos x_1} (y_1)^2 \\ + I \left[(y_1 + y_2)' + \frac{\cos (x_1 + x_2)}{1 - \sin (x_1 + x_2) \cdot \cos (x_1 + x_2)} (y_1 + y_2) - \left(y_1' + \frac{\cos x_1}{1 - \sin x_1 \cdot \cos x_1} (y_1)^2 \right) \right] \\ + \left(\frac{-1}{1 - \sin x_1 \cdot \cos x_1} + I \left[\frac{-1}{1 - \sin (x_1 + x_2) \cdot \cos (x_1 + x_2)} - \left(\frac{-1}{1 - \sin x_1 \cdot \cos x_1} \right) \right] \right) ((y_1) \\ + I \left[(y_1 + y_2) - (y_1) \right] \right) + \frac{\sin x_1}{1 - \sin x_1 \cdot \cos x_1} \\ + I \left[\frac{\sin (x_1 + x_2)}{1 - \sin (x_1 + x_2) \cdot \cos (x_1 + x_2)} - \frac{\sin x_1}{1 - \sin x_1 \cdot \cos x_1} \right] = 0 \end{split}$$

And:

$$Z = z_1 + z_2 I = cos X = cos x_1 + I[cos(x_1 + x_2) - cos x_1]$$

Now, Take AH-Isometry for the differential equation, and Take AH-Isometry for a particular solution, we have...

$$\begin{cases} y_1' + \frac{\cos x_1}{1 - \sin x_1 \cdot \cos x_1} (y_1)^2 - \frac{1}{1 - \sin x_1 \cdot \cos x_1} y_1 + \frac{\sin x_1}{1 - \sin x_1 \cdot \cos x_1} = 0 \dots \dots (11) \\ (y_1 + y_2)' + \frac{\cos (x_1 + x_2)}{1 - \sin (x_1 + x_2) \cdot \cos (x_1 + x_2)} (y_1 + y_2)^2 - \frac{1}{1 - \sin (x_1 + x_2) \cdot \cos (x_1 + x_2)} (y_1 + y_2) \\ + \frac{\sin (x_1 + x_2)}{1 - \sin (x_1 + x_2) \cdot \cos (x_1 + x_2)} = 0 \dots \dots (12) \end{cases}$$

And:

$$\begin{cases} z_1 = cos x_1 \\ (z_1 + z_2) = cos (x_1 + x_2) \end{cases}$$

The solution of equation (11) written as follow:

$$y_1 = cosx_1 + \left\{ \frac{1}{1 - sinx_1 \cdot cosx_1} (a + sinx_1) \right\}^{-1}$$
, where $a \in R$.

By the method same, The solution of equation (12) written as follow:

$$(y_1 + y_2) = cos(x_1 + x_2) + \left\{ \frac{1}{1 - sin(x_1 + x_2).cos(x_1 + x_2)} \left(b + sin(x_1 + x_2) \right) \right\}^{-1}$$
, where $b \in R$

Now, Take invertible AH-Isometry, then, we have the solution of aNeutrosophic identical linear differential equation

$$Y = y_1 + y_2 I = T^{-1} \left(\cos x_1 + \left\{ \frac{1}{1 - \sin x_1 \cdot \cos x_1} (a + \sin x_1) \right\}^{-1}, \cos(x_1 + x_2) + \left\{ \frac{1}{1 - \sin(x_1 + x_2) \cdot \cos(x_1 + x_2)} (b + \sin(x_1 + x_2)) \right\}^{-1} \right)$$

$$Y = y_1 + y_2 I = cos x_1 + \left\{ \frac{1}{1 - sin x_1 \cdot cos x_1} (a + sin x_1) \right\}^{-1}$$

$$+ I \left[cos (x_1 + x_2) + \left\{ \frac{1}{1 - sin (x_1 + x_2) \cdot cos (x_1 + x_2)} (b + sin (x_1 + x_2)) \right\}^{-1} \right]$$

$$- \left(cos x_1 + \left\{ \frac{1}{1 - sin x_1 \cdot cos x_1} (a + sin x_1) \right\}^{-1} \right) \right]$$

$$Y = y_1 + y_2 I = cos x_1 + I(cos(x_1 + x_2) - cos x_1) + \left\{ \frac{1}{1 - sin x_1 \cdot cos x_1} (a + sin x_1) \right\}^{-1}$$

$$+ I \left[\left\{ \frac{1}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} (b + sin(x_1 + x_2)) \right\}^{-1}$$

$$- \left(\left\{ \frac{1}{1 - sin x_1 \cdot cos x_1} (a + sin x_1) \right\}^{-1} \right) \right]$$

$$Y = y_1 + y_2 I = cos(x_1 + x_2 I) + \left\{ \frac{a}{1 - sinx_1 \cdot cosx_1} + \frac{sinx_1}{1 - sinx_1 \cdot cosx_1} \right\}^{-1}$$

