Journal Pre-proof

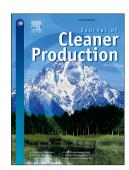
Remanufacturing facility location for automotive Lithium-ion batteries: An integrated neutrosophic decision-making model

Muhammet Deveci, Vladimir Simic, Ali Ebadi Torkayesh

PII: S0959-6526(21)02650-0

DOI: https://doi.org/10.1016/j.jclepro.2021.128438

Reference: JCLP 128438


To appear in: Journal of Cleaner Production

Received Date: 12 March 2021
Revised Date: 30 June 2021
Accepted Date: 24 July 2021

Please cite this article as: Deveci M, Simic V, Torkayesh AE, Remanufacturing facility location for automotive Lithium-ion batteries: An integrated neutrosophic decision-making model, *Journal of Cleaner Production* (2021), doi: https://doi.org/10.1016/j.jclepro.2021.128438.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

CRediT authorship contribution statement

Muhammet Deveci: Methodology, Software, Validation, Writing - Original Draft, Review & Editing

Vladimir Simic: Conceptualization, Data acquisition, Visualization, Validation,

Writing - Original Draft, Review and Editing

Ali Ebadi Torkayesh: Conceptualization, Data acquisition, Methodology,

Visualization, Writing - Original Draft, Review & Editing

Title Page

Remanufacturing Facility Location for Automotive Lithium-ion Batteries: An Integrated Neutrosophic Decision-Making Model

Corresponding author: Muhammet Deveci

Assoc. Prof. / Ph.D.

Department of Industrial Engineering, Turkish Naval Academy, National Defence University, 34940 Tuzla, Istanbul, Turkey

mdeveci@dho.edu.tr; muhammetdeveci@gmail.com

Vladimir Simic

Assoc. Prof. / Ph.D.

University of Belgrade, Faculty of Transport and Traffic Engineering, Vojvode Stepe 305, 11010
Belgrade, Serbia
vsima@sf.bg.ac.rs

Ali Ebadi Torkayesh

M.Sc.

Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla, Istanbul, Turkey ICRON Technologies, Sarıyer, Istanbul, Turkey ebaditorkayesh@sabanciuniv.edu

Remanufacturing Facility Location for Automotive Lithium-ion Batteries: An Integrated Neutrosophic Decision-Making Model

2

1

4 Abstract

- 5 Automobile Lithium-ion battery (ALiB) is a fast-evolving technology that found widespread utilization in electric vehicles (EVs). Management of used ALiBs has become a crucial topic 6 7 in the automotive industry and academic researches. ALiB remanufacturing is significant 8 leverage to accomplish the circular economy paradigm, but many open questions still exist. 9 This study addresses the following main research questions: (i) Which evaluation criteria 10 influence the strategic decisions on locating ALiB remanufacturing facilities? (ii) How to determine the best location under uncertainty? To answer these questions and promote 11 12 sustainable development of the EV industry, this study introduces a three-stage integrated neutrosophic decision-making model for the location selection of an ALiB remanufacturing 13 facility. Key evaluation criteria are identified to offer a decision-making framework for 14 practitioners. This study employs advanced type-2 neutrosophic numbers (T2NNs) to reduce 15 the vagueness in experts' decision-making preferences and avoid erroneous facility location 16 17 decisions. The innovative usage of the hierarchical best-worst method (BWM) is presented to select optimal evaluation criteria weights with the lowest subjectivity and biasedness. The 18 combinative distance based assessment (CODAS) method is extended under the T2NN 19 20 environment to rank location alternatives. A case study provides decision-making guidelines 21 on how to identify the best location for an ALiB remanufacturing facility in the real-world 22 context. Our findings indicate that "Gemlik/Bursa" is the best location in Turkey. The high 23 reliability and robustness of the integrated neutrosophic decision-making model are demonstrated with the comparison and sensitivity analyses. The proposed model could solve 24 25 other circular economy-related location problems.
- 26 Keywords: Automobile Lithium-ion Battery, Remanufacturing, Type-2 Neutrosophic Number,
- 27 CODAS, BWM, Facility Location.

1. Introduction

28

29

30

31

32

Electric vehicles (EVs) have been increasingly used due to significant energy and environmental benefits (Alamerew and Brissaud, 2020; Loganathan et al., 2021). By 2040, EVs will account for approximately 20 % of the global road transport fleet (Kapustin and Grushevenko, 2020). Automobile Lithium-ion battery (ALiB) is a fast-evolving technology

that found widespread utilization in these "green" vehicles. ALiB is a low environmental impact energy storage technology (Liu et al., 2016). Its advantages over other portable energy storage systems are higher energy and power density, and cycling property (Zhang et al., 2014; Liu et al., 2016). However, when an ALiB capacity depreciates to 70-80 % of its initial capacity, it cannot power a vehicle anymore and should be replaced (Alamerew and Brissaud, 2020).

Management of used ALiBs has become a crucial topic in the automotive industry and academic researches (Liu et al., 2016; Garg et al., 2020). Remanufacturing, repurposing (for secondary usage in less-stressful applications), and recycling are three prevalent management schemes for used ALiBs. Remanufacturing is the most environmentally friendly since it preserves the identity of ALiBs by replacing defective or outdated cells/modules (Standridge and Hasan, 2015). It is one of the key strategies for the sustainable development of the EV industry, improving business competitiveness, and reducing environmental burdens (Zhu et al., 2014; Standridge and Hasan, 2015; Hua et al., 2020). Besides, remanufacturing has positive impacts on the economic, environmental, and societal pillars of sustainability (Alfaro-Algaba and Ramirez, 2020; Zhang et al., 2020b). As a result, remanufacturing of ALiBs can mitigate the raw material problem for the EV industry, decline import dependency, counteract price volatility, reduce the carbon footprint, and ensure sustainable e-mobility.

By 2030, approximately 25 % of new ALiB production could be substituted by remanufacturing (Standridge and Hasan, 2015). ALiB remanufacturing is an industrial value-added process of transforming a used battery to at least its original performance by replacing defective or outdated cells/modules. It includes assessment, partial disassembly, screening, surface cleaning, repairing, reversible joining, and testing of ALiBs in a quasi-new condition to satisfy all standards imposed by original equipment manufacturers.

It is clear that ALiB remanufacturing is significant leverage to accomplish the circular economy paradigm, but many open questions still exist that hinder large-scale remanufacturing applications in industrial practice. As a result, this study addresses the following main research questions: (i) Which evaluation criteria influence the strategic decisions on locating ALiB remanufacturing facilities? (ii) How to determine the best ALiB remanufacturing facility location under uncertainty?

To answer these questions, this study introduces an integrated neutrosophic decision-making model for location selection of an ALiB remanufacturing facility with a real-life case study to promote sustainable development of the EV industry. The formulated three-stage integrated neutrosophic decision-making model hybridizes best-worst method (BWM) and

type-2 neutrosophic number (T2NN) combinative distance based assessment (CODAS) method into a unique methodological framework. The study aims to boost ALiB remanufacturing adoption by revealing evaluation criteria for locating remanufacturing facilities and providing a straightforward decision-making framework for practitioners.

The additional motivations for this study are as follows: a) Despite a rich literature on key strategic evaluation criteria that influence selecting ALiB remanufacturing, remanufacturing facilities, are still missing; b) Determining the best ALiB remanufacturing facility location under uncertainty has not been addressed before in the literature; c) Although numerous multi-criteria decision-making (MCDM) approaches for remanufacturing have been introduced recently, no previous research employed this MCDM method in the remanufacturing research area considering high levels of vague, unreliable, and inexact information uncertainties; d) The CODAS method is a very popular and influential MCDM tool introduced by Keshavarz-Ghorabaee et al. (2016) which uses the overall score of an alternative by Euclidean and Hamming distances from a negative-ideal solution. Unfortunately, the CODAS method has not been extended before under the T2NN environment; e) The most critical step in locating an ALiB remanufacturing facility is to determine relative criteria weights. The BWM is an optimization-based weight determination tool introduced by Rezaei (2015) which has attracted remarkable attention from researchers in different fields due to its high reliability and preciseness. However, no previous research has utilized the BWM in the remanufacturing research area.

The contributions of this study to the present body of knowledge are as follows: *i*) For the first time, the ALiB remanufacturing facility location selection problem is comprehensively investigated and solved; *ii*) Key evaluation criteria that influence the strategic decisions on locating ALiB remanufacturing facilities are identified and briefly defined to offer a decision-making framework for practitioners; *iii*) Unlike other MCDM approaches for remanufacturing, this study uses advanced T2NNs to reduce the vagueness in experts' decision-making preferences, improve the recognition of information uncertainties in the remanufacturing environment, and avoid erroneous facility location decisions; *iv*) The integrated neutrosophic decision-making model is introduced to solve the ALiB remanufacturing facility location selection problem. The innovative usage of the hierarchical BWM is presented to select optimal criteria weights with the lowest subjectivity and biasedness, while the CODAS method is extended under the T2NN environment and applied in the remanufacturing research area for the first time; *v*) A case study of Turkey provides guidelines on how to identify the best location

Journal Pre-proof

for an ALiB remanufacturing facility in the real-world context; *vi*) Although this research is devoted to ALiB remanufacturing, the presented integrated neutrosophic decision-making model could solve other circular economy-related location problems.

This research is structured as follows: Section 2 provides evaluation criteria for locating ALiB remanufacturing facilities and offers a comprehensive review of the related state-of-the-art research. Section 3 gives the problem definition and describes a real-life case study. Section 4 presents the integrated neutrosophic decision-making model for ALiB remanufacturing facility location selection. Section 5 presents the case study results and discussion. Finally, conclusions and implications are provided in Section 6.

2. Literature Review

The literature review is organized into four sub-sections. The first sub-section identifies criteria for locating ALiB remanufacturing facilities from the literature. The second sub-section surveys available MCDM approaches for remanufacturing. The third sub-section reviews available neutrosophic number-based decision-making models. The last sub-section presents identified research gaps.

2.1. Evaluation Criteria

Two electronic databases, namely Scopus and Web of Science, were the main information sources to identify criteria for locating ALiB remanufacturing facilities. Twenty key criteria are identified and briefly defined (Table 1). They are grouped into four clusters based on their nature. As can be seen from Table 1, the comprehensive literature review revealed eight economic, four environmental, three social, and five technical location selection criteria.

Table 1.
 Evaluation criteria for locating Lithium-ion battery remanufacturing facilities.

Criteria	Code	Type	Definition	Reference(s)
Economic	MC_1			
Distance from collection centers	C_1	Min	An average transportation distance from local ALiB collection centers, car dealerships, and scrap yards	Li et al. (2018), Chakraborty et al. (2019), Song and Chu (2019), Alamerew and Brissaud (2020), Das et al. (2020a,c), Wang et al. (2020), Scheller et al. (2021)
Distance to a secondary market	C_2	Min	Transportation distance to a local secondary market for selling remanufactured ALiBs	Li et al. (2018), Gu et al. (2018b), Tosarkani and Amin (2018), Song and Chu (2019), Tang et al. (2019), Wang et al. (2020), Zhu et al. (2020), Scheller et al. (2021)
Distance to original equipment manufacturers	C_3	Min	An average transportation distance to OEMs for the acquisition of new battery cells to satisfy standards	Su (2017), Tang et al. (2018, 2019), Ocampo et al. (2019), Su et al. (2019), Qiao and Su (2020), Rallo et al. (2020), Zhang et al. (2020a), Zhu et al. (2020), Scheller et al. (2021)
Distance to recycling centers	C_4	Min	An average transportation distance to recycling centers for processing defective or outdated ALiB cells/modules	Hendrickson et al. (2015), Li et al. (2018), Su et al. (2019), Hua et al. (2020), Scheller et al. (2021)
Financial benefit	C_5	Max	A selling price of a remanufactured ALiB and indirect financial benefits	Li et al. (2018), Gu et al. (2018a,b), Tang et al. (2018, 2019), Ansari et al. (2020), Çolak and Kaya (2020), Hua et al. (2020), Zhang et al. (2020b), Scheller et al. (2021)
Investment cost	C_6	Min	An initial setup costs for new facilities and land	Abdulrahman et al. (2015), Hendrickson et al. (2015), Li et al. (2018), Farahani et al. (2019), Ocampo et al. (2019), Tang et al. (2019), Wang et al. (2020), Zhu et al. (2020)
Operational costs	<i>C</i> ₇	Min	An expense of an ALiB remanufacturing facility to maintain its production and fixed asset depreciation	Gu et al. (2018b), Tosarkani and Amin (2018), Ansari et al. (2019), Gong et al. (2019), Farahani et al. (2019), Ding et al. (2020), Rallo et al. (2020), Zhu et al. (2020)
Subsidy	C_8	Max	<u> </u>	Abdulrahman et al. (2015), Bhatia and Srivastava (2018), Song and Chu (2019), Tang et al. (2018, 2019), Çolak and Kaya (2020), Qiao and Su (2020), Zhu et al. (2020)
Environmental	MC_2			
Air pollution	C_9	Min	Emissions of CO ₂ , SO ₂ , and other air pollutants generated by ALiB remanufacturing and related processes	Jindal and Sangwan (2016), Tang et al. (2018, 2019), Su (2017), Das et al. (2019), Çolak and Kaya (2020), Rallo et al. (2020), Wang et al. (2020), Xiong et al. (2020), Das et al. (in press)
Eco-awareness	C_{10}	Max	An environmental awareness level of local consumers and willingness to buy remanufactured ALiBs	Wei et al. (2015), Gu et al. (2018b), Bhatia and Srivastava (2018), Chakraborty et al. (2019), Tang et al. (2019)
Eco-disturbance	C_{11}	Min	Physical, chemical, and biological changes in environmental cond. around a location	Hendrickson et al. (2015), Kafuku et al. (2016), Wang et al. (2019), Çolak and Kaya (2020), Scheller et al. (2021)
Legislation	C_{12}	Max	Rules for the second use, certification, and compatibility to legislation such as Directives 2006/66/EC and 2000/53/EC	Abdulrahman et al. (2015), Wei et al. (2015), Govindan et al. (2016), Ocampo et al. (2019), Alamerew and Brissaud (2020), Ansari et al. (2020), Scheller et al. (2021)

Table 1. (continued)

Criteria	Code	Type	Definition	Reference(s)
Social	MC_3			
Aesthetic nuisance	C_{13}	Min	Affected population around a location	Kafuku et al. (2016), Tang et al. (2018), Wang et al. (2019), Çolak and Kaya (2020)
Health & safety	C_{14}	Min	Local health and safety working condition	Hendrickson et al. (2015), Wang et al. (2019), Ansari et al. (2020), Hua et al. (2020), Rallo
			requirements for remanufacturing	et al. (2020), Loganathan et al. (2021)
Skilled workforce	C_{15}	Max	Availability of industry professionals and	Abdulrahman et al. (2015), Xia et al. (2015), Ansari et al. (2020), Hua et al. (2020), Çolak
			technical personnel for ALiB disassembly,	and Kaya (2020), Xiong et al. (2020)
			reassembly, and cell replacement	
Technical	MC_4			X .
Aftermarket service	C_{16}	Max	Availability of after-sale services for	Wei et al. (2015), Liu et al. (2016), Alamerew and Brissaud (2020)
			remanufactured ALiBs	
Information system	C_{17}	Max	Accessibility to the history of the first use	Xia et al. (2015), Tang et al. (2018), Chakraborty et al. (2019), Garg et al. (2020), Scheller
			(remaining useful life and state-of-health)	et al. (2021)
Infrastructure	C_{18}	Max	Routing and processing time uncertainty	Hendrickson et al. (2015), Xia et al. (2015), Ansari et al. (2019)
development			correlates with the development level of a	
			local infrastructure	
Remanufacturing	C_{19}	Max	Availability of a robust remanufacturing	Govindan et al. (2016), Su (2017), Ansari et al. (2019), Chakraborty et al. (2019),
supply chain			supply chain to provide a timely inflow	Alamerew and Brissaud (2020), Wang et al. (2020)
			and facilitate remanufacturing	
Resource	C_{20}	Max	The generated quantity of used ALiBs in a	Tian et al. (2017), Li et al. (2018), Chakraborty et al. (2019), Farahani et al. (2019),
accessibility			service zone of a remanufacturing facility	Ocampo et al. (2019), Tang et al. (2019), Zhang et al. (2020a), Scheller et al. (2021)

2.2. Multi-Criteria Decision-Making Approaches for Remanufacturing

Remanufacturing attracted a large interest in academic research in recent years. As a result, many MCDM approaches have been introduced for solving diverse remanufacturing problems. The state-of-the-art contributions are summarized in Table 2.

Subramoniam et al. (2013) prioritized automotive components remanufacturing (ACR) strategic factors based on an industry survey. Tian et al. (2014) identified the main key technology factors influencing the ACR industry. Zhu et al. (2014) examined the cause-effect relationships among implementation barriers for truck engine remanufacturing. Abdulrahman et al. (2015) investigated critical factors affecting remanufacturing practices in the Chinese auto-parts industry. Xia et al. (2015) analyzed and evaluated internal barriers in the implementation of remanufacturing in the automotive industry. Govindan et al. (2016) focused on evaluating critical barriers of the ACR industry in India. Ilgin (2017) studied the used product selection problem faced by third-party reverse logistics providers. Tian et al. (2017) investigated the main operation patterns of the ACR industry in China. Bhatia and Srivastava (2018) explored external barriers to remanufacturing electronic waste. Ansari et al. (2019) identified critical success factors for remanufacturing adoption in manufacturing organizations and prioritized related performance outcomes.

