Neutrosophic θ -Compact spaces

Cite as: AIP Conference Proceedings **2451**, 020026 (2022); https://doi.org/10.1063/5.0095221 Published Online: 07 October 2022

Md. Hanif Page, Praveen I. Chandaragi and Anuradha N. Patil

ARTICLES YOU MAY BE INTERESTED IN

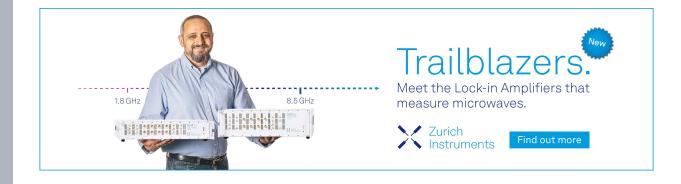
Fuzzy set based generalized parametric exponential entropy measure
AIP Conference Proceedings 2451, 020027 (2022); https://doi.org/10.1063/5.0095492

Elemental analysis of ayurvedic medicines using wavelength dispersive x-ray fluorescence techniques

AIP Conference Proceedings **2451**, 020025 (2022); https://doi.org/10.1063/5.0095365

Effect of liquid and voids on the characteristics of circular crested waves in thermoelastic solid half-space

AIP Conference Proceedings 2451, 020021 (2022); https://doi.org/10.1063/5.0095340



Neutrosophic θ -Compact Spaces

Md. Hanif Page^{1,a)},Praveen I Chandaragi^{1,b)} and Anuradha N. Patil ^{2,c)}

¹Department of Mathematics, KLE Technological University, Hubballi-31, Karnataka, India. ²Department of Mathematics, Govt. First Grade College, Gadag, Karnataka, India.

a) Corresponding author: mb_page@kletech.ac.in
b) praveen.chandargi@kletech.ac.in
c) anpatil2011@gmail.com

Abstract. The idea of neutrosophic θ -Compact along with neutrosophic θ -Almost Compact spaces are developed in neutrosophic topological spaces. We investigate their behavior besides giving characterizations of these spaces.

Keywords: Nneutrosophic θ -open set, neutrosophic strongly θ -continuous, neutrosophic θ -irresolute.

INTRODUCTION

The notion of neutrosophic set was introduced by F. Smarandache [11,12,13] wherein each element has a "degree of membership, degree of non-membership and indeterminacy". These sets were gained remarkable attention in dealing with real life problems that entail uncertainty, impreciseness, vagueness together with indeterminacy. As a consequence, topological spaces have been defined and studied on neutrosophic sets, giving rise to Neutrosophic Topology.

In 2012 [9], neutrosophic topological space (NTS) were introduced. In [10] neutrosophic closed sets along with continuous functions were developed by Salama et al. From this onward tremendous research carried out in neutrosophic topology with its relevance in constrained problems. Many authors demonstrated the sets which are near neutrosophic open sets along with neutrosophic closed sets. In [1] authors initiated neutrosophic semi-open (pre-open besides α -open) functions together with analysed their results. Generalized neutrosophic closed sets were presented in [2]. In [4,5] the idea of neutrosophic generalized α -contra continuous including neutrosophic almost α -contra-continuous mappings are developed and investigated their results. In [7] the authors developed the notion of neutrosophic θ -closure operator and utilizing this, neutrosophic θ -closed set is elucidated. As application of this, neutrosophic θ -continuous, neutrosophic strongly θ -continuous including neutrosophic weakly continuous mappings are characterized concerning the operator defined.

In this paper, we continue the study and present neutrosophic theta-compact and neutrosophic almost theta-compact spaces in NTSs and some their properties are investigated.

PRELIMINARIES

Definition 2.1: [11, 12]: Consider S_1 be a non-empty set. A neutrosophic set (briefly, NS) K is an object so as $K = \{\langle w, \mu_K(w), \sigma_K(w), \gamma_K(w) \rangle : w \in S_1 \}$ however $\mu_K(w), \sigma_K(w)$ with $\gamma_K(w)$ whichever indicates the "degree of membership function (viz $\mu_K(w)$), the degree of indeterminacy (viz $\sigma_K(w)$) as well as the degree of non-membership (viz $\gamma_K(w)$) respectively of each element $x \in S_1$ to the set K".

Note: 2.2[11, 12]:

- An $NSK = \{(w, \mu_K(w), \sigma_K(w), \Gamma_K(w)) : w \in S_1\}$ can be represented as $(\mu_K, \sigma_K, \Gamma_K)$ in $]0^-, 1^+[$ (i)
- We indicate $K = \langle \mu_{K}, \sigma_{K}, \Gamma_{K} \rangle$ for the $NSK = \{\langle w, \mu_{K}(w), \sigma_{K}(w), \Gamma_{K}(w) \rangle : w \in S_{1}\}.$ (ii)

Definition 2.3: [11, 12]: $0_{\aleph} = \{(q, 0, 0, 1): q \in S_1\} \text{ and } 1_{\aleph} = \{(q, 1, 1, 0): q \in S_1\}.$

Definition 2.4:[10]: A neutrosophic topology (precisely, $\aleph T$) $S_1 \neq \emptyset$ is a collection