$$+ I \left[\left\{ \frac{b}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} + \frac{sin(x_1 + x_2)}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} \right\}^{-1}$$

$$- \left\{ \frac{a}{1 - sinx_1 \cdot cosx_1} + \frac{sinx_1}{1 - sinx_1 \cdot cosx_1} \right\}^{-1} \right]$$

$$Y = y_1 + y_2 I = cos(X) + \left\{ \frac{a}{1 - sinx_1 \cdot cosx_1} + \frac{sinx_1}{1 - sinx_1 \cdot cosx_1} \right\}^{-1}$$

$$+ I \left[\left\{ \frac{b}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} + \frac{sin(x_1 + x_2)}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} \right\}^{-1}$$

$$- \left\{ \frac{a}{1 - sinx_1 \cdot cosx_1} + \frac{sinx_1}{1 - sinx_1 \cdot cosx_1} \right\}^{-1} \right]$$

we have.

$$\left\{ \frac{a}{1 - sinx_1 \cdot cosx_1} + \frac{sinx_1}{1 - sinx_1 \cdot cosx_1} \right\}^{-1}$$

$$+ I \left[\left\{ \frac{b}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} + \frac{sin(x_1 + x_2)}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} \right\}^{-1} \right]$$

$$- \left\{ \frac{a}{1 - sinx_1 \cdot cosx_1} + \frac{sinx_1}{1 - sinx_1 \cdot cosx_1} \right\}^{-1} \right]$$

$$= \left\{ \frac{a}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} + \frac{sin(x_1 + x_2)}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} \right\}^{-1}$$

$$\left\{ \frac{a}{1 - sinx_1 \cdot cosx_1} + \frac{sinx_1}{1 - sinx_1 \cdot cosx_1} + \frac{b}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} I + \frac{sin(x_1 + x_2)}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} I \right\}^{-1}$$

$$= \left\{ \frac{a}{1 - sinx_1 \cdot cosx_1} + \frac{b}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} I + \frac{sinx_1}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} I \right\}^{-1}$$

$$= \left\{ \frac{a}{1 - sinx_1 \cdot cosx_1} + \frac{b}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} I + \frac{sinx_1}{1 - sin(x_1 + x_2) \cdot cos(x_1 + x_2)} I \right\}^{-1}$$

By Definition 2.5, we have.

$$\frac{a}{1 - \sin x_1 \cdot \cos x_1} + \frac{b}{1 - \sin(x_1 + x_2) \cdot \cos(x_1 + x_2)}I = \frac{a + bI}{1 - \sin(x_1 + x_2I) \cdot \cos(x_1 + x_2I)} = \frac{a + bI}{1 - \sin(X) \cdot \cos(X)}$$

And.

$$\frac{sinx_1}{1-sinx_1.cosx_1} + \frac{sin(x_1+x_2)}{1-sin(x_1+x_2).cos(x_1+x_2)}I = \frac{sin(x_1+x_2I)}{1-sin(x_1+x_2I).cos(x_1+x_2I)} = \frac{sin(X)}{1-sin(X).cos(X)}$$

So that,

$$Y = y_1 + y_2 I = \cos(X) + \left\{ \frac{a + bI}{1 - \sin(X) \cdot \cos(X)} + \frac{\sin(X)}{1 - \sin(X) \cdot \cos(X)} \right\}^{-1}$$

where $a + bI \in R(I)$.