Recently, Ansari et al. (2020) presented a structural solution model to mitigate supply chain-related risks in organizations involved in manufacturing/remanufacturing activities. Ding et al. (2020) solved the part selection problem to improve the re-manufacturability of machine tools. Du et al. (2020) provided a simple quantitative method to determine remanufacturing values of heavy-duty machine tools. Zhang et al. (2020a) investigated the remanufacturability of a used boom cylinder of a concrete pump truck.

Table 2
 Summary of the available multi-criteria decision-making approaches for remanufacturing.

Author(s) and year	Research focus	GDM	Parameter	SA	CA	Method(s)	Applicat	tion	MC	SC	Alt.
			type				Country	Type	_		
Subramoniam et al. (2013)	ACR success factor evaluation	Yes	Deterministic	No	No	AHP	The U.S.	Real-life	9	-	-
Tian et al. (2014)	ACR technology indicator evaluation	No	Deterministic	No	No	DEMATEL, AHP	China	Real-life	3	15	-
Zhu et al. (2014)	Truck RSC barrier evaluation	Yes	Grey	Yes	No	DEMATEL	China	Real-life	2	19	-
Abdulrahman et al. (2015)	ACR practice selection	Yes	Deterministic	No	No	AHP	China	Real-life	5	16	3
Xia et al. (2015)	Automotive remanufacturing internal barriers	Yes	Grey	Yes	No	DEMATEL	China	Real-life	3	15	-
Govindan et al. (2016)	ACR barrier evaluation	Yes	Fuzzy	No	No	ISM, ANP	India	Real-life	4	20	-
Ilgin (2017)	Used product selection	No	Fuzzy	Yes	No	AHP, DES, TOPSIS	-	ΙE	5	-	3
Tian et al. (2017)	ACR provider selection	Yes	Fuzzy	Yes	No	AHP, GRA, TOPSIS	China	Real-life	3	9	3
Bhatia and Srivastava (2018)	Electronic remanufacturing barrier evaluation	Yes	Grey	Yes	No	DEMATEL	India	Real-life	10	-	-
Ansari et al. (2019)	Automotive RSC performance outcome selection	Yes	Fuzzy	Yes	No	AHP, TOPSIS	India	Real-life	6	32	16
Ansari et al. (2020)	Automotive RSC risk mitigation strategy selection	Yes	Fuzzy	Yes	No	SWARA, COPRAS	India	Real-life	3	24	12
Ding et al. (2020)	Machine tool guideway selection	Yes	Deterministic	Yes	Yes	AHP, TOPSIS	-	ΙE	3	20	8
Du et al. (2020)	Machine tool selection	No	Interval	No	No	AHP, SE	-	ΙE	7	-	3
Zhang et al. (2020a)	Machinery part remanufacturability evaluation	Yes	Interval, fuzzy	No	No	LCA, AHP	-	IE	3	8	-
Our study	ALiB remanufacturing facility location selection	Yes	T2NN	Yes	Yes	BWM, CODAS	Turkey	Real-life	4	20	6

Analytic Network Process: ANP; Analytical Hierarchy Process: AHP; Automobile Lithium-ion Battery: ALiB; Automotive Components Remanufacturing: ACR; Best-Worst Method: BWM; COmbinative Distance-based ASsessment: CODAS; Comparative Analysis: CA; COmplex PRoportional ASsessment: COPRAS; Decision Making Trial and Evaluation Laboratory: DEMATEL; Discrete Event Simulation: DES; Evaluation based on Distance from Average Solution: EDAS; Grey Relational Analysis: GRA; Group Decision-Making: GDM; Illustrative Example: IE; Interpretative Structural Modeling: ISM; Life Cycle Assessment: LCA; Main Criteria: MC; Remanufacturing Supply Chain: RSC; Sensitivity Analysis: SA; Shannon Entropy: SE; Stepwise Weight Assessment Ratio Analysis: SWARA; Sub-Criteria: SC; Technique for the Order Preference by

Similarity to Ideal Solution: TOPSIS; Type-2 Neutrosophic Number: T2NN.

2.3. Neutrosophic Number-Based Decision-Making Models

The available triangular, trapezoidal, bipolar, and T2NN-based decision-making models are comprehensively surveyed in Table 3.

Liang et al. (2017) analyzed indicators of business-to-consumer e-commerce websites to increase customer satisfaction. Abdel-Basset et al. (2018a) evaluated factors influencing the selection of supply chain management (SCM) suppliers. Abdel-Basset et al. (2018b) investigated the security estimation problem for SCM systems based on Internet of Things (IoT) technologies and assessed relevant criteria. Abdel-Basset et al. (2018c) solved the performance estimation problem to improve the quality of cloud services. Abdel-Basset et al. (2018d) considered factors that affect organizational performances to compare strategic plans. Abdel-Basset et al. (2018e) provided a multi-dimensional strategy to evaluate government websites.

Abdel-Basset et al. (2019a) focused on the project selection phase to determine the best fighter aircraft alternative. Abdel-Basset et al. (2019b) proposed T2NNs and applied this advanced type of neutrosophic technique to select the best supplier for importing cars. Nabeeh et al. (2019a) evaluated IoT influential factors in enterprise alternatives for using big data tools. Nabeeh et al. (2019b) investigated the personnel selection problem to enhance resource management in enterprises. Zaied et al. (2019) compared vertical machining centers to identify a suitable tool model.

Abdel-Basset et al. (2020a) solved the chief executive officer selection problem under a bipolar neutrosophic environment. Abdel-Basset et al. (2020b) analyzed which management properties should be developed to reinforce sustainable supply chain finance in the gas industry. Abdel-Basset et al. (2020c) focused on the transition difficulties of emerging enterprises with IoT technologies. Baušys et al. (2020) compared plots for residential construction under a neutrosophic environment. Liou et al. (2020) evaluated possible failure modes of new products in the electronics industry to help power supply manufacturers. Rahim et al. (2020) applied bipolar neutrosophic sets to solve the sustainable energy management problem. Yörükoğlu and Aydın (2020) evaluated smart containers to determine the most reliable and traceable solution for Industry 4.0 applications.

Journal Pre-proof

Recently, Abdel-Basset et al. (2021a) assessed sustainable bioenergy production technologies from the viewpoint of energy policymakers by using trapezoidal neutrosophic numbers. Abdel-Basset et al. (2021b) explored appropriate locations for offshore wind power stations under the neutrosophic environment to accommodate the lack of decision information and achieve benefits in coastal management. Abdel-Basset et al. (2021c) explored suitable sources of renewable energy by using triangular neutrosophic numbers to support energy investors. Abdel-Basset et al. (2021d) evaluated sustainable hydrogen production options under the neutrosophic theory. Hezam et al. (2021) prioritized groups for allocating coronavirus vaccines to obtain a timetable and guidelines. Nabeeh et al. (2021) evaluated the effectiveness of the green credit policy on the SCM in manufacturing companies.

2.4. Research Gaps

According to the literature review, the research gaps are as follows: a) This is the first work to determine the best ALiB remanufacturing facility location through the neutrosophic number-based decision-making model; b) The ALiB remanufacturing facility location selection problem is not addressed in the previous studies; c) No earlier work has determined criteria for locating ALiB remanufacturing facilities; d) The available deterministic, grey, and/or fuzzy MCDM approaches for remanufacturing could generate wrong facility location decisions since they are unable to account for high levels of vague, unreliable, and inexact remanufacturing-related information uncertainties; e) No previous research has utilized the BWM in the remanufacturing research area; f) The CODAS method has neither been extended under the T2NN environment nor been applied in the remanufacturing research area.

Table 3
Summary of the available neutrosophic number-based models.

Author(s) and year	Research focus	GDM	Parameter	SA	CA	Method(s)	Applicati	ion	MC SC Alt.		
·			type				Country	Type			
Liang et al. (2017)	Website quality indicator evaluation	Yes	TrNN	Yes	Yes	DEMATEL	-	IE	4	22 -	
Abdel-Basset et al. (2018a)	Supplier selection indicator evaluation	Yes	TrNN	No	No	DEMATEL	NP	Real-life	7		
Abdel-Basset et al. (2018b)	SCM security indicator evaluation	Yes	TNN	No	No	DEMATEL, AHP	-	ΙE	4	19 -	
Abdel-Basset et al. (2018c)	Cloud computing service evaluation	Yes	TNN	No	No	AHP	Egypt	Real-life	3	- 5	j
Abdel-Basset et al. (2018d)	Strategy selection	Yes	TNN	No	No	AHP, SWOT	NP	Real-life	4	13 4	ļ
Abdel-Basset et al. (2018e)	Website evaluation	Yes	TNN	No	Yes	VIKOR	-	IE	6	- 5	,
Abdel-Basset et al. (2019a)	Project selection	Yes	TrNN	No	No	DEMATEL, TOPSIS	-	ΙE	6	- 4	ļ
Abdel-Basset et al. (2019b)	Supplier selection	Yes	T2NN	No	No	TOPSIS	Egypt	Real-life	8	- 5	j
Nabeeh et al. (2019a)	IoT indicator evaluation	No	TNN	No	Yes	AHP	Egypt	Real-life	5	- 3	}
Nabeeh et al. (2019b)	Personnel selection	Yes	TNN	No	No	AHP, TOPSIS	Egypt	Real-life	3	- 5	j
Zaied et al. (2019)	Machine tool selection	Yes	TrNN	No	No	MOORA	Egypt	Real-life	4	- 4	ļ
Abdel-Basset et al. (2020a)	Personnel selection	Yes	BNN	Yes	Yes	ANP, TOPSIS	Egypt	Real-life	3	10 4	ļ
Abdel-Basset et al. (2020b)	Supply chain finance aspect evaluation	Yes	TNN	Yes	No	BWM, TOPSIS, TODIM	Egypt	Real-life	5	21 -	
Abdel-Basset et al. (2020c)	IoT transition barrier evaluation	Yes	TNN	No	No	AHP	Egypt	Real-life	6	- 4	ļ
Baušys et al. (2020)	Family house plot selection	Yes	TNN	No	No	SWARA, WASPAS	Lithuania	Real-life	6	- 9)
Liou et al. (2020)	Failure mode evaluation	Yes	TrNN	Yes	Yes	FMEA, BWM, WASPAS	Taiwan	Real-life	15	- 2	20
Rahim et al. (2020)	Sustainable energy selection	Yes	BNN	No	Yes	MABAC	Malaysia	Real-life	14	- 7	1
Yörükoğlu and Aydın (2020)	Smart container selection	Yes	TNN	Yes	No	TOPSIS	-	IE	7	- 3	3
Abdel-Basset et al. (2021a)	Production technology selection	Yes	TrNN	Yes	Yes	DEMATEL, EDAS	Egypt	Real-life	4	14 7	1
Abdel-Basset et al. (2021b)	Power station location selection	Yes	TrNN	Yes	Yes	AHP, PROMETHEE II	Egypt	Real-life	7	19 5	j
Abdel-Basset et al. (2021c)	Renewable energy system selection	Yes	TNN	Yes	Yes	AHP, VIKOR, TOPSIS	Egypt	Real-life	5	18 4	ļ.
Abdel-Basset et al. (2021d)	Hydrogen production option selection	Yes	TNN	No	Yes	AHP, COPRAS, EDAS	NP	Real-life	5	17 7	1
Hezam et al. (2021)	COVID-19 vaccine allocation	Yes	TNN			AHP, TOPSIS	NP	Real-life	4	15 6	;
Nabeeh et al. (2021)	Green credit rating evaluation	Yes	TNN	No		GRA, ANP, DEMATEL, TOPSIS	China	Real-life	5	- 9)
Our study	ALiB remanufacturing facility location selection	Yes	T2NN	Yes		BWM, CODAS	Turkey	Real-life	4	20 6	5

Analytic Network Process: ANP; Analytical Hierarchy Process: AHP; Automobile Lithium-ion Battery: ALiB; Best-Worst Method: BWM; Bipolar Neutrosophic Number: BNN; COmbinative Distance-based ASsessment: CODAS; Comparative Analysis: CA; COmplex PRoportional ASsessment: COPRAS; COronaVIirus Disease-2019: COVID-19; DEcision MAking Trial and Evaluation Laboratory: DEMATEL; Evaluation based on Distance from Average Solution: EDAS; Failure Mode and Effects Analysis: FMEA; Grey Relational Analysis: GRA; Group Decision-Making: GDM; Illustrative Example: IE; Internet of Things: IoT; Main Criteria: MC; Multi-Attributive Border Approximation area Comparison: MABAC; Multi-Objective Optimization by Ratio Analysis: MOORA; Not Provided: NP; Preference Ranking Organization METHod for Enrichment Evaluations: PROMETHEE; Sensitivity Analysis: SA; Step-wise Weight Assessment Ratio Analysis: SWARA; Strengths, Weaknesses, Opportunities, and Threats: SWOT; Sub-Criteria: SC; Supply Chain Management: SCM; Technique for the Order Preference by Similarity to Ideal Solution: TOPSIS; TOmada de Decisao Interativa Multicriterio: TODIM; Trapezoidal Neutrosophic Number: TrNN; Triangular Neutrosophic Number: TNN; Type-2 Neutrosophic Number: T2NN; VlšeKriterijumska Optimizacija i kompromisno Rešenje: VIKOR.

3. Problem Definition

220

235

236

- Turkey heavily relies on imported fossil fuels from other countries for its automobile 221 industry. There is a great motivation for Turkish authorities to replace fossil fuel vehicles with 222 223 EVs. ALiB is a major component of an EV, which provides the required energy storage due to 224 225 the superiority of high energy density, high output voltage, low self-discharge rate, and long 226 cycling life. ALiB remanufacturing can be seen as a critical issue due to the large number of 227 EVs that can be sold in Turkey. With the initial usage of EVs in Turkey, there is a definite need 228 to open an ALiB remanufacturing facility. Four experts from Turkish industries dealing with both energy storage and EVs are invited 229 to propose suitable locations for the construction of an ALiB remanufacturing facility as well 230 as make realistic and logical evaluations of these alternatives and the evaluation criteria. Expert 231 1, a female with more than seven years of experience, is one of the directors of a private energy 232 233 company which deals with fast-charging stations for EVs in Turkey. Expert 2, a male with almost 11 years of experience, and Expert 3, a male with five years of experience, are 234
- storage facility in Ankara.

 Six potential locations are identified as follows (Fig. 1): Gemlik/Bursa (A₁),

 Yunusemre/Manisa (A₂), Tuzla/Istanbul (A₃), Sincan/Ankara (A₄), Melikgazi/Kayseri (A₅), and

professionals in the relevant field and work in an ALiB production facility in Turkey. Expert

4, a male with three years of experience, is an energy management director from an energy

Seyitgazi/Eskisehir (A_6). These are the major potential locations that can be considered suitable

for the construction of an ALiB remanufacturing facility in Turkey.

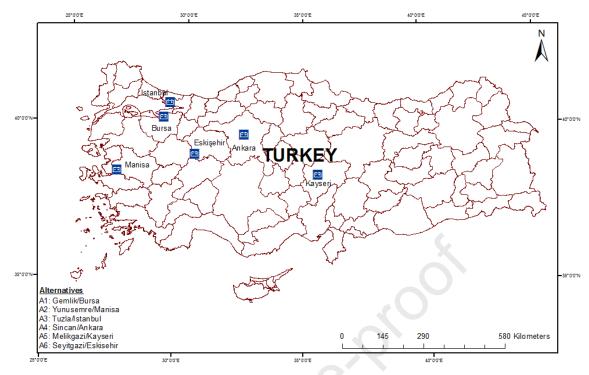


Fig. 1. The alternative locations for an ALiB remanufacturing facility in Turkey.

4. Methods

242 243

244

This section provides some preliminaries and introduces the integrated neutrosophic decision-making model for ALiB remanufacturing facility location selection.

247 4.1. Preliminaries

- Definition 1 (Karnik et al., 1999; Mendel and John, 2002; Das et al., 2020b). A type-2 fuzzy
- set (T2FS), denoted \tilde{E} , in the universe X is characterized by a type-2 membership function
- 250 $\mu_{\tilde{E}}(x, u)$, where $x \in X$ and $u \in J_x \subseteq [0, 1]$:

251
$$\tilde{E} = \left\{ \left((x, u), \mu_{\tilde{E}}(x, u) \right) \mid x \in X, u \in J_x \subseteq [0, 1] \right\},$$
 (1)

252 in which $0 \le \mu_{\tilde{E}}(x, u) \le 1$. T2FS \tilde{E} can also be expressed as:

253
$$\tilde{E} = \int_{x \in X} \int_{u \in J_x} \mu_{\tilde{E}}(x, u) / (x, u),$$
 (2)

- where $J_x \subseteq [0, 1]$, and \iint denotes union over all admissible x and u.
- Definition 2 (Ali and Smarandache, 2017; Smarandache, 2019). Let X be a space of points and
- let $x \in X$. A neutrosophic set A in X is characterized by a truth membership function T_A , an
- indeterminacy membership function I_A , and a falsity membership function F_A . $T_A(x)$, $I_A(x)$,
- and $F_A(x)$ are real standard or non-standard subsets of $]0^-, 1^+[$, and $T_A, I_A, F_A: X \rightarrow]0^-, 1^+[$.
- 259 The neutrosophic set can be represented as:

260
$$A = \left\{ \left\langle x, T_A(x), I_A(x), F_A(x) \right\rangle | x \in X \right\}. \tag{3}$$

There is no restriction on the sum of $T_A(x)$, $I_A(x)$, and $F_A(x)$, so:

262
$$0^- \le T_A(x) + I_A(x) + F_A(x) \le 3^+, \quad \forall x \in X.$$
 (4)

- Definition 3 (Abdel-Basset et al., 2019b). Consider Y as the limited universe of discourse and
- D[0, 1] as the set of all triangular neutrosophic sets on D[0, 1]. A type-2 neutrosophic number
- set (T2NNS) represented by \tilde{M} can be defined in Y as an object having the form:

266
$$\tilde{M} = \left\{ \left\langle y, \tilde{T}_{\tilde{M}}(y), \tilde{I}_{\tilde{M}}(y), \tilde{F}_{\tilde{M}}(y) \mid y \in Y \right\rangle \right\},$$
 (5)

where
$$\tilde{T}_{\tilde{M}}(y): Y \to D[0,1]$$
, $\tilde{I}_{\tilde{M}}(y): Y \to D[0,1]$, and $\tilde{F}_{\tilde{M}}(y): Y \to D[0,1]$. A T2NNS

$$268 \qquad \tilde{T}_{\tilde{M}}(y) = \left(T_{T_{\tilde{M}}}(y), T_{I_{\tilde{M}}}(y), T_{F_{\tilde{M}}}(y)\right), \qquad \tilde{I}_{\tilde{M}}(y) = \left(I_{T_{\tilde{M}}}(y), I_{I_{\tilde{M}}}(y), I_{F_{\tilde{M}}}(y)\right), \qquad \text{and}$$

269
$$\tilde{F}_{\tilde{M}}(y) = \left(F_{T_{\tilde{M}}}(y), F_{I_{\tilde{M}}}(y), F_{F_{\tilde{M}}}(y)\right)$$
, denote the truth, indeterminacy, and falsity

270 memberships of y in \tilde{M} , respectively. The membership parameters satisfy the condition:

271
$$0 \le \tilde{T}_{\tilde{M}}(y)^3 + \tilde{I}_{\tilde{M}}(y)^3 + \tilde{F}_{\tilde{M}}(y)^3 \le 3, \quad \forall y \in Y.$$
 (6)

For ease of simplicity, we consider
$$\tilde{M} = \left\langle \left(T_{T_{\tilde{M}}}(y), T_{I_{\tilde{M}}}(y), T_{F_{\tilde{M}}}(y)\right)\right\rangle$$

273
$$\left(I_{T_{\tilde{M}}}(y), I_{I_{\tilde{M}}}(y), I_{F_{\tilde{M}}}(y)\right), \left(F_{T_{\tilde{M}}}(y), F_{I_{\tilde{M}}}(y), F_{F_{\tilde{M}}}(y)\right)\right)$$
, as a T2NN.

274 **Definition 4** (Abdel-Basset et al., 2019b). Let
$$\tilde{M} = \left\langle \left(T_{T_{\tilde{M}}}(y), T_{I_{\tilde{M}}}(y), T_{F_{\tilde{M}}}(y)\right)\right\rangle$$

$$275 \qquad \left(I_{T_{\tilde{M}}}\left(y\right),I_{I_{\tilde{M}}}\left(y\right),I_{F_{\tilde{M}}}\left(y\right)\right),\left(F_{T_{\tilde{M}}}\left(y\right),F_{I_{\tilde{M}}}\left(y\right),F_{F_{\tilde{M}}}\left(y\right)\right)\right), \quad \tilde{M}_{1} = \left\langle \left(T_{T_{\tilde{M}_{1}}}\left(y\right),T_{I_{\tilde{M}_{1}}}\left(y\right),T_{F_{\tilde{M}_{1}}}\left(y\right)\right),T_{T_{\tilde{M}_{1}}}\left(y\right)\right), \quad \tilde{M}_{1} = \left\langle \left(T_{T_{\tilde{M}_{1}}}\left(y\right),T_{T_{\tilde{M}_{1}}}\left(y\right),T_{T_{\tilde{M}_{1}}}\left(y\right)\right)\right\rangle, \quad \tilde{M}_{1} = \left\langle \left(T_{T_{\tilde{M}_{1}}}\left(y\right),T_{T_{\tilde{M}_{1}}}\left(y\right)\right)\right\rangle, \quad \tilde{M}_{1} = \left\langle \left(T_{T_{\tilde{M}_{1}}}\left(y\right),T_{T_{\tilde{M}_{1}}}\left(y\right)\right)\right\rangle$$

$$276 \qquad \left(I_{T_{\tilde{M}_{1}}}(y),I_{I_{\tilde{M}_{1}}}(y),I_{F_{\tilde{M}_{1}}}(y)\right), \left(F_{T_{\tilde{M}_{1}}}(y),F_{I_{\tilde{M}_{1}}}(y),F_{F_{\tilde{M}_{1}}}(y)\right)\right), \text{ and } \tilde{M}_{2} = \left\langle \left(T_{T_{\tilde{M}_{2}}}(y),T_{I_{\tilde{M}_{2}}}(y),T_{F_{\tilde{M}_{2}}}(y)\right), T_{F_{\tilde{M}_{2}}}(y)\right), T_{\tilde{M}_{2}}(y)\right\rangle, T_{\tilde{M}_{2}}(y), T_{\tilde{M}$$

277
$$\left(I_{T_{\tilde{M}_{2}}}(y), I_{I_{\tilde{M}_{2}}}(y), I_{F_{\tilde{M}_{2}}}(y)\right), \left(F_{T_{\tilde{M}_{2}}}(y), F_{I_{\tilde{M}_{2}}}(y), F_{F_{\tilde{M}_{2}}}(y)\right)\right)$$
 be three T2NNs and $\lambda > 0$. Their

278 operations are defined as follows:

279 (a) Addition "⊕"

$$\tilde{M}_{1} \oplus \tilde{M}_{2} = \left\langle \left(T_{\tilde{M}_{1}}(y) + T_{\tilde{M}_{2}}(y) - T_{\tilde{M}_{1}}(y) \times T_{\tilde{M}_{2}}(y), T_{\tilde{M}_{1}}(y) + T_{\tilde{M}_{2}}(y) - T_{\tilde{M}_{1}}(y) \times T_{\tilde{M}_{2}}(y) \right) - T_{\tilde{M}_{1}}(y) \times T_{\tilde{M}_{2}}(y) - T_{\tilde{M}_{1}}(y) \times T_{\tilde{M}_{2}}(y) \right\rangle,$$

$$\left(I_{\tilde{M}_{1}}(y) \times I_{\tilde{M}_{2}}(y), I_{\tilde{M}_{1}}(y) \times I_{\tilde{M}_{2}}(y), I_{\tilde{F}_{\tilde{M}_{1}}}(y) \times I_{\tilde{F}_{\tilde{M}_{2}}}(y) \right),$$

$$\left(F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{2}}(y), F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{2}}(y), F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{2}}(y) \right),$$

$$\left(F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{2}}(y), F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{2}}(y), F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{2}}(y) \right),$$

$$\left(F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{2}}(y), F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{2}}(y) \right),$$

$$\left(F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{2}}(y), F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{1}}(y), F_{\tilde{M}_{1}}(y) \times F_{\tilde{M}_{2}}(y) \right),$$

281 (b) Multiplication "⊗"

$$\begin{split} \tilde{M}_{1} \otimes \tilde{M}_{2} = & \left\langle \left(T_{T_{\tilde{M}_{1}}}(y) \times T_{T_{\tilde{M}_{2}}}(y), T_{I_{\tilde{M}_{1}}}(y) \times T_{I_{\tilde{M}_{2}}}(y), T_{F_{\tilde{M}_{1}}}(y) \times T_{F_{\tilde{M}_{2}}}(y) \right), \\ & \left(T_{T_{\tilde{M}_{1}}}(y) + T_{T_{\tilde{M}_{2}}}(y) - T_{T_{\tilde{M}_{1}}}(y) \times T_{T_{\tilde{M}_{2}}}(y), T_{I_{\tilde{M}_{1}}}(y) + T_{I_{\tilde{M}_{2}}}(y) \right) \\ - T_{I_{\tilde{M}_{1}}}(y) \times T_{I_{\tilde{M}_{2}}}(y), T_{F_{\tilde{M}_{1}}}(y) + T_{F_{\tilde{M}_{2}}}(y) - T_{F_{\tilde{M}_{1}}}(y) \times T_{F_{\tilde{M}_{2}}}(y) \right), \\ & \left(T_{T_{\tilde{M}_{1}}}(y) + T_{T_{\tilde{M}_{2}}}(y) - T_{T_{\tilde{M}_{1}}}(y) \times T_{T_{\tilde{M}_{2}}}(y), T_{I_{\tilde{M}_{1}}}(y) + T_{I_{\tilde{M}_{2}}}(y) - T_{I_{\tilde{M}_{1}}}(y) \times T_{I_{\tilde{M}_{2}}}(y) \right) \right\rangle, \end{split}$$

283 (c) Scalar multiplication

$$\lambda \tilde{M} = \left\langle \left(1 - \left(1 - T_{I_{\tilde{M}}} \left(y \right) \right)^{\lambda}, 1 - \left(1 - T_{I_{\tilde{M}}} \left(y \right) \right)^{\lambda}, 1 - \left(1 - T_{F_{\tilde{M}}} \left(y \right) \right)^{\lambda} \right),$$

$$\left(\left(I_{T_{\tilde{M}}} \left(y \right) \right)^{\lambda}, \left(I_{I_{\tilde{M}}} \left(y \right) \right)^{\lambda}, \left(I_{F_{\tilde{M}}} \left(y \right) \right)^{\lambda} \right),$$

$$\left(\left(F_{T_{\tilde{M}}} \left(y \right) \right)^{\lambda}, \left(F_{I_{\tilde{M}}} \left(y \right) \right)^{\lambda}, \left(F_{F_{\tilde{M}}} \left(y \right) \right)^{\lambda} \right) \right\rangle,$$

$$(9)$$

285 (d) Power

$$\tilde{M}^{\lambda} = \left\langle \left(\left(T_{I_{\tilde{M}}} \left(y \right) \right)^{\lambda}, \left(T_{I_{\tilde{M}}} \left(y \right) \right)^{\lambda}, \left(T_{F_{\tilde{M}}} \left(y \right) \right)^{\lambda} \right), \\
\left(1 - \left(1 - I_{I_{\tilde{M}}} \left(y \right) \right)^{\lambda}, 1 - \left(1 - I_{I_{\tilde{M}}} \left(y \right) \right)^{\lambda}, 1 - \left(1 - I_{F_{\tilde{M}}} \left(y \right) \right)^{\lambda} \right), \\
\left(1 - \left(1 - F_{I_{\tilde{M}}} \left(y \right) \right)^{\lambda}, 1 - \left(1 - F_{I_{\tilde{M}}} \left(y \right) \right)^{\lambda}, 1 - \left(1 - F_{F_{\tilde{M}}} \left(y \right) \right)^{\lambda} \right) \right\rangle.$$
(10)

Definition 5 (Abdel-Basset et al., 2019b). Suppose that $\tilde{M}_{l} = \left\langle \left(T_{T_{\tilde{M}_{l}}}(y), T_{I_{\tilde{M}_{l}}}(y), T_{F_{\tilde{M}_{l}}}(y)\right)\right\rangle$

288
$$\left(I_{T_{\tilde{M}_{l}}}(y), I_{I_{\tilde{M}_{l}}}(y), I_{F_{\tilde{M}_{l}}}(y)\right), \left(F_{T_{\tilde{M}_{l}}}(y), F_{I_{\tilde{M}_{l}}}(y), F_{F_{\tilde{M}_{l}}}(y)\right) \mid (l=1, ..., p) \text{ is a collection of }$$

- T2NNs, and $\gamma = (\gamma_1, ..., \gamma_p)^T$ be the weight vector of them, with $\gamma \in [0, 1]$ and $\sum_{l=1}^p \gamma_l = 1$. A type-
- 290 2 neutrosophic number weighted averaging (T2NNWA) operator is defined as follows:

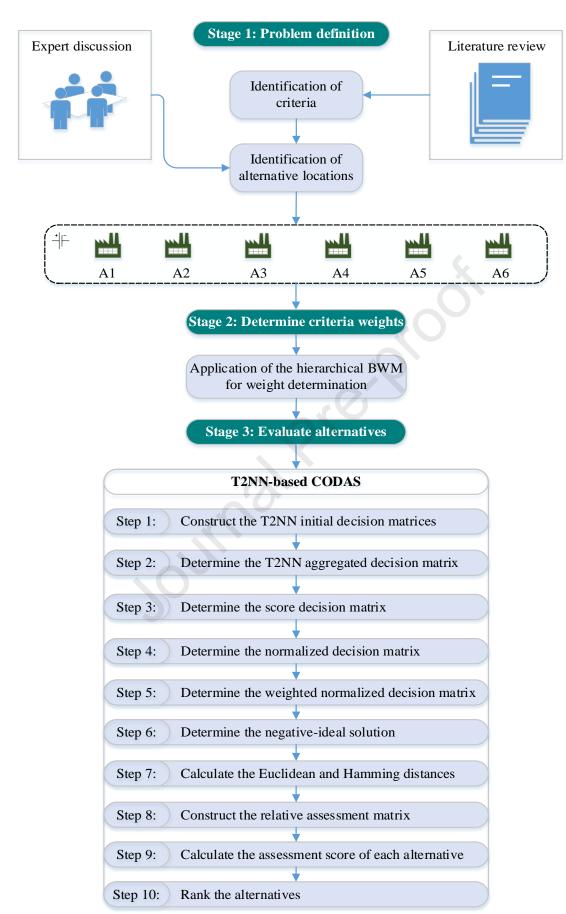
$$T2NNWA_{\gamma}(\tilde{M}_{1},...,\tilde{M}_{l},...,\tilde{M}_{p}) = \gamma_{1}\tilde{M}_{1} \oplus \cdots \oplus \gamma_{l}\tilde{M}_{l} \oplus \cdots \oplus \gamma_{p}\tilde{M}_{p} = \bigoplus_{l=1}^{p} \gamma_{l}\tilde{M}_{l}$$

$$= \left\langle \left(1 - \prod_{l=1}^{p} \left(1 - T_{\tilde{M}_{l}}(y)\right)^{\gamma_{l}}, 1 - \prod_{l=1}^{p} \left(1 - T_{\tilde{M}_{l}}(y)\right)^{\gamma_{l}}, 1 - \prod_{l=1}^{p} \left(1 - T_{\tilde{M}_{l}}(y)\right)^{\gamma_{l}}\right),$$

$$= \left\langle \left(\prod_{l=1}^{p} \left(I_{T_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}, \prod_{l=1}^{p} \left(I_{I_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}, \prod_{l=1}^{p} \left(I_{F_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}\right),$$

$$= \left(\prod_{l=1}^{p} \left(F_{T_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}, \prod_{l=1}^{p} \left(F_{I_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}, \prod_{l=1}^{p} \left(F_{F_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}\right),$$

$$= \left(\prod_{l=1}^{p} \left(F_{T_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}, \prod_{l=1}^{p} \left(F_{I_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}, \prod_{l=1}^{p} \left(F_{F_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}\right),$$


$$= \left(\prod_{l=1}^{p} \left(F_{T_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}, \prod_{l=1}^{p} \left(F_{I_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}, \prod_{l=1}^{p} \left(F_{F_{\tilde{M}_{l}}}(y)\right)^{\gamma_{l}}\right),$$

- 292 **Definition 6** (Abdel-Basset et al., 2019b). Let $\tilde{M} = \left\langle \left(T_{T_{\tilde{M}}}(y), T_{I_{\tilde{M}}}(y), T_{F_{\tilde{M}}}(y)\right), T_{F_{\tilde{M}}}(y)\right\rangle$
- 293 $\left(I_{T_{\tilde{M}}}\left(y\right),I_{I_{\tilde{M}}}\left(y\right),I_{F_{\tilde{M}}}\left(y\right)\right),\left(F_{T_{\tilde{M}}}\left(y\right),F_{I_{\tilde{M}}}\left(y\right),F_{F_{\tilde{M}}}\left(y\right)\right)\right)$ be a T2NN. The score function of
- M is defined as follows:

$$S(\tilde{M}) = \frac{1}{12} \left\langle 8 + \left(T_{\tilde{M}}(y) + 2 \left(T_{\tilde{M}}(y) \right) + T_{\tilde{F}_{\tilde{M}}}(y) \right) - \left(I_{\tilde{M}}(y) + 2 \left(I_{\tilde{M}}(y) \right) + I_{\tilde{F}_{\tilde{M}}}(y) \right) - \left(F_{\tilde{M}}(y) + 2 \left(F_{\tilde{M}}(y) \right) + F_{\tilde{M}}(y) \right) \right\rangle.$$

$$(12)$$

- 296 4.2. The Integrated Neutrosophic Decision-Making Model for ALiB Remanufacturing
- 297 Facility Location Selection
- The flowchart of the integrated neutrosophic decision-making model is presented in Fig. 2.
- 299 The introduced methodological framework for an ALiB remanufacturing facility location
- 300 selection involves three stages. In the first stage, the systematic literature review identifies
- 301 evaluation criteria and relevant experts propose suitable locations for the construction of an
- 302 ALiB remanufacturing facility. In the second stage, the hierarchical BWM determines optimal
- 303 criteria weights. In the last stage, the T2NN-based CODAS method orders ALiB
- remanufacturing facility locations.