Refrences

- Smarandache F. NeutrosophicPrecalculus and Neutrosophiccalclus, University of New Mexico, 705 Gurley Ave. Gallup, NM 87301, USA, 2015.
- [2] Smarandache F. Neutrosophic Measure and NeutrosophicIntegral, In Neutrosophic Sets and Systems, 3 -7, Vol. 1, 2013.
- [3] A. A Salama, Smarandache F. Kroumov, Neutrosophic Closed Set and Continuous Functions, in Neutrosophic Sets and Systems, Vol.4, 4-8, 2014.
- [4] A. A Salama; I. M Hanafy; HewaydaElghawalbyDabash M.S, Neutrosophic Crisp Closed RRegion and Neutrosophic Crisp Continuous Functions, New Trends in Neutrosophic Theory and Applications.
- [5] A. A Salama; HewaydaElghawalby; M.S,Dabash; A.M. NASR, RetracNeutrosophic Crisp System For Gray Scale Image, Asian Journal Of Mathematics and Computer Research, Vol 24, 104-117, (2018).
- [6] F. smarandache. "Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, neutrosophic Logic, Set, Probability, and Statistics" University of New Mexico, Gallup, NM87301, USA 2002.
- [7] M. Abdel-Basset; E. Mai. Mohamed; C. Francisco; H. Z. Abd EL-Nasser. "Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases" Artificial Intelligence in Medicine Vol. 101, 101735, (2019).
- [8] Abobala, M., Bal, M., Aswad, M., "A Short Note On Some Novel Applications of Semi Module Homomorphisms", International journal of neutrosophic science, 2022.
- [9] Smarandache F., and Abobala, M., "n-Refined Neutrosophic Vector Spaces", International Journal of Neutrosophic Science, Vol. 7, pp. 47-54. 2020.
- [10] Abobala, M., On Refined Neutrosophic Matrices and Their Applications In Refined Neutrosophic Algebraic Equations, Journal Of Mathematics, Hindawi, 2021
- [11] Abobala, M., A Study of Maximal and Minimal Ideals of n-Refined Neutrosophic Rings, Journal of Fuzzy Extension and Applications, Vol. 2, pp. 16-22, 2021.
- [12] M. Abdel-Basset; E. Mohamed; G. Abdullah; and S. Florentin. "A novel model for evaluation Hospital medical care systems based on plithogenic sets" Artificial Intelligence in Medicine 100 (2019), 101710.
- [13] M. Abdel-Basset; G. Gunasekaran Mohamed; G. Abdullah. C. Victor, "A Novel Intelligent Medical Decision Support Model Based on soft Computing and Iot" IEEE Internet of Things Journal, Vol. 7, (2019).
- [14] M. Abdel-Basset; E. Mohamed; G. Abdullah; G. Gunasekaran; L. Hooang Viet." A novel group decision making model based on neutrosophic sets for heart disease diagnosis" Multimedia Tools and Applications, 1-26, (2019).
- [15] A. A Salama. Basic Structure of Some Classes of Neutrosophic Crisp Nearly Open Sets and Possible Application to GIS Topology. Neutrosophic Sets and Systems, Vol. 7, 18-22, (2015).

- [16] A. A Salama; F. Smarandache. Neutrosophic Set Theory, Neutrosophic Sets and Systems, Vol. 5, 1-9, (2014).
- [17] F. Smarandache, The Neutrosophic Triplet Group and its Application to physics, Seminar Universidad National de Quilmes, Department of science and Technology, Beunos Aires, Argentina, 20 June 2014.
- [18] A. B.AL-Nafee; R.K. Al-Hamido; F.Smarandache. "Separation Axioms In Neutrosophic Crisp Topological Spaces", Neutrosophic Sets and Systems, vol. 25, 25-32, (2019).
- [19] Abobala, M., Bal, M., and Hatip, A.," A Review On Recent Advantages In Algebraic Theory Of Neutrosophic Matrices", International Journal of Neutrosophic Science, Vol. 17, 2021.
- [20] R.K. Al-Hamido, Q. H. Imran, K. A. Alghurabi, T. Gharibah, "On Neutrosophic Crisp Semi Alpha Closed Sets", Neutrosophic Sets and Systems", vol. 21, 28-35, (2018).
- [21] Sankari, H., and Abobala, M., "Neutrosophic Linear Diophantine Equations With two Variables", Neutrosophic Sets and Systems, Vol. 38, pp. 22-30, 2020.
- [22] Sankari, H., and Abobala, M." *n*-Refined Neutrosophic Modules", Neutrosophic Sets and Systems, Vol. 36, pp. 1-11. 2020.
- [23] Abobala, M., "AH-Subspaces in Neutrosophic Vector Spaces", International Journal of Neutrosophic Science, Vol. 6, pp. 80-86, 2020.
- [24] Abobala, M.,. "A Study of AH-Substructures in *n*-Refined Neutrosophic Vector Spaces", International Journal of Neutrosophic Science", Vol. 9, pp.74-85. 2020.
- [25] Agboola, A.A.A., "On Refined Neutrosophic Algebraic Structures," Neutrosophic Sets and Systems, Vol. 10, pp. 99-101. 2015.
- [26] Abobala, M., "Classical Homomorphisms Between Refined Neutrosophic Rings and Neutrosophic Rings", International Journal of Neutrosophic Science, Vol. 5, pp. 72-75. 2020.
- [27] Q. H. Imran, F. Smarandache, R.K. Al-Hamido, R. Dhavasselan, "On Neutrosophic Semi Alpha open Sets", Neutrosophic Sets and Systems, vol. 18, 37-42, (2017).
- [28] Al-Hamido, R. K.; "A study of multi-Topological Spaces", PhD Theses, AlBaath university, Syria, (2019).
- [29] Al-Hamido, R. K.; "Neutrosophic Crisp Supra Bi-Topological Spaces", International Journal of Neutrosophic Science, Vol. 1, 66-73, (2018).
- [30] R.K. Al-Hamido, "Neutrosophic Crisp Bi-Topological Spaces", Neutrosophic Sets and Systems, vol. 21, 66-73, (2018).
- [31] R.K. Al-Hamido, T. Gharibah, S. JafariF.Smarandache, "On Neutrosophic Crisp Topology via N-Topology", Neutrosophic Sets and Systems, vol. 21, 96-109, (2018).
- [32] A. Hatip, "The Special Neutrosophic Functions," International Journal of Neutrosophic Science (IJNS), p. 13, 12 May 2020.\