Fig. 2. The flowchart of the proposed integrated neutrosophic decision-making model for ALiB remanufacturing facility location selection.

4.2.1. Hierarchical Best-Worst Method

308

309 Rezaei (2015) developed the BWM as an optimization-based weight determination tool for complicated decision-making problems. Since its development, the BWM has attracted many 310 researchers from different fields due to its high reliability and preciseness to determine optimal 311 312 weight coefficient values. Previously, the BWM has been used for criteria weight determination in construction management (Maghsoodi et al., 2020), energy management (van 313 de Kaa et al., 2019; Mousavi-Nasab and Sotoudeh-Anvari, 2020), environmental engineering 314 (Torkayesh et al., 2021a), healthcare management (Yazdani et al., 2020), logistics (Gupta and 315 316 Barua, 2017; Ecer and Pamucar, 2020), and urban planning (Torkayesh et al., 2021b). Two main reasons that BWM is selected to determine the optimal weight coefficient values of the 317 locating criteria are related to the high reliability of the BWM in comparison to other methods 318 319 such as AHP or SWARA, and also the fact that no study in the remanufacturing field has used it before. Due to the hierarchical nature of the criteria in this research, we adopted the 320 hierarchical form of the BWM, which enabled us to determine local weights of the sub-criteria 321 and finally calculate global weight coefficient values by using weights of the main criteria. 322

- The systematic literature review identifies a finite set of location selection criteria as $C=\{C_1, ..., C_i, ..., C_n\}$ ($n\geq 2$). The hierarchical BWM has the following steps:
- 324 $C=\{C_1, ..., C_j, ..., C_n\}$ ($n\geq 2$). The hierarchical BWM has the following steps 325 *Step 1:* Experts identify the best and the worst location selection criteria.
- 326 Step 2: All criteria are evaluated through a pairwise evaluation. The experts select the
- 327 preference of the best criterion over others using a nine-point scale, where nine represents the
- 328 highest preference and one represents the lowest preference. The comparison outcome is a
- vector $\Pi_B = (\pi_{B1}, ..., \pi_{Bj}, ..., \pi_{Bn})$, called the Best-to-others vector, where π_{Bj} represents the
- preference of the best criterion C_B over the criterion C_j , and $\pi_{BB} = 1$.
- 331 Step 3: The experts continue the same process for the worst criterion. Each expert does a
- pairwise comparison between the other criteria and the worst criterion. Final results are shown
- as a vector $\Pi_W = (\pi_{1W}, ..., \pi_{jW}, ..., \pi_{nW})^T$, labeled as the Others-to-worst vector, where
- 334 π_{iW} represents the preference of the criterion C_i over the worst criterion C_W , and $\pi_{WW} = 1$.
- 335 Step 4: Optimal weights of the criteria for locating ALiB remanufacturing facilities are
- calculated as $(\omega_1^*,...,\omega_j^*,...,\omega_n^*)$. For each pair of ω_B/ω_j and ω_j/ω_W an optimal weight has
- to meet the requirement of $\omega_B/\omega_j = \pi_{Bj}$ and $\omega_j/\omega_W = \pi_{jW}$, respectively. To satisfy these
- equations, the maximum absolute differences $|\omega_B/\omega_j \pi_{Bj}|$ and $|\omega_j/\omega_W \pi_{jW}|$ need to be

minimized for all criteria. The BWM model can be formulated considering the non-negativity features and sum condition of the criteria weights as follows:

$$\min \max_{1 \le j \le n} \left\{ \left| \frac{\omega_B}{\omega_j} - \pi_{Bj} \right|, \left| \frac{\omega_j}{\omega_W} - \pi_{jW} \right| \right\}$$

$$s.t. \begin{cases} \sum_{j=1}^{n} \omega_j = 1 \\ \omega_j \ge 0, \ \forall j = 1, ..., n. \end{cases}$$
(13)

This model can be reformulated as:

 $\min \xi$

$$\begin{vmatrix}
\frac{\omega_{B}}{\omega_{j}} - \pi_{Bj} \\
\frac{\omega_{j}}{\omega_{j}} - \pi_{jW}
\end{vmatrix} \leq \xi, \quad \forall j = 1, ..., n$$

$$\begin{vmatrix}
\frac{\omega_{j}}{\omega_{W}} - \pi_{jW} \\
\frac{\Sigma}{\omega_{j}} & 0
\end{vmatrix} \leq \xi, \quad \forall j = 1, ..., n$$

$$\begin{vmatrix}
\frac{n}{j} & \omega_{j} & 0 \\
\frac{j} & 0
\end{vmatrix} = 1$$

$$\frac{m}{j} \geq 0, \quad \forall j = 1, ..., n.$$
(14)

Results obtained from model (14) have to be checked as defined by Rezaei (2015). The consistency ratio (CR) can be calculated by using ξ^* and the corresponding consistency index (CI) from Table 4 as follows:

$$347 CR = \frac{\xi^*}{CI}. (15)$$

Table 4

351

352

353

354

355

349 BWM consistency index.

π_{BW}	1	2	3	4	5	6	7	8	9
Consistency index	0.00	0.44	1.00	1.63	2.30	3.00	3.73	4.47	5.23

350 4.2.2. Type-2 Neutrosophic Number-Based CODAS Method

The invited experts $D=\{D_1, ..., D_e, ..., D_k\}$ ($k\geq 2$) propose a finite set of suitable locations for the construction of an ALiB remanufacturing facility as $A=\{A_1, ..., A_i, ..., A_m\}$ ($m\geq 2$). In this study, the CODAS method is extended under the T2NN environment to order ALiB remanufacturing facility locations. The steps of the introduced T2NN-based CODAS method are given in the following:

Step 1: Construct the T2NN initial decision matrices $\tilde{\Psi}^e = [\tilde{\psi}_{ij}^e]_{m \times n}$: 356

$$\begin{array}{c}
C_{1} & \cdots & C_{n} \\
\begin{pmatrix}
T_{T_{\tilde{\psi}_{11}^{e}}}(y), T_{I_{\tilde{\psi}_{11}^{e}}}(y), T_{F_{\tilde{\psi}_{11}^{e}}}(y), \\
V_{\tilde{\psi}_{11}}(y), I_{I_{\tilde{\psi}_{11}^{e}}}(y), I_{F_{\tilde{\psi}_{11}^{e}}}(y), \\
\begin{pmatrix}
I_{T_{\tilde{\psi}_{11}^{e}}}(y), I_{I_{\tilde{\psi}_{11}^{e}}}(y), I_{F_{\tilde{\psi}_{11}^{e}}}(y), \\
V_{\tilde{\psi}_{11}^{e}}(y), I_{I_{\tilde{\psi}_{11}^{e}}}(y), I_{I_{\tilde{\psi}_{11}^{e}}}(y), \\
V_{\tilde{\psi}_{11}^{e}}(y), I_{I_{\tilde{\psi}_{11}^{e}}}(y), I_{F_{\tilde{\psi}_{11}^{e}}}(y), \\
V_{\tilde{\psi}_{11}^{e}}(y), I_{I_{\tilde{\psi}_{11}^{e}}}(y), I_{I_{\tilde{\psi}_{11}^{e}}}(y), \\
V_{\tilde{\psi}_{11}^{e}}(y), I_{\tilde{\psi}_{11}^{e}}(y), I_{\tilde{\psi}_{11}^{e}}(y), \\
V_{\tilde{\psi}_{11}^{e}}(y), V_{\tilde{\psi}_{11}^{e}}($$

357 e = 1, ..., k,

359

360

361

362

363

366

$$\text{358} \quad \text{where } \tilde{\psi}_{ij}^e = \left\langle \left(T_{T_{\tilde{\psi}_{ij}^e}}(y), T_{I_{\tilde{\psi}_{ij}^e}}(y), T_{F_{\tilde{\psi}_{ij}^e}}(y) \right), \left(I_{T_{\tilde{\psi}_{ij}^e}}(y), I_{I_{\tilde{\psi}_{ij}^e}}(y), I_{F_{\tilde{\psi}_{ij}^e}}(y) \right), \left(F_{T_{\tilde{\psi}_{ij}^e}}(y), F_{I_{\tilde{\psi}_{ij}^e}}(y), F_{F_{\tilde{\psi}_{ij}^e}}(y) \right) \right\rangle, \left(F_{T_{\tilde{\psi}_{ij}^e}}(y), F_{I_{\tilde{\psi}_{ij}^e}}(y), F_{I_{\tilde{\psi}_{ij}^e}}(y), F_{I_{\tilde{\psi}_{ij}^e}}(y) \right) \right\rangle, \left(F_{T_{\tilde{\psi}_{ij}^e}}(y), F_{I_{\tilde{\psi}_{ij}^e}}(y), F_{I_{\tilde$$

(i=1, ..., m; j=1, ..., n; e=1, ..., k) is a T2NN that represents the evaluation of the alternative A_i with respect to the location selection criterion C_i given by the invited expert D_e . The initial decision matrices are structured by using a T2NN linguistic scale. The seven-point T2NN linguistic scale presented in Table 5 can be used to present alternative evaluation preferences of the experts.

364 Table 5 365 T2NN linguistic variables for evaluating suitable locations for an ALiB remanufacturing facility.

Linguistic variable	Type-2 neutrosophic number
Very Bad (VB)	<(0.20, 0.20, 0.10), (0.65, 0.80, 0.85), (0.45, 0.80, 0.70)>
Bad (B)	<(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>
Medium Bad (MB)	<(0.50, 0.30, 0.50), (0.50, 0.35, 0.45), (0.45, 0.30, 0.60)>
Medium (M)	<(0.40, 0.45, 0.50), (0.40, 0.45, 0.50), (0.35, 0.40, 0.45)>
Medium Good (MG)	<(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>
Good (G)	<(0.70, 0.75, 0.80), (0.15, 0.20, 0.25), (0.10, 0.15, 0.20)>
Very Good (VG)	<(0.95, 0.90, 0.95), (0.10, 0.10, 0.05), (0.05, 0.05, 0.05)>

Step 2: Determine the T2NN aggregated decision matrix $\tilde{Z} = [\tilde{z}_{ij}]_{m \times n}$:

$$\tilde{z}_{ij} = T2NNWA_{\delta}(\tilde{\psi}_{ij}^{1}, ..., \tilde{\psi}_{ij}^{e}, ..., \tilde{\psi}_{ij}^{e}) = \bigoplus_{e=1}^{k} \delta_{e} \tilde{\psi}_{ij}^{e}$$

$$= \left\langle \left(1 - \prod_{e=1}^{k} \left(1 - T_{T_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, 1 - \prod_{e=1}^{k} \left(1 - T_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, 1 - \prod_{e=1}^{k} \left(1 - T_{F_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}\right),$$

$$\left(\prod_{e=1}^{k} \left(I_{T_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(I_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(I_{F_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}\right),$$

$$\left(\prod_{e=1}^{k} \left(F_{T_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{F_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}\right),$$

$$\left(\prod_{e=1}^{k} \left(F_{T_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{F_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}\right),$$

$$\left(\prod_{e=1}^{k} \left(F_{T_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{F_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}\right),$$

$$\left(\prod_{e=1}^{k} \left(F_{T_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}\right),$$

$$\left(\prod_{e=1}^{k} \left(F_{T_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}\right),$$

$$\left(\prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}\right),$$

$$\left(\prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}, \prod_{e=1}^{k} \left(F_{I_{\tilde{\psi}_{ij}^{e}}}(y)\right)^{\delta_{e}}\right),$$

368 where the aggregation is determined by applying the T2NNWA operator (Definition 5),

$$369 \qquad \tilde{z}_{ij} = \left\langle \left(T_{T_{\tilde{z}_{ij}}}(y), T_{I_{\tilde{z}_{ij}}}(y), T_{F_{\tilde{z}_{ij}}}(y)\right), \left(I_{T_{\tilde{z}_{ij}}}(y), I_{I_{\tilde{z}_{ij}}}(y), I_{F_{\tilde{z}_{ij}}}(y)\right), \left(F_{T_{\tilde{z}_{ij}}}(y), F_{I_{\tilde{z}_{ij}}}(y), F_{F_{\tilde{z}_{ij}}}(y)\right) \right\rangle$$

- is the T2NN aggregated evaluation of the alternative A_i with respect to the location selection
- criterion C_j given by the experts, and $\delta = (\delta_1, ..., \delta_e, ..., \delta_k)^T$ is the importance vector of the

invited experts, with
$$\delta_e \in [0, 1]$$
 $(e=1, ..., k)$, and $\sum_{e=1}^k \delta_e = 1$.

373 Step 3: Determine the score decision matrix $\Theta = [S(\tilde{z}_{ij})]_{m \times n}$:

$$S(\tilde{z}_{ij}) = \frac{1}{12} \left\langle 8 + \left(T_{\tilde{z}_{ij}}(y) + 2 \left(T_{I_{\tilde{z}_{ij}}}(y) \right) + T_{F_{\tilde{z}_{ij}}}(y) \right) - \left(I_{T_{\tilde{z}_{ij}}}(y) + 2 \left(I_{I_{\tilde{z}_{ij}}}(y) \right) + I_{F_{\tilde{z}_{ij}}}(y) \right) - \left(F_{T_{\tilde{z}_{ij}}}(y) + 2 \left(F_{I_{\tilde{z}_{ij}}}(y) \right) + F_{F_{\tilde{z}_{ij}}}(y) \right) + F_{F_{\tilde{z}_{ij}}}(y) \right), i = 1, ..., m; j = 1, ..., n.$$

$$(18)$$

- where $S(\tilde{z}_{ij})$ represents the score function of the T2NN aggregated evaluation of the alternative
- 376 A_i with respect to the location selection criterion C_i given by the experts.
- 377 Step 4: Determine the normalized decision matrix $R = [r_{ij}]_{m \times n}$:

378
$$r_{ij} = \begin{cases} \frac{S(\tilde{z}_{ij})}{\max S(\tilde{z}_{ij})} | C_j \in \mathbb{C}^+ \\ \frac{1 \le t \le m}{\min S(\tilde{z}_{ij})} \\ \frac{1 \le t \le m}{S(\tilde{z}_{ij})} | C_j \in \mathbb{C}^- \end{cases} , i = 1, ..., m; j = 1, ..., n,$$

$$(19)$$

where r_{ij} denotes a normalized evaluation of the alternative A_i with respect to the location

selection criterion C_j given by the experts, $C^+ \subseteq C$ is the set of benefit evaluation criteria,

- 381 $C^- \subseteq C$ is the set of cost evaluation criteria, and $C^+ \cup C^- = C$.
- Step 5: Determine the weighted normalized decision matrix $G = [g_{ij}]_{m \times n}$:

383
$$g_{ij} = \omega_i^* r_{ij}, i = 1, ..., m; j = 1, ..., n,$$
 (20)

- where g_{ij} denotes a weighted normalized evaluation of the alternative A_i with respect to the
- location selection criterion C_i given by the experts.
- Step 6: Determine the negative-ideal solution $O = [o_i]_{1 \times n}$:

387
$$o_j = \min_{1 \le i \le m} p_{ij}, \ j = 1, ..., n,$$
 (21)

- where o_j represents a minimum value of the alternatives with respect to the location selection
- criterion C_i given by the experts.
- 390 Step 7: Calculate the Euclidean and Hamming distances of alternatives from the negative-
- 391 ideal solution.
- 392 (i) The Euclidean distance:

393
$$ED_i = \sqrt{\sum_{j=1}^{n} (g_{ij} - o_j)^2}, i = 1, ..., m,$$
 (22)

394 (*ii*) The Hamming distance:

395
$$HD_i = \sum_{j=1}^{n} |g_{ij} - o_j|, i = 1, ..., m.$$
 (23)

Step 8: Construct the relative assessment matrix $V = [v_{it}]_{m \times m}$:

397
$$v_{it} = ED_i - ED_t + \Phi_{it} (ED_i - ED_t) \cdot (HD_i - HD_t), i, t = 1, ..., m,$$
 (24)

- where Φ is a threshold function to recognize the equality of Euclidean distance measures of
- two alternative locations for an ALiB remanufacturing facility. It is defined as follows:

400
$$\Phi_{it}(ED_i - ED_t) = \begin{cases} 1 \mid \phi \le |ED_i - ED_t| \\ 0 \mid \phi > |ED_i - ED_t| \end{cases}, i, t = 1, ..., m; \phi \ge 0,$$
 (25)

- 401 where ϕ is the threshold parameter.
- 402 Step 9: Calculate the assessment score of each alternative:

403
$$\rho_i = \sum_{t=1}^m v_{it}, \ i = 1, ..., m.$$
 (26)

- where ρ_i represents the assessment scores of the alternative A_i .
- 405 Step 10: Rank the alternative locations for an ALiB remanufacturing facility according to
- 406 the decreasing values of assessment scores. The highest score is the best location.

5. Results and Discussion

In this section, the experimental results of proposed model, comparative analysis, and sensitivity analysis are presented.

5.1. Results of the Hierarchical BWM

Four experts from the EV and energy storage industries participated in the case study. This sub-section presents the results of the criteria weight determination process.

Firstly, the experts are asked to identify the best and worst main criteria. Weights of the main criteria are calculated based on the opinions of each expert. Then, an aggregated weight of each main criteria is calculated. Table 6 represents the details of this step. As shown in this table, three out of four experts consider the economic criterion (MC_1) as the most important and the social criterion (MC_3) as the worst. Results show the following order of importance $MC_1>MC_4>MC_2>MC_3$.

Table 6420 Results of the hierarchical BWM for the main criteria.

Ermont	Main criteria	anlantiam	Vector		Main criteria							
Expert	Main criteri	a selection	vector	MC_1	MC_2	MC_3	MC_4					
	Best	MC_1	Best-to-others	1	6	9	2					
Evenout 1	Worst	MC_3	Others-to-worst	9	4	1	7					
Expert 1 -		Weight		0.5177	0.1064	0.0567	0.3191					
		Ksi*			0.1	206						
	Best	MC_1	Best-to-others	1	5	8	3					
Evmont 2 -	Worst	MC_3	Others-to-worst	8	5	1	7					
Expert 2 -		Weight		0.5687	0.1416	0.0536	0.2361					
		Ksi*			0.1	395						
	Best	MC_4	Best-to-others	2	3	7	1					
Evmont 2 -	Worst	MC_3	Others-to-worst	7	5	1	6					
Expert 3 -		Weight		0.2885	0.1923	0.0577	0.4615					
		Ksi*			0.1	154						
	Best	MC_1	Best-to-others	1	7	5	3					
Europet 4 -	Worst	MC_3	Others-to-worst	5	3	1	4					
Expert 4 -		Weight		0.5719	0.1031	0.0844	0.2406					
		Ksi*			0.1	500						
	Aggre	gated weight	0.4867	0.1359	0.0631	0.3143						

Secondly, local weights of the criteria are calculated within each main criteria group and aggregated. Then, global aggregated weights are obtained by multiplying the aggregated weights of the main criteria (Table 6) with the aggregated local weights of the criteria. Tables A.1–A.4 (Appendix) presents the hierarchical BWM operations and results for the economic, environmental, social, and technical criteria.

5.2. Results of the T2NN-CODAS Method

Step 1: The six alternative locations with respect to twenty criteria are evaluated by four experts by using T2NN linguistic variables given in Table 5. The linguistic evaluations of the

Journal Pre-proof

- 429 ALiB remanufacturing facility locations are presented in Table 7. The T2NN initial decision
- matrices are constructed based on the experts' input and provided in Table A.5 (Appendix).

Table 7
 Experts' evaluations of the locations for an ALiB remanufacturing facility with respect to the criteria.

A 14 ann a 45 ma	E									•	Cri	terion									
Alternative	Expert	C_1	C_2	C_3	C_4	C_5	C_6	<i>C</i> ₇	C_8	<i>C</i> ₉	C_{10}	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}	C_{16}	C_{17}	C_{18}	C_{19}	C_{20}
	E_1	VB	В	VB	VB	VG	В	VB	VG	VB	VG	VB	VG	VB	VB	VG	VG	G	VG	VG	VG
A ₁ : Gemlik/Bursa	E_2	VB	VB	В	VB	G	VB	VB	VG	VB	VG	VB	VG	VB	VB	VG	VG	VG	G	VG	VG
A]. Gellink/Dursa	E_3	VB	В	MB	В	VG	MB	VB	VG	VB	G	MB	VG	В	VB	VG	G	MG	VG	G	VG
	E_4	VB	В	В	VB	VG	В	MB	VG	MB	MG	VB	VG	В	VB	G	VG	MG	G	VG	G
	E_1	M	MB	M	MG	MG	MG	MB	G	В	G	G	MG	MG	M	MG	MG	MG	MG	M	MB
A ₂ : Yunusemre/Manisa	E_2	MG	M	MB	M	MG	M	MG	MG	M	G	MG	MG	M	MG	MG	G	G	G	MG	MG
712. I dilusciii c/iviaiiisa	E_3	В	MB	M	MG	MG	MG	В	G	В	MG	MB	MG	MB	M	MG	M	M	В	MG	M
	E_4	В	MG	M	MG	MG	G	M	M	В	В	G	M	VB	В	MB	MG	M	MG	В	M
	E_1	MB	MB	MB	В	G	M	MB	MG	MB	G	MG	G	M	MB	G	MG	G	M	G	MG
A ₃ : Tuzla/Istanbul	E_2	В	MB	В	MB	VG	MB	MB	G	В	G	M	G	В	MB	MG	G	VG	VG	MG	G
713. Tuzia/Istanoui	E_3	M	MG	MB	M	G	M	MB	VG	G	M	VG	G	MG	G	M	G	MB	MG	VG	G
	E_4	M	VG	VG	MB	G	M	MG	VG	M	MG	MG	M	VG	В	MG	G	M	G	G	MG
	E_1	M	MG	MB	G	MG	G	G	В	В	M	M	M	G	G	MB	M	MB	MG	M	M
A ₄ : Sincan/Ankara	E_2	MG	MG	VG	MG	M	G	MG	M	MG	M	G	В	MG	MG	M	MG	MG	MG	MG	MG
714. Sincum / mkara	E_3	MB	MG	M	MB	M	MG	M	M	M	MG	M	G	G	MB	VG	MB	В	M	M	MG
	E_4	G	M	MG	M	M	MG	G	G	G	M	G	MG	MG	M	M	В	MB	MB	MG	VB
	E_1	G	MG	M	G	MG	G	MG	В	G	M	G	M	VG	G	MB	В	В	В	VB	В
A . Malikaazi/Vayaazi	E_2	G	VG	VG	G	M	VG	VG	MB	VG	MB	VG	В	G	VG	VB	MB	MB	VB	В	В
A ₅ : Melikgazi/Kayseri	E_3	MG	MB	MG	MB	В	G	MG	MB	MB	MB	G	M	MG	M	M	В	G	G	MB	В
	E_4	MB	MG	MB	M	MG	G	VG	G	MG	M	MB	В	M	MB	MG	В	В	MB	M	В
	E_1	VG	VG	G	VG	В	VG	VG	VB	G	VB	VG	VB	VG	VG	В	VB	В	В	В	VB
A . Carritagai/Ealri1:	E_2	G	VG	G	MG	M	VG	MG	MB	VG	VB	VG	В	VG	G	В	В	VB	В	В	MB
A ₆ : Seyitgazi/Eskişehir	E_3	G	VG	VG	VG	VB	G	G	VB	M	В	G	MB	G	VG	MB	В	MB	VB	В	MB
	E_4	MG	VG	G	G	В	VG	MG	В	MG	G	G	VB	VG	MG	В	MB	В	M	MB	В

Very Bad: VB; Bad: B; Medium Bad: MB; Medium: M; Medium Good: MG; Good: G; Very Good: VG.

Journal Pre-proof

- Step 2: The same importance is assigned to four experts that participated in the case study;
- i.e., $\delta = (0.25, 0.25, 0.25, 0.25)^T$. Four T2NN initial decision matrices (Table A.5) are
- aggregated with the help of the T2NNWA operator defined in Eq. (17). The determined T2NN
- aggregated decision matrix can be found in Table A.6 (Appendix). For example, the T2NN
- evaluations of the alternative "Yunusemre/Manisa" (A2) with respect to the criterion "distance
- from collection centers" (C_1) are (Table A.5):
- 440 expert $1 \tilde{\psi}_{21}^1 = <(0.40, 0.45, 0.50), (0.40, 0.45, 0.50), (0.35, 0.40, 0.45)>,$
- 441 expert $2 \tilde{\psi}_{21}^2 = <(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>,$
- 442 expert $3 \tilde{\psi}_{21}^3 = <(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>$, and
- 443 expert $4 \tilde{\psi}_{21}^4 = <(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>.$
- After aggregation, it is determined that the T2NN aggregated evaluation of A_2 with respect to
- 445 C_1 given by four experts is:

$$\tilde{z}_{21} = \left\langle \begin{bmatrix} 1 - \left(1 - 0.40\right)^{0.25} \cdot \left(1 - 0.60\right)^{0.25} \cdot \left(1 - 0.35\right)^{0.25} \cdot \left(1 - 0.35\right)^{0.25}, \\ 1 - \left(1 - 0.45\right)^{0.25} \cdot \left(1 - 0.45\right)^{0.25} \cdot \left(1 - 0.35\right)^{0.25} \cdot \left(1 - 0.35\right)^{0.25}, \\ 1 - \left(1 - 0.50\right)^{0.25} \cdot \left(1 - 0.50\right)^{0.25} \cdot \left(1 - 0.10\right)^{0.25} \cdot \left(1 - 0.10\right)^{0.25} \right\rangle$$

$$\begin{pmatrix} 0.40^{0.25} \cdot 0.20^{0.25} \cdot 0.50^{0.25} \cdot 0.50^{0.25} \cdot 0.50^{0.25}, \\ 0.45^{0.25} \cdot 0.15^{0.25} \cdot 0.75^{0.25} \cdot 0.75^{0.25}, \\ 0.50^{0.25} \cdot 0.25^{0.25} \cdot 0.80^{0.25} \cdot 0.80^{0.25} \end{pmatrix}, \begin{pmatrix} 0.35^{0.25} \cdot 0.10^{0.25} \cdot 0.50^{0.25} \cdot 0.50^{0.25} \cdot 0.50^{0.25}, \\ 0.40^{0.25} \cdot 0.25^{0.25} \cdot 0.75^{0.25} \cdot 0.75^{0.25}, \\ 0.45^{0.25} \cdot 0.15^{0.25} \cdot 0.65^{0.25} \cdot 0.65^{0.25} \end{pmatrix}$$

- =<(0.436, 0.402, 0.329), (0.376, 0.441, 0.532), (0.306, 0.487, 0.411)>.
- Step 3: The score decision matrix is given in Table 8. It is determined based on the T2NN
- aggregated decision matrix (Table A.6) with the help of Eq. (18). For example, the score
- function of the T2NN aggregated evaluation of the alternative "Seyitgazi/Eskişehir" (A_6) with
- respect to the criterion "distance to original equipment manufacturers" (C_3) given by the
- 452 experts is (Table 8):

$$453 \qquad S(\tilde{z}_{63}) = \frac{1}{12} \left\langle 8 + \left(0.808 + 2 \cdot 0.801 + 0.859\right) - \left(0.136 + 2 \cdot 0.168 + 0.167\right) - \left(0.084 + 2 \cdot 0.114 + 0.141\right) \right\rangle = 0.848.$$

- 454 Step 4: The normalized decision matrix (Table A.7) is determined by using Eq. (19) with
- 455 the help of Table 8.

456

Table 8459 The score decision matrix.

A 14 ann a 45 ma	Criterion										
Alternative	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}	
A ₁ : Gemlik/Bursa	0.238	0.292	0.363	0.256	0.910	0.363	0.329	0.929	0.329	0.874	
A ₂ : Yunusemre/Manisa	0.507	0.590	0.534	0.678	0.708	0.708	0.553	0.733	0.375	0.708	
A ₃ : Tuzla/Istanbul	0.488	0.747	0.683	0.487	0.848	0.534	0.588	0.874	0.587	0.733	
A ₄ : Sincan/Ankara	0.670	0.678	0.748	0.670	0.592	0.764	0.733	0.586	0.638	0.592	
A ₅ : Melikgazi/Kayseri	0.733	0.778	0.748	0.696	0.605	0.848	0.863	0.586	0.797	0.532	
A ₆ : Seyitgazi/Eskişehir	0.836	0.929	0.848	0.874	0.360	0.910	0.821	0.347	0.797	0.470	
Type	Min	Min	Min	Min	Max	Min	Min	Max	Min	Max	
Best	0.238	0.292	0.363	0.256	0.910	0.363	0.329	0.929	0.329	0.874	
Alternative	Criterion										
Alternative	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}	C_{16}	C_{17}	C_{18}	C_{19}	C_{20}	
A ₁ : Gemlik/Bursa	0.329	0.929	0.275	0.238	0.910	0.910	0.821	0.883	0.910	0.910	
A ₂ : Yunusemre/Manisa	0.733	0.678	0.540	0.552	0.676	0.708	0.670	0.680	0.605	0.592	
A ₃ : Tuzla/Istanbul	0.778	0.753	0.724	0.586	0.708	0.784	0.768	0.797	0.836	0.764	
A ₄ : Sincan/Ankara	0.695	0.638	0.764	0.670	0.712	0.553	0.552	0.639	0.640	0.593	
A ₅ : Melikgazi/Kayseri	0.812	0.434	0.797	0.768	0.540	0.378	0.545	0.533	0.422	0.308	
A ₆ : Seyitgazi/Eskişehir	0.883	0.347	0.910	0.874	0.378	0.363	0.363	0.360	0.378	0.422	
Type	Min	Max	Min	Min	Max	Max	Max	Max	Max	Max	
Best	0.329	0.929	0.275	0.238	0.910	0.910	0.821	0.883	0.910	0.910	

Step 5-6: The corresponding normalized evaluations (Table A.7) and the optimal weights of the criteria for locating ALiB remanufacturing facilities are taken into account to determine the weighted normalized decision matrix by utilizing Eq. (20). This matrix is given in Table 9. Then, the negative-ideal solution (NIS) (Table 9) is determined with the help of Eq. (21).

Table 9465 The weighted normalized decision matrix.

A 14 a a 4 i a					Crite	erion							
Alternative	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	<i>C</i> ₉	C_{10}			
A ₁ : Gemlik/Bursa	0.028	0.023	0.017	0.036	0.081	0.117	0.095	0.091	0.071	0.010			
A ₂ : Yunusemre/Manisa	0.013	0.011	0.011	0.013	0.063	0.060	0.057	0.072	0.062	0.008			
A ₃ : Tuzla/Istanbul	0.014	0.009	0.009	0.019	0.075	0.080	0.053	0.085	0.040	0.008			
A ₄ : Sincan/Ankara	0.010	0.010	0.008	0.014	0.052	0.056	0.043	0.057	0.037	0.007			
A ₅ : Melikgazi/Kayseri	0.009	0.009	0.008	0.013	0.054	0.050	0.036	0.057	0.029	0.006			
A ₆ : Seyitgazi/Eskişehir	0.008	0.007	0.007	0.010	0.032	0.047	0.038	0.034	0.029	0.005			
Negative-ideal solution	0.008	0.007	0.007	0.010	0.032	0.047	0.036	0.034	0.029	0.005			
Alternative		Criterion											
Alternative	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}	C_{16}	C_{17}	C_{18}	C_{19}	C_{20}			
A ₁ : Gemlik/Bursa	0.033	0.022	0.005	0.019	0.040	0.023	0.067	0.063	0.071	0.091			
A ₂ : Yunusemre/Manisa	0.015	0.016	0.003	0.008	0.029	0.018	0.054	0.049	0.047	0.059			
A ₃ : Tuzla/Istanbul	0.014	0.018	0.002	0.007	0.031	0.020	0.062	0.057	0.066	0.076			
A ₄ : Sincan/Ankara	0.015	0.015	0.002	0.007	0.031	0.014	0.045	0.046	0.050	0.059			
A ₅ : Melikgazi/Kayseri	0.013	0.010	0.002	0.006	0.023	0.009	0.044	0.038	0.033	0.031			
A ₆ : Seyitgazi/Eskişehir	0.012	0.008	0.002	0.005	0.016	0.009	0.029	0.026	0.030	0.042			
Negative-ideal solution	0.012	0.008	0.002	0.005	0.016	0.009	0.029	0.026	0.030	0.031			

Step 7: Table 10 provides the Euclidean and Hamming distances of each ALiB remanufacturing facility location alternative from the NIS, which are calculated by using Eq. (22) and Eq. (23), respectively. The corresponding weighted normalized evaluations and the NIS (Table 9) are taken into account to compute these two distance measures.

Table 10 471 The distance measures of the ALiB remanufacturing facility location alternatives.

		Alternative												
Distance	A_1 :	A ₂ :	A ₃ :	A ₄ :	A ₅ :	A ₆ :								
measure	Gemlik/	Yunusemre/	Tuzla/	Sincan/	Melikgazi/	Seyitgazi/								
	Bursa	Manisa	Istanbul	Ankara	Kayseri	Eskişehir								
Euclidean	0.164	0.082	0.109	0.058	0.039	0.011								
Hamming	0.616	0.284	0.360	0.192	0.098	0.013								

Step 8: The relative assessment matrix is given in Table 11. It is constructed based on Table 10 with the help of Eqs. (24)–(25). In the base case scenario, ϕ is set to 0.05.