- [33] Kandasamy, I., Kandasamy, V., and Smarandache, F., "Algebraic structure of Neutrosophic Duplets in Neutrosophic Rings", Neutrosophic Sets and Systems, Vol. 18, pp. 85-95. 2018.
- [34] Sankari, H., and Abobala, M.," AH-Homomorphisms In neutrosophic Rings and Refined Neutrosophic Rings", Neutrosophic Sets and Systems, Vol. 38, pp. 101-112, 2020.
- [35] Olgun, N., Hatip, A., Bal, M., and Abobala, M., " A Novel Approach To Necessary and Sufficient Conditions For The Diagonalization of Refined Neutrosophic Matrices", International Journal of Neutrosophic Science, Vol. 16, pp. 72-79, 2021.
- [36] Aswad, F, M., " A Study of Neutrosophic Complex Number and Applications", Neutrosophic Knowledge, Vol. 1, 2020.
- [37] Aswad, M., " A Study of The Integration Of Neutrosophic Thick Function", International journal of neutrosophic Science, 2020.
- [38] Abobala, M, "n-Cyclic Refined Neutrosophic Algebraic Systems Of Sub-Indeterminacies, An Application To Rings and Modules", International Journal of Neutrosophic Science, Vol. 12, pp. 81-95. 2020.
- [39] M. Ali, F. Smarandache, M. Shabir and L. Vladareanu., "Generalization of Neutrosophic Rings and Neutrosophic Fields", Neutrosophic Sets and Systems, vol. 5, pp. 9-14, 2014.
- [40] Smarandache, F., and Abobala, M., n-Refined neutrosophic Rings, International Journal of Neutrosophic Science, Vol. 5, pp. 83-90, 2020.
- [41] Abobala, M., " Semi Homomorphisms and Algebraic Relations Between Strong Refined Neutrosophic Modules and Strong Neutrosophic Modules", Neutrosophic Sets and Systems, Vol. 39, 2021.
- [42] Abobala, M., "On Some Neutrosophic Algebraic Equations", Journal of New Theory, Vol. 33, 2020.
- [43] Abobala, M., On The Representation of Neutrosophic Matrices by Neutrosophic Linear Transformations, Journal of Mathematics, Hindawi, 2021.
- [44] Abobala, M., "On Some Algebraic Properties of n-Refined Neutrosophic Elements and n-Refined Neutrosophic Linear Equations", Mathematical Problems in Engineering, Hindawi, 2021
- [45] Kandasamy V, Smarandache F., and Kandasamy I., Special Fuzzy Matrices for Social Scientists . Printed in the United States of America, 2007, book, 99 pages.
- [46] Abobala, M., Partial Foundation of Neutrosophic Number Theory, Neutrosophic Sets and Systems, Vol. 39
- [47] Giorgio, N, Mehmood, A., and Broumi, S.," Single Valued neutrosophic Filter", International Journal of Neutrosophic Science, Vol. 6, 2020.
- [48] Abobala, M., Hatip, A., Olgun, N., Broumi, S., Salama, A,A., and Khaled, E, H., The algebraic creativity In The Neutrosophic Square Matrices, Neutrosophic Sets and Systems, Vol. 40, pp. 1-11, 2021.
- [49] Abobala, M., "Neutrosophic Real Inner Product Spaces", Neutrosophic Sets and Systems, Vol. 43, 2021.
- [50] Abobala, M., "On Some Special Elements In Neutrosophic Rings and Refined Neutrosophic Rings", Journal of New Theory, vol. 33, 2020.

- [51] Chellamani, P., and Ajay, D., "Pythagorean neutrosophic Fuzzy Graphs", International Journal of Neutrosophic Science, Vol. 11, 2021.
- [52] Prem Kumar Singh, Fourth dimension data representation and its analysis using Turiyam Context, Journal of Computer and Communications, 2021, Vol. 9, no. 222-6, pp. 229,DOI: 10.4236/jcc.2021.96014, https://www.scirp.org/journal/paperinformation.aspx?paperid=110694
- [53] Abobala, M., "On The Characterization of Maximal and Minimal Ideals In Several Neutrosophic Rings", Neutrosophic Sets and Systems, Vol. 45, 2021.
- [54] Abobala, M., Hatip, A., Bal, M., " A Study Of Some Neutrosophic Clean Rings", International journal of neutrosophic science, 2022.

Doi: https://doi.org/10.54216/GJMSA.010205