Steps 9-10: The assessment scores of the ALiB remanufacturing facility locations are calculated by employing Eq. (26) and presented in Table 11. Then, six alternative locations are ranked according to the decreasing values of the assessment scores. The ordering is $A_1 \succ A_3 \succ A_2 \succ A_4 \succ A_5 \succ A_6$ (Table 12). Finally, the best location for the construction of an ALiB remanufacturing facility in Turkey is "Gemlik/Bursa" (A_1).

Table 11
The relative assessment matrix, scores, and ranks of the ALiB remanufacturing facility locations.

Alternative	A ₁ : Gemlik/ Bursa	A ₂ : Yunusemre/ Manisa	A ₃ : Tuzla/ Istanbul		A ₅ : Melikgazi/ Kayseri	A ₆ : Seyitgazi/ Eskişehir	Assessment score	Rank
A ₁ : Gemlik/Bursa	0	0.413	0.310	0.530	0.644	0.755	2.652	1
A2: Yunusemre/Manisa	-0.413	0	-0.027	0.024	0.044	0.342	-0.030	3
A ₃ : Tuzla/Istanbul	-0.310	0.027	0	0.220	0.334	0.445	0.716	2
A ₄ : Sincan/Ankara	-0.530	-0.024	-0.220	0	0.019	0.046	-0.709	4
A ₅ : Melikgazi/Kayseri	-0.644	-0.044	-0.334	-0.019	0	0.027	-1.014	5
A ₆ : Seyitgazi/Eskişehir	-0.755	-0.342	-0.445	-0.046	-0.027	0	-1.615	6

5.3. Comparative Analysis

The method introduced by Abdel-Basset et al. (2019b) is the only available T2NN-based MCDM approach in the literature. The T2NN-based TOPSIS method assumes that criteria weights are known in advance. Different from this method, our integrated neutrosophic decision-making model determines optimal criteria weights with the hierarchical BWM and orders alternatives with the T2NN-based CODAS method. Also, our model has one build-in parameter that provides higher flexibility when selecting public transportation pricing systems while the T2NN-based TOPSIS method has no intrinsic parameters.

The comparative analysis with the T2NN-based TOPSIS method (Abdel-Basset et al., 2019b) is carried out to explore the reliability of the proposed integrated neutrosophic decision-making model for ALiB remanufacturing facility location selection. Table 12 presents the comparison results. As can be seen from this table, "Gemlik/Bursa" (A_1) is the best location for sitting an ALiB remanufacturing facility in Turkey by both T2NN-based approaches. In addition, two compared T2NN-based approaches give the same ordering of six ALiB

remanufacturing facility locations. It can be concluded that the proposed integrated neutrosophic decision-making model is highly reliable.

Table 12The comparison of different T2NN-based approaches.

Approach	Ranking	Best location
Integrated neutrosophic decision-making model (our study)	$A_1 \succ A_3 \succ A_2 \succ A_4 \succ A_5 \succ A_6$	A_1
T2NN-based TOPSIS method (Abdel-Basset et al., 2019b)	$A_1 \succ A_3 \succ A_2 \succ A_4 \succ A_5 \succ A_6$	A_1

5.4. Sensitivity Analysis

The sensitivity analysis is carried out to explore the robustness of the integrated neutrosophic decision-making model by changing the threshold parameter ϕ . The values of the threshold parameter are changed from ϕ =0 to ϕ =0.20 with an increment value of 0.01. The results of the sensitivity analysis are shown in Fig. 2. As can be seen from this figure, "Gemlik/Bursa" (A_1) is the best location, while "Seyitgazi/Eskişehir" (A_6) is the worst under all threshold parameter values. In all examined scenarios, the alternative ordering of the major potential locations for the construction of an ALiB remanufacturing facility in Turkey is $A_1 \succ A_3 \succ A_2 \succ A_4 \succ A_5 \succ A_6$. The same result is obtained in the base case scenario when the threshold parameter is set to 0.05. As a result, it can be outlined that the proposed integrated neutrosophic decision-making model is highly robust.

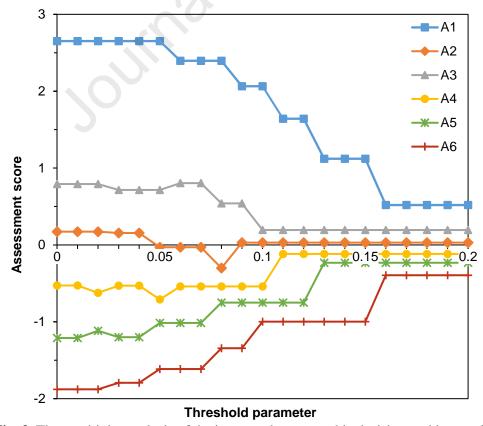


Fig. 3. The sensitivity analysis of the integrated neutrosophic decision-making model.

6. Conclusions and Implications

This study promotes the sustainable development of the EV industry and boosts large-scale ALiB remanufacturing applications in industrial practice. The presented decision-making framework, including four main criteria and twenty evaluation criteria, offers a primer for remanufacturing practitioners when making strategic facility location decisions. The developed three-stage integrated neutrosophic decision-making model provides a straightforward and flexible optimization tool for identifying the best ALiB remanufacturing facility location under uncertainty. The hierarchical BWM efficiently determines the optimal weights of economic, environmental, social, and technical clusters as well as the key evaluation criteria with the lowest subjectivity and biasedness. The innovative T2NN-based CODAS method ranks ALiB remanufacturing facility locations with high accuracy. Its findings indicate the effectiveness of the formulated methodological framework.

The case study provides valuable decision-making guidelines on how to identify the best location for an ALiB remanufacturing facility in the real-world context. Its findings indicate that "Gemlik/Bursa" is the best location for the construction of an ALiB remanufacturing facility in Turkey. The comparative analysis with the T2NN-based TOPSIS method, the only available T2NN-based MCDM approach in the literature, approved the high reliability of the proposed integrated neutrosophic decision-making model. Also, the extensive sensitivity analysis confirmed the high robustness of the newly-introduced methodological framework for ALiB remanufacturing facility location selection.

The proposed integrated neutrosophic decision-making model provides the following advantages over the available decision-making approaches for remanufacturing: (i) Advanced T2NNs reduce the vagueness in experts' preferences, improve the recognition of information uncertainties in the remanufacturing environment, and avoid erroneous facility location decisions; (ii) The mathematical framework does not change with the number of potential locations and their indicators. As such, the proposed model can be easily expanded to a larger number of alternatives and criteria; and (iii) Stable solutions can be generated irrespective of criteria measurement scales.

A transition period to more frequent use of Lithium-ion batteries is envisaged in many fields, including EVs, in the whole world. Therefore, this study could have high importance since the remanufacturing facility location selection problem is becoming increasingly important. It could guide pioneering projects in the transition to remanufacturing systems with the provided integrated neutrosophic decision-making model. On the other hand, the study can

Journal Pre-proof

- be extended in various directions. The primary direction is to use the developed model for
- solving MCDM problems under uncertainty in environmental engineering, economics, energy
- 547 management, logistics, and manufacturing engineering research areas. Another important
- 548 direction is to use the integrated neutrosophic decision-making model to tackle other related
- MCDM problems like the evaluation of ALiB repurposing alternatives, location selection of a
- recovery center for ALiBs, deciding the most viable management options to handle end-of-life
- ALiBs, etc. Besides, available resources such as the operational and financial are important
- criteria in deciding which circular economy principle to apply for sustainable environmentally-
- 553 friendly facilities. The formulated model could also be used to determine the importance of
- these criteria and for the assessment of facility sites.

555 **CRediT authorship contribution statement**

- 556 Muhammet Deveci: Methodology, Software, Validation, Visualization, Data acquisition,
- Writing original draft, review & editing, Supervision. Vladimir Simic: Conceptualization,
- Methodology, Validation, Writing original draft, review & editing, Supervision. Ali Ebadi
- Torkayesh: Methodology, Data acquisition, Writing original draft, review & editing.

560 **Declaration of competing interest**

- The authors declare that they have no known competing financial interests or personal
- relationships that could have appeared to influence the work reported in this paper.

References

563

574

575

- Abdel-Basset, M., Atef, A., Smarandache, F., 2019a. A hybrid Neutrosophic multiple criteria group decision making approach for project selection. Cogn. Syst. Res. 57, 216–227. doi.org/10.1016/j.cogsys.2018.10.023.
- Abdel-Basset, M., Gamal, A., Chakrabortty, R.K., Ryan, M., 2021a. Development of a hybrid multi-567 568 criteria decision-making approach for sustainability evaluation of bioenergy production technologies: Prod. 290, 125805. 569 A case study. J. Clean. 570 doi.org/10.1016/j.jclepro.2021.125805.
- Abdel-Basset, M., Gamal, A., Chakrabortty, R.K., Ryan, M., 2021b. A new hybrid multi-criteria decision-making approach for location selection of sustainable offshore wind energy stations:
 A case study. J. Clean. Prod. 280, 124462. doi.org/10.1016/j.jclepro.2020.124462.
 - Abdel-Basset, M., Gamal, A., Chakrabortty, R.K., Ryan, M.J., 2021c. Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study. Renew. Energy 168, 1073–1095. doi.org/10.1016/j.renene.2020.12.124.
- Abdel-Basset, M., Gamal, A., Chakrabortty, R.K., Ryan, M.J., 2021d. Evaluation of sustainable hydrogen production options using an advanced hybrid MCDM approach: A case study. Int. J. Hydrog. Energy 46(5), 4567–4591. doi.org/10.1016/j.ijhydene.2020.10.232.
- Abdel-Basset, M., Gamal, A., Son, L.H., Smarandache, F., 2020a. A bipolar neutrosophic multi criteria decision making framework for professional selection. Appl. Sci. 10(4), 1202. doi.org/10.3390/app10041202.

- Abdel-Basset, M., Manogaran, G., Gamal, A., Smarandache, F., 2018a. A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Des. Autom. Embed. Syst. 22(3), 257–278. doi.org/10.1007/s10617-018-9203-6.
- Abdel-Basset, M., Manogaran, G., Mohamed, M., 2018b. Internet of Things (IoT) and its impact on supply chain: A framework for building smart, secure and efficient systems. Future Gener. Comp. Sy. 86, 614–628. doi.org/10.1016/j.future.2018.04.051.

- Abdel-Basset, M., Mohamed, M., Chang, V., 2018c. NMCDA: A framework for evaluating cloud computing services. Future Gener. Comp. Sy. 86, 12–29. doi.org/10.1016/j.future.2018.03.014.
- Abdel-Basset, M., Mohamed, M., Smarandache, F., 2018d. An extension of neutrosophic AHP–SWOT analysis for strategic planning and decision-making. Symmetry 10(4), 116. doi.org/10.3390/sym10040116.
- Abdel-Basset, M., Mohamed, R., Sallam, K., Elhoseny, M., 2020b. A novel decision-making model for sustainable supply chain finance under uncertainty environment. J. Clean. Prod. 269, 122324. doi.org/10.1016/j.jclepro.2020.122324.
- Abdel-Basset, M., Nabeeh, N.A., El-Ghareeb, H.A., Aboelfetouh, A., 2020c. Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterp. Inform. Syst. 14(9–10), 1304–1324. doi.org/10.1080/17517575.2019.1633690.
- Abdel-Basset, M., Saleh, M., Gamal, A., Smarandache, F., 2019b. An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Appl. Soft Comput. 77, 438–452. doi.org/10.1016/j.asoc.2019.01.035.
- Abdel-Basset, M., Zhou, Y., Mohamed, M., Chang, V., 2018e. A group decision making framework based on neutrosophic VIKOR approach for e-government website evaluation. J. Intell. Fuzzy Syst. 34(6), 4213–4224. doi.org/10.3233/JIFS-171952.
- Abdulrahman, M.D.-A., Subramanian, N., Liu, C., Shu, C., 2015. Viability of remanufacturing practice: a strategic decision making framework for Chinese auto-parts companies. J. Clean. Prod. 105, 311–323. doi.org/10.1016/j.jclepro.2014.02.065.
- Alamerew, Y.A., Brissaud, D., 2020. Modelling reverse supply chain through system dynamics for realizing the transition towards the circular economy: A case study on electric vehicle batteries. J. Clean. Prod. 254, 120025. doi.org/10.1016/j.jclepro.2020.120025.
- Alfaro-Algaba, M., Ramirez, F.J., 2020. Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resour. Conserv. Recy. 154, 104461. doi.org/10.1016/j.resconrec.2019.104461.
- 615 Ali, M., Smarandache, F., 2017. Complex neutrosophic set. Neural Comput. Appl. 28(7), 1817–1834. doi.org/10.1007/s00521-015-2154-y.
 - Ansari, Z.N., Kant, R., Shankar, R., 2019. Prioritizing the performance outcomes due to adoption of critical success factors of supply chain remanufacturing. J. Clean. Prod. 212, 779–799. doi.org/10.1016/j.jclepro.2018.12.038.
 - Ansari, Z.N., Kant, R., Shankar, R., 2020. Evaluation and ranking of solutions to mitigate sustainable remanufacturing supply chain risks: A hybrid fuzzy SWARA-fuzzy COPRAS framework approach. Int. J. Sustain. Eng. 13(6), 473–494. doi.org/10.1080/19397038.2020.1758973.
 - Baušys, R., Juodagalvienė, B., Žiūrienė, R., Pankrašovaitė, I., Kamarauskas, J., Usovaitė, A., et al., 2020. The residence plot selection model for family house in Vilnius by neutrosophic WASPAS method. Int. J. Strateg. Prop. Manag. 24(3), 182–196. doi.org/10.3846/ijspm.2020.12107.
- Bhatia, M.S., Srivastava, R.K., 2018. Analysis of external barriers to remanufacturing using grey-DEMATEL approach: An Indian perspective. Resour. Conserv. Recy. 136, 79–87. doi.org/10.1016/j.resconrec.2018.03.021.
- Chakraborty, K., Mondal, S., Mukherjee, K., 2019. Critical analysis of enablers and barriers in extension of useful life of automotive products through remanufacturing. J. Clean. Prod. 227, 1117–1135. doi.org/10.1016/j.jclepro.2019.04.265.
- Çolak, M., Kaya, İ., 2020. Multi-criteria evaluation of energy storage technologies based on hesitant
 fuzzy information: A case study for Turkey. J. Energy Storage 28, 101211.
 doi.org/10.1016/j.est.2020.101211.

- Das, S.K., Pervin, M., Roy, S.K., Weber, G.W., in press. Multi-objective solid transportation-location problem with variable carbon emission in inventory management: A hybrid approach. Ann. Oper. Res. doi.org/10.1007/s10479-020-03809-z.
- Das, S.K., Roy, S.K., 2019. Effect of variable carbon emission in a multi-objective transportation-pfacility location problem under neutrosophic environment. Comput. Ind. Eng. 132, 311–324. doi.org/10.1016/j.cie.2019.04.037.
- Das, S.K., Roy, S.K., Weber, G.W., 2020a. An exact and a heuristic approach for the transportation-pfacility location problem. Comput. Manag. Sci. 17(3), 389–407. doi.org/10.1007/s10287-020-00363-8.
- Das, S.K., Roy, S.K., Weber, G.W., 2020b. Application of type-2 fuzzy logic to a multiobjective green solid transportation—location problem with dwell time under carbon tax, cap, and offset policy: Fuzzy versus nonfuzzy techniques. IEEE T. Fuzzy Syst. 28(11), 2711–2725. doi.org/10.1109/TFUZZ.2020.3011745.
- Das, S.K., Roy, S.K., Weber, G.W., 2020c. Heuristic approaches for solid transportation-p-facility location problem. Cent. Eur. J. Oper. Res. 28(3), 939–961. doi.org/10.1007/s10100-019-00610-7.
- Ding, Z., Jiang, Z., Zhang, H., Cai, W., Liu, Y., 2020. An integrated decision-making method for selecting machine tool guideways considering remanufacturability. Int. J. Comput. Integr. Manuf. 33(7), 686–700. doi.org/10.1080/0951192X.2018.1550680.

655 656

657

658 659

660 661

662

663

664 665

666 667

668 669

670

671 672

673

674

675

676 677

678

679

- Du, Y., Zheng, Y., Wu, G., Tang, Y., 2020. Decision-making method of heavy-duty machine tool remanufacturing based on AHP-entropy weight and extension theory. J. Clean. Prod. 252, 119607. doi.org/10.1016/j.jclepro.2019.119607.
- Ecer, F., Pamucar, D., 2020. Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo'B) multi-criteria model. J. Clean. Prod. 266, 121981. doi.org/10.1016/j.jclepro.2020.121981.
- Farahani, S., Otieno, W., Barah, M., 2019. Environmentally friendly disposition decisions for end-of-life electrical and electronic products: The case of computer remanufacture. J. Clean. Prod. 224, 25–39. doi.org/10.1016/j.jclepro.2019.03.182.
- Garg, A., Yun, L., Gao, L., Putungan, D.B., 2020. Development of recycling strategy for large stacked systems: Experimental and machine learning approach to form reuse battery packs for secondary applications. J. Clean. Prod. 275, 124152. doi.org/10.1016/j.jclepro.2020.124152.
- Gong, Q. S., Zhang, H., Jiang, Z.G., Wang, H., Wang, Y., Hu, X.L., 2019. Nonempirical hybrid multi-attribute decision-making method for design for remanufacturing. Adv. Manuf. 7(4), 423–437. doi.org/10.1007/s40436-019-00279-w.
- Govindan, K., Shankar, K.M., Kannan, D., 2016. Application of fuzzy analytic network process for barrier evaluation in automotive parts remanufacturing towards cleaner production—a study in an Indian scenario. J. Clean. Prod. 114, 199–213. doi.org/10.1016/j.jclepro.2015.06.092.
- Gu, X., Ieromonachou, P., Zhou, L., Tseng, M.L., 2018a. Optimising quantity of manufacturing and remanufacturing in an electric vehicle battery closed-loop supply chain. Ind. Manag. Data Syst. 118(1), 283–302. doi.org/10.1108/IMDS-04-2017-0132.
- Gu, X., Ieromonachou, P., Zhou, L., Tseng, M.L., 2018b. Developing pricing strategy to optimise total profits in an electric vehicle battery closed loop supply chain. J. Clean. Prod. 203, 376–385. doi.org/10.1016/j.jclepro.2018.08.209.
 - Gupta, H., Barua, M.K., 2017. Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. J. Clean. Prod. 152, 242–258. doi.org/10.1016/j.jclepro.2017.03.125.
- Hendrickson, T.P., Kavvada, O., Shah, N., Sathre, R., Scown, C.D., 2015. Life-cycle implications and
 supply chain logistics of electric vehicle battery recycling in California. Environ. Res. Lett.
 10(1), 014011. doi.org/10.1088/1748-9326/10/1/014011.
- Hezam, I.M., Nayeem, M.K., Foul, A., Alrasheedi, A.F., 2021. COVID-19 vaccine: A neutrosophic MCDM approach for determining the priority groups. Results Phys. 20, 103654. doi.org/10.1016/j.rinp.2020.103654.
- Hua, Y., Zhou, S., Huang, Y., Liu, X., Ling, H., Zhou, X., et al., 2020. Sustainable value chain of retired lithium-ion batteries for electric vehicles. J. Power Sources 478, 228753. doi.org/10.1016/j.jpowsour.2020.228753.

- Ilgin, M.A., 2017. An integrated methodology for the used product selection problem faced by third-party reverse logistics providers. Int. J. Sustain. Eng. 10(6), 399–410. doi.org/10.1080/19397038.2017.1317873.
- Jindal, A., Sangwan, K.S., 2016. A fuzzy-based decision support framework for product recovery process selection in reverse logistics. Int. J. Serv. Oper. Manag. 25(4), 413–439. doi.org/10.1504/IJSOM.2016.080274.
- Kafuku, J.M., Saman, M.Z.M., Mahmood, S., 2016. A holistic framework for evaluation and selection of remanufacturing operations: an approach. J. Adv. Manuf. Technol. 87(5), 1571–1584. doi.org/10.1007/s00170-016-8836-5.

700

703

704

705

706

707

708

709

710

714 715

716

717

718

719

720

721

722

723

724

725

726 727

728

729

730

- Kapustin, N.O., Grushevenko, D.A., 2020. Long-term electric vehicles outlook and their potential impact on electric grid. Energy Policy 137, 111103. doi.org/10.1016/j.enpol.2019.111103.
- 701 Karnik, N.N., Mendel, J.M., Liang, Q., 1999. Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658. doi.org/10.1109/91.811231.
 - Keshavarz Ghorabaee, M., Zavadskas, E.K., Turskis, Z., Antucheviciene, J., 2016. A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Econ. Comput. Econ. Cybern. Stud. Res. 50(3), 25–44.
 - Li, L., Dababneh, F., Zhao, J., 2018. Cost-effective supply chain for electric vehicle battery remanufacturing. Appl. Energy 226, 277–286. doi.org/10.1016/j.apenergy.2018.05.115.
 - Liang, R., Wang, J., Zhang, H., 2017. Evaluation of e-commerce websites: An integrated approach under a single-valued trapezoidal neutrosophic environment. Knowl-Based Syst. 135, 44–59. doi.org/10.1016/j.knosys.2017.08.002.
- Liou, J.J., Liu, P.C., Lo, H.W., 2020. A Failure mode assessment model based on neutrosophic logic
 for switched-mode power supply risk analysis. Mathematics 8(12), 2145.
 doi.org/10.3390/math8122145.
 - Liu, W.W., Zhang, H., Liu, L.H., Qing, X.C., Tang, Z.J., Li, M.Z., et al., 2016. Remanufacturing cathode from end-of-life of lithium-ion secondary batteries by Nd: YAG laser radiation. Clean Technol. Envir. 18(1), 231–243. doi.org/10.1007/s10098-015-1010-1.
 - Loganathan, M.K., Mishra, B., Tan, C.M., Kongsvik, T., Rai, R.N., 2021. Multi-criteria decision making (MCDM) for the selection of Li-Ion batteries used in electric vehicles (EVs). Mater Today-Proc. 41(5), 1073–1077. doi.org/10.1016/j.matpr.2020.07.179.
 - Maghsoodi, A.I., Soudian, S., Martínez, L., Herrera-Viedma, E., Zavadskas, E.K., 2020. A phase change material selection using the interval-valued target-based BWM-CoCoMULTIMOORA approach: A case-study on interior building applications. Appl. Soft Comput. 95, 106508. doi.org/10.1016/j.asoc.2020.106508.
 - Mendel, J.M., John, R.B., 2002. Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127. doi.org/10.1109/91.995115.
 - Mousavi-Nasab, S.H., Sotoudeh-Anvari, A., 2020. An extension of best-worst method with D numbers: Application in evaluation of renewable energy resources. Sustain. Energy Technol. Assess. 40, 100771. doi.org/10.1016/j.seta.2020.100771.
 - Nabeeh, N.A., Abdel-Basset, M., El-Ghareeb, H.A., Aboelfetouh, A., 2019a. Neutrosophic multicriteria decision making approach for IoT-based enterprises. IEEE Access 7, 59559–59574. doi.org/10.1016/10.1109/ACCESS.2019.2908919.
- Nabeeh, N.A., Abdel-Basset, M., Soliman, G., 2021. A model for evaluating green credit rating and its impact on sustainability performance. J. Clean. Prod. 280(1), 124299. doi.org/10.1016/j.jclepro.2020.124299.
- 735 Nabeeh, N.A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H.A., Aboelfetouh, A., 2019b. An 736 integrated neutrosophic-TOPSIS approach and its application to personnel selection: A new 737 brain processing and analysis. **IEEE** Access 29734-29744. in 7, 738 doi.org/10.1016/10.1109/ACCESS.2019.2899841.
- Ocampo, L.A., Himang, C.M., Kumar, A., Brezocnik, M., 2019. A novel multiple criteria decision-making approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy AHP for mapping collection and distribution centers in reverse logistics. Adv. Prod. Eng. Manag. 14(3), 297–322. doi.org/10.14743/apem2019.3.329.
- Qiao, H., Su, Q., 2020. Impact of government subsidy on the remanufacturing industry. Waste Manage.
 120, 433–447. doi.org/10.1016/j.wasman.2020.10.005.

- Rahim, N., Abdullah, L., Yusoff, B., 2020. A border approximation area approach considering bipolar neutrosophic linguistic variable for sustainable energy selection. Sustainability 12(10), 3971. doi.org/10.3390/su12103971.
- Rallo, H., Benveniste, G., Gestoso, I., Amante, B., 2020. Economic analysis of the disassembling activities to the reuse of electric vehicles Li-ion batteries. Resour. Conserv. Recy. 159, 104785. doi.org/10.1016/j.resconrec.2020.104785.
- Rezaei, J., 2015. Best-worst multi-criteria decision-making method. Omega 53, 49–57. doi.org/10.1016/j.omega.2014.11.009.

- Scheller, C., Schmidt, K., Spengler, T.S., 2021. Decentralized master production and recycling scheduling of lithium-ion batteries: a techno-economic optimization model. J. Bus. Econ. 91, 253–282. doi.org/10.1007/s11573-020-00999-7.
- Smarandache, F., 2019. Neutrosophic set is a generalization of intuitionistic fuzzy set, inconsistent intuitionistic fuzzy set (picture fuzzy set, ternary fuzzy set), Pythagorean fuzzy set, spherical fuzzy set, and q-rung orthopair fuzzy set, while neutrosophication is a generalization of regret theory, grey system theory, and three-ways decision (revisited). J. New Theory (29), 1–31.
- Song, H., Chu, H., 2019. Incentive strategies of different channels in an electric vehicle battery closed-loop supply chain. Procedia Comput. Sci. 162, 634–641. doi.org/10.1016/j.procs.2019.12.033.
- Standridge, C.R., Hasan, M.M., 2015. Post-vehicle-application lithium-ion battery remanufacturing, repurposing and recycling capacity: Modeling and analysis. J. Ind. Eng. Manag. 8(3), 823–839. doi.org/10.3926/jiem.1418.
- Su, T.S., 2017. A fuzzy multi-objective linear programming model for solving remanufacturing planning problems with multiple products and joint components. Comput. Ind. Eng. 110, 242–254. doi.org/10.1016/j.cie.2017.06.021.
- Su, T.S., Wu, C.C., Lin, L.T., 2019. Optimization of remanufacturing systems by using a fuzzy multi-objective model to solve the planning problem. J. Inf. Optim. Sci. 40(4), 853–881. doi.org/10.1080/02522667.2018.1462033.
- Subramoniam, R., Huisingh, D., Chinnam, R.B., Subramoniam, S., 2013. Remanufacturing decision-making framework (RDMF): Research validation using the analytical hierarchical process. J. Clean. Prod. 40, 212–220. doi.org/10.1016/j.jclepro.2011.09.004.
- Tang, Y., Zhang, Q., Li, Y., Li, H., Pan, X., Mclellan, B., 2019. The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism. Appl. Energy, 251, 113313. doi.org/10.1016/j.apenergy.2019.113313.
- Tang, Y., Zhang, Q., Li, Y., Wang, G., Li, Y., 2018. Recycling mechanisms and policy suggestions for spent electric vehicles' power battery-A case of Beijing. J. Clean. Prod. 186, 388–406. doi.org/10.1016/j.jclepro.2018.03.043.
- Tian, G., Chu, J., Hu, H., Li, H., 2014. Technology innovation system and its integrated structure for automotive components remanufacturing industry development in China. J. Clean. Prod. 85, 419–432. doi.org/10.1016/j.jclepro.2014.09.020.
- Tian, G., Zhang, H., Feng, Y., Jia, H., Zhang, C., Jiang, Z., et al., 2017. Operation patterns analysis of automotive components remanufacturing industry development in China. J. Clean. Prod. 164, 1363–1375. doi.org/10.1016/j.jclepro.2017.07.028.
- Tian, J., Chen, M., 2016. Assessing the economics of processing end-of-life vehicles through manual dismantling. Waste Manage. 56, 384–395. doi.org/10.1016/j.wasman.2016.07.046.
- Torkayesh, A.E., Malmir, B., Asadabadi, M.R., 2021a. Sustainable waste disposal technology selection: The stratified best-worst multi-criteria decision-making method. Waste Manage. 122, 100–112. doi.org/10.1016/j.wasman.2020.12.040.
- Torkayesh, A.E., Zolfani, S.H., Kahvand, M., Khazaelpour, P., 2021b. Landfill location selection for healthcare waste of urban areas using hybrid BWM-grey MARCOS model based on GIS. Sustain. Cities Soc. 102712. doi.org/10.1016/j.scs.2021.102712.
- Tosarkani, B.M., Amin, S.H., 2018. A possibilistic solution to configure a battery closed-loop supply chain: multi-objective approach. Expert Syst. Appl. 92, 12–26. doi.org/10.1016/j.eswa.2017.09.039.
- van de Kaa, G., Fens, T., Rezaei, J., 2019. Residential grid storage technology battles: a multi-criteria analysis using BWM. Technol. Anal. Strateg. Manag. 31(1), 40–52. doi.org/10.1080/09537325.2018.1484441.

- Wang, H., Jiang, Z., Zhang, H., Wang, Y., Yang, Y., Li, Y., 2019. An integrated MCDM approach considering demands-matching for reverse logistics. J. Clean. Prod. 208, 199–210. doi.org/10.1016/j.jclepro.2018.10.131.
- Wang, L., Wang, X., Yang, W., 2020. Optimal design of electric vehicle battery recycling network— From the perspective of electric vehicle manufacturers. Appl. Energy 275, 115328. doi.org/10.1016/j.apenergy.2020.115328.
- Wei, S., Cheng, D., Sundin, E., Tang, O., 2015. Motives and barriers of the remanufacturing industry in China. J. Clean. Prod. 94, 340–351. doi.org/10.1016/j.jclepro.2015.02.014.
- Xia, X., Govindan, K., Zhu, Q., 2015. Analyzing internal barriers for automotive parts remanufacturers in China using grey-DEMATEL approach. J. Clean. Prod. 87, 811–825. doi.org/10.1016/j.jclepro.2014.09.044.
- Xiong, S., Ji, J., Ma, X., 2020. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Manage. 102, 579–586. doi.org/10.1016/j.wasman.2019.11.013.
- Yazdani, M., Torkayesh, A.E., Chatterjee, P., 2020. An integrated decision-making model for supplier evaluation in public healthcare system: The case study of a Spanish hospital. J. Enterp. Inf. Manag. 33(5), 965–989. doi.org/10.1108/JEIM-09-2019-0294.
- Yörükoğlu, M., Aydın, S., 2020. Smart container evaluation by neutrosophic MCDM method. J. Intell. Fuzzy Syst. 38(1), 723–733. doi.org/10.3233/JIFS-179444.
- Zaied, A.N.H., Ismail, M., Gamal, A., AbdelAziz, N.M., 2019. An integrated neutrosophic and MOORA for selecting machine tool, in: Smarandache, F., Abdel-Baset, M. (Eds.), Neutrosophic Sets and Systems. An International Journal in Information Science and Engineering, vol. 28, University of New Mexico, pp. 23–33.
 - Zhang, L., Wang, L., Hinds, G., Lyu, C., Zheng, J., Li, J., 2014. Multi-objective optimization of lithiumion battery model using genetic algorithm approach. J. Power Sources, 270, 367–378. doi.org/10.1016/j.jpowsour.2014.07.110.
- Zhang, X., Wang, Y., Xiang, Q., Zhang, H., Jiang, Z., 2020a. Remanufacturability evaluation method and application for used engineering machinery parts based on fuzzy-EAHP. J. Manuf. Syst. 57, 133–147. doi.org/10.1016/j.jmsy.2020.08.016.

824

- Zhang, X., Xu, L., Zhang, H., Jiang, Z., Cai, W., 2020b. Emergy based intelligent decision-making model for remanufacturing process scheme integrating economic and environmental factors. J. Clean. Prod. 125247. doi.org/10.1016/j.jclepro.2020.125247.
- Zhu, M., Liu, Z., Li, J., Zhu, S.X., 2020. Electric vehicle battery capacity allocation and recycling with downstream competition. Eur. J. Oper. Res. 283(1), 365–379. doi.org/10.1016/j.ejor.2019.10.040.
- Zhu, Q., Joseph, S., Lai, K.-h., 2014. Supply chain-based barriers for truck-engine remanufacturing in China. Transport. Res. E-Log. 68, 103–117. doi.org/10.1016/j.tre.2014.05.001.

Appendix

Table A.1839 Results of the hierarchical BWM for the economic criteria.

Exmant	Criteria selection		Vooton				Crit	teria			
Expert			Vector	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8
	Best	C_6	Best-to-others	7	8	8	5	3	1	2	3
Export 1 -	Worst	C_3	Others-to-worst	2	2	1	5	7	9	8	8
Expert 1 -		Loca	l weight	0.0576	0.0504	0.0280	0.0806	0.1343	0.3134	0.2015	0.1343
	Ksi*			0.0895							
	Best	C_7	Best-to-others	6	9	7	5	2	2	1	2
Evenout 2 -	Worst	C_2	Others-to-worst	3	1	3	4	8	9	9	7
Expert 2 -	Local weight			0.0571	0.0254	0.0490	0.0686	0.1714	0.1714	0.2857	0.1714
_		Ksi*			0.0571						
	Best	C_6	Best-to-others	8	7	8	5	2	1	2	2
Evenout 2 -	Worst	C_3	Others-to-worst	3	3	1	3	6	8	7	7
Expert 3 -	Local weight			0.0429	0.0490	0.0306	0.0686	0.1716	0.2941	0.1716	0.1716
_	Ksi*			0.0490							
	Best	C_8	Best-to-others	5	6	7	5	2	2	3	1
Expert 4 -	Worst	C_3	Others-to-worst	2	2	1	3	7	9	8	6
		Local weight			0.0617	0.0280	0.0740	0.1850	0.1850	0.1233	0.2691
Ksi*						0.1	009				
A	ggregate	d loca	ıl weight	0.0579	0.0466	0.0339	0.0729	0.1656	0.2410	0.1955	0.1866
Gl	lobal agg	regate	ed weight	0.0282	0.0227	0.0165	0.0355	0.0806	0.1173	0.0952	0.0908

Table A.2 Results of the hierarchical BWM for the environmental criteria.

E	Criteria selection		Vastan		Crit	teria		
Expert			Vector	C_9	C_{10}	C_{11}	C_{12}	
	Best	C_9	Best-to-others	1	8	5	6	
Erroant 1	Worst	C_{10}	Others-to-worst	8	1	3	4	
Expert 1		Local	weight	0.5777	0.0709	0.1318	0.2196	
		K	si*		0.0	811		
	Best	C_9	Best-to-others	1	7	4	5	
Erroant 2	Worst	C_{10}	Others-to-worst	9	1	5	3	
Expert 2		Local	weight	0.6004	0.0655	0.1856	0.1485	
		K	si*	0.1419				
	Best	C_{11}	Best-to-others	2	6	1	3	
Errort 2	Worst	C_{10}	Others-to-worst	9	1	6	4	
Expert 3		Local	weight	0.3000	0.0500	0.4500	0.2000	
		K	si*	0.1500				
	Best	<i>C</i> ₉	Best-to-others	1	9	5	4	
Errort 4	Worst	C_{12}	Others-to-worst	3	4	6	1	
Expert 4		Local	weight	0.6128	0.1064	0.1915	0.0894	
		K	si*		0.3	447		
	Aggrega	ted local w	reight	0.5227	0.0732	0.2397	0.1644	
	Global ag	gregated v	veight	0.0710	0.0099	0.0326	0.0223	

Table A.3844 Results of the hierarchical BWM for the social criteria.

Export	Criteria		Vector		Criteria			
Expert	select	ion	vector	C_{13}	C_{14}	C_{15}		
	Best	C_{15}	Best-to-others	8	4	1		
Export 1	Worst	C_{13}	Others-to-worst	1	4	8		
Expert 1		Loca	al weight	0.0769	0.2051	0.7179		
			Ksi*		0.1026			
	Best	C_{14}	Best-to-others	6	1	2		
Export 2	Worst	C_{13}	Others-to-worst	1	3	7		
Expert 2		Loca	al weight	0.0909	0.5227	0.3864		
			Ksi*		0.2500			
	Best	C_{15}	Best-to-others	7	3	1		
Evnort 2	Worst	C_{13}	Others-to-worst	1	5	6		
Expert 3		Loca	al weight	0.0833	0.2667	0.6500		
			Ksi*		0.1500			
	Best	C_{15}	Best-to-others	8	5	1		
Export 1	Worst	C_{13}	Others-to-worst	1	4	5		
Expert 4		Loc	al weight	0.0769	0.1758	0.7473		
			Ksi*		0.1319			
	Aggreg	ated local v	0.0820	0.2926	0.6254			
	Global a	ggregated	0.0052	0.0185	0.0395			

Table A.4 Results of the hierarchical BWM for the technical criteria.

E	Criteria selection		Vester	Criteria						
Expert			Vector	C_{16}	C_{17}	C_{18}	C_{19}	C_{20}		
	Best	C_{19}	Best-to-others	7	5	6	1	3		
Export 1	Worst	C_{16}	Others-to-worst	1	2	4	3	5		
Expert 1		Loc	al weight	0.0806	0.1331	0.1109	0.4536	0.2218		
			Ksi*			0.2117				
	Best	C_{17}	Best-to-others	8	1	7	3	5		
Evenout 2	Worst	C_{16}	Others-to-worst	1	3	3	5	7		
Expert 2		Loc	al weight	0.0596	0.4512	0.1034	0.2412	0.1447		
			Ksi*			0.2724				
	Best	C_{18}	Best-to-others	8	4	1	7	2		
Export 2	Worst	C_{19}	Others-to-worst	6	2	5	1	4		
Expert 3		Loc	al weight	0.0766	0.1532	0.4189	0.0450	0.3063		
			Ksi*			0.1937				
	Best	C_{20}	Best-to-others	9	6	4	4	1		
Export 1	Worst	C_{16}	Others-to-worst	1	3	3	5	4		
Expert 4		Loc	al weight	0.0720	0.1120	0.1680	0.1680	0.4800		
			Ksi*			0.1920				
	Aggregat	ted loca	l weight	0.0722	0.2123	0.2003	0.2270	0.2882		
	Global ag	gregate	d weight	0.0227	0.0667	0.0630	0.0713	0.0906		

Table A.5849 The T2NN initial decision matrices.

A.14 4*	T	Criterion							
Alternative	Expert -	C_1		C_{20}					
	E_1	<(0.20, 0.20, 0.10), (0.65, 0.80, 0.85), (0.45, 0.80, 0.70)>		<(0.95, 0.90, 0.95), (0.10, 0.10, 0.05), (0.05, 0.05, 0.05)>					
A ₁ : Gemlik/Bursa	E_2	<(0.20, 0.20, 0.10), (0.65, 0.80, 0.85), (0.45, 0.80, 0.70)>		<(0.95, 0.90, 0.95), (0.10, 0.10, 0.05), (0.05, 0.05, 0.05)>					
A ₁ . Gennik/Dursa	E_3	<(0.20, 0.20, 0.10), (0.65, 0.80, 0.85), (0.45, 0.80, 0.70)>		<(0.95, 0.90, 0.95), (0.10, 0.10, 0.05), (0.05, 0.05, 0.05)>					
	E_4	<(0.20, 0.20, 0.10), (0.65, 0.80, 0.85), (0.45, 0.80, 0.70)>		<(0.70, 0.75, 0.80), (0.15, 0.20, 0.25), (0.10, 0.15, 0.20)>					
	E_1	<(0.40, 0.45, 0.50), (0.40, 0.45, 0.50), (0.35, 0.40, 0.45)>		<(0.50, 0.30, 0.50), (0.50, 0.35, 0.45), (0.45, 0.30, 0.60)>					
	E_2	<(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>	(C)	<(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>					
A ₂ : Yunusemre/Manisa	E_3	<(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>	O	<(0.40, 0.45, 0.50), (0.40, 0.45, 0.50), (0.35, 0.40, 0.45)>					
	E_4	<(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>		<(0.40, 0.45, 0.50), (0.40, 0.45, 0.50), (0.35, 0.40, 0.45)>					
	E_1	<(0.50, 0.30, 0.50), (0.50, 0.35, 0.45), (0.45, 0.30, 0.60)>		<(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>					
	E_2	<(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>	•••	<(0.70, 0.75, 0.80), (0.15, 0.20, 0.25), (0.10, 0.15, 0.20)>					
A ₃ : Tuzla/Istanbul	E_3	<(0.40, 0.45, 0.50), (0.40, 0.45, 0.50), (0.35, 0.40, 0.45)>	•••	<(0.70, 0.75, 0.80), (0.15, 0.20, 0.25), (0.10, 0.15, 0.20)>					
	E_4	<(0.40, 0.45, 0.50), (0.40, 0.45, 0.50), (0.35, 0.40, 0.45)>		<(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>					
	E_1	<(0.40, 0.45, 0.50), (0.40, 0.45, 0.50), (0.35, 0.40, 0.45)>		<(0.40, 0.45, 0.50), (0.40, 0.45, 0.50), (0.35, 0.40, 0.45)>					
A . C:	E_2	<(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>	•••	<(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>					
A ₄ : Sincan/Ankara	E_3	<(0.50, 0.30, 0.50), (0.50, 0.35, 0.45), (0.45, 0.30, 0.60)>		<(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>					
	E_4	<(0.70, 0.75, 0.80), (0.15, 0.20, 0.25), (0.10, 0.15, 0.20)>	•••	<(0.20, 0.20, 0.10), (0.65, 0.80, 0.85), (0.45, 0.80, 0.70)>					
	E_1	<(0.70, 0.75, 0.80), (0.15, 0.20, 0.25), (0.10, 0.15, 0.20)>		<(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>					
A 3 K 1'1 ' /TZ '	E_2	<(0.70, 0.75, 0.80), (0.15, 0.20, 0.25), (0.10, 0.15, 0.20)>		<(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>					
A ₅ : Melikgazi/Kayseri	E_3	<(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>		<(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>					
	E_4	<(0.50, 0.30, 0.50), (0.50, 0.35, 0.45), (0.45, 0.30, 0.60)>	•••	<(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>					
	E_1	<(0.95, 0.90, 0.95), (0.10, 0.10, 0.05), (0.05, 0.05, 0.05)>		<(0.20, 0.20, 0.10), (0.65, 0.80, 0.85), (0.45, 0.80, 0.70)>					
4 C '4 '/E 1' 1'	E_2	<(0.70, 0.75, 0.80), (0.15, 0.20, 0.25), (0.10, 0.15, 0.20)>		<(0.50, 0.30, 0.50), (0.50, 0.35, 0.45), (0.45, 0.30, 0.60)>					
A ₆ : Seyitgazi/Eskişehir	E_3	<(0.70, 0.75, 0.80), (0.15, 0.20, 0.25), (0.10, 0.15, 0.20)>		<(0.50, 0.30, 0.50), (0.50, 0.35, 0.45), (0.45, 0.30, 0.60)>					
	E_4	<(0.60, 0.45, 0.50), (0.20, 0.15, 0.25), (0.10, 0.25, 0.15)>		<(0.35, 0.35, 0.10), (0.50, 0.75, 0.80), (0.50, 0.75, 0.65)>					

Table A.6853 The T2NN aggregated decision matrix.

Cuitanian		Alternativo	e
Criterion -	A ₁ : Gemlik/Bursa	•••	A ₆ : Seyitgazi/Eskişehir
C_1	<(0.200, 0.200, 0.100), (0.650, 0.800, 0.850), (0.450, 0.800, 0.700)>		<(0.794, 0.758, 0.822), (0.146, 0.157, 0.167), (0.084, 0.130, 0.132)>
C_2	<(0.315, 0.315, 0.100), (0.534, 0.762, 0.812), (0.487, 0.762, 0.662)>	•••	<(0.950, 0.900, 0.950), (0.100, 0.100, 0.050), (0.050, 0.050, 0.050)>
C_3	<(0.359, 0.303, 0.223), (0.534, 0.630, 0.703), (0.474, 0.606, 0.649)>	•••	<(0.808, 0.801, 0.859), (0.136, 0.168, 0.167), (0.084, 0.114, 0.141)>
C_4	<(0.240, 0.240, 0.100), (0.609, 0.787, 0.837), (0.462, 0.787, 0.687)>	•••	<(0.868, 0.807, 0.874), (0.132, 0.132, 0.112), (0.071, 0.098, 0.093)>
C_5	<(0.922, 0.874, 0.929), (0.111, 0.119, 0.075), (0.059, 0.066, 0.071)>	•••	<(0.329, 0.343, 0.223), (0.505, 0.671, 0.722), (0.445, 0.651, 0.604)>
C_6	<(0.359, 0.303, 0.223), (0.534, 0.630, 0.703), (0.474, 0.606, 0.649)>	•••	<(0.922, 0.874, 0.929), (0.111, 0.119, 0.075), (0.059, 0.066, 0.071)>
C_7	<(0.289, 0.226, 0.223), (0.609, 0.651, 0.725), (0.450, 0.626, 0.674)>	•••	<(0.779, 0.705, 0.776), (0.157, 0.146, 0.167), (0.084, 0.147, 0.122)>
C_8	<(0.950, 0.900, 0.950), (0.100, 0.100, 0.050), (0.050, 0.050, 0.050)>		<(0.325, 0.265, 0.223), (0.570, 0.640, 0.714), (0.462, 0.616, 0.661)>
C_9	<(0.289, 0.226, 0.223), (0.609, 0.651, 0.725), (0.450, 0.626, 0.674)>		<(0.755, 0.705, 0.776), (0.186, 0.192, 0.199), (0.115, 0.165, 0.161)>
C_{10}	<(0.868, 0.807, 0.874), (0.132, 0.132, 0.112), (0.071, 0.098, 0.093)>		<(0.406, 0.432, 0.382), (0.422, 0.557, 0.617), (0.317, 0.518, 0.502)>
C_{11}	<(0.289, 0.226, 0.223), (0.609, 0.651, 0.725), (0.450, 0.626, 0.674)>	(O:y-	<(0.878, 0.842, 0.900), (0.122, 0.141, 0.112), (0.071, 0.087, 0.100)>
C_{12}	<(0.950, 0.900, 0.950), (0.100, 0.100, 0.050), (0.050, 0.050, 0.050)>		<(0.325, 0.265, 0.223), (0.570, 0.640, 0.714), (0.462, 0.616, 0.661)>
C_{13}	<(0.279, 0.279, 0.100), (0.570, 0.775, 0.825), (0.474, 0.775, 0.675)>		<(0.922, 0.874, 0.929), (0.111, 0.119, 0.075), (0.059, 0.066, 0.071)>
C_{14}	<(0.200, 0.200, 0.100), (0.650, 0.800, 0.850), (0.450, 0.800, 0.700)>	•••	<(0.868, 0.807, 0.874), (0.132, 0.132, 0.112), (0.071, 0.098, 0.093)>
C_{15}	<(0.922, 0.874, 0.929), (0.111, 0.119, 0.075), (0.059, 0.066, 0.071)>	•••	<(0.391, 0.338, 0.223), (0.500, 0.620, 0.693), (0.487, 0.596, 0.637)>
C_{16}	<(0.922, 0.874, 0.929), (0.111, 0.119, 0.075), (0.059, 0.066, 0.071)>	•••	<(0.359, 0.303, 0.223), (0.534, 0.630, 0.703), (0.474, 0.606, 0.649)>
C_{17}	<(0.779, 0.705, 0.776), (0.157, 0.146, 0.167), (0.084, 0.147, 0.122)>	•••	<(0.359, 0.303, 0.223), (0.534, 0.630, 0.703), (0.474, 0.606, 0.649)>
C_{18}	<(0.878, 0.842, 0.900), (0.122, 0.141, 0.112), (0.071, 0.087, 0.100)>	•••	<(0.329, 0.343, 0.223), (0.505, 0.671, 0.722), (0.445, 0.651, 0.604)>
C_{19}	<(0.922, 0.874, 0.929), (0.111, 0.119, 0.075), (0.059, 0.066, 0.071)>	•••	<(0.391, 0.338, 0.223), (0.500, 0.620, 0.693), (0.487, 0.596, 0.637)>
C_{20}	<(0.922, 0.874, 0.929), (0.111, 0.119, 0.075), (0.059, 0.066, 0.071)>	•••	<(0.400, 0.290, 0.329), (0.534, 0.521, 0.609), (0.462, 0.482, 0.636)>

Table A.7The normalized decision matrix.

Alternative	Criterion									
Alternative	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}
A ₁ : Gemlik/Bursa	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
A ₂ : Yunusemre/Manisa	0.468	0.494	0.680	0.378	0.779	0.512	0.596	0.789	0.878	0.809
A ₃ : Tuzla/Istanbul	0.487	0.391	0.531	0.526	0.932	0.680	0.561	0.941	0.562	0.839
A ₄ : Sincan/Ankara	0.354	0.431	0.485	0.383	0.651	0.475	0.449	0.630	0.516	0.678
A ₅ : Melikgazi/Kayseri	0.324	0.375	0.485	0.369	0.665	0.428	0.382	0.631	0.413	0.609
A ₆ : Seyitgazi/Eskişehir	0.284	0.314	0.428	0.293	0.396	0.399	0.401	0.373	0.413	0.538
A 14 anns a 4 ins a	Criterion									
Alternative	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}	C_{16}	C_{17}	C_{18}	C_{19}	C_{20}
A ₁ : Gemlik/Bursa	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
A ₂ : Yunusemre/Manisa	0.449	0.729	0.508	0.430	0.744	0.779	0.817	0.770	0.665	0.651
A ₃ : Tuzla/Istanbul	0.423	0.811	0.379	0.405	0.779	0.862	0.935	0.902	0.919	0.840
A ₄ : Sincan/Ankara	0.474	0.687	0.359	0.354	0.783	0.608	0.672	0.723	0.703	0.653
A ₅ : Melikgazi/Kayseri	0.406	0.468	0.344	0.309	0.594	0.416	0.665	0.604	0.464	0.339
A ₆ : Seyitgazi/Eskişehir	0.373	0.373	0.302	0.272	0.416	0.399	0.442	0.407	0.416	0.464

Journal Pre-proof

HIGHLIGHTS:

- > The study aims to boost ALiB remanufacturing and promote sustainable development.
- > The BWM-T2NN-CODAS model for locating ALiB remanufacturing facilities is introduced.
- > Presented key evaluation criteria offer a decision-making framework for practitioners.
- > The case study of Turkey provides decision-making guidelines in the real-world context.
- > The introduced model can solve other circular economy-related location problems.

Journal Pre-proof

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.					
$\hfill\Box$ The authors declare the following financial interests/person as potential competing interests:	nal relationships which may be considered				
	, OO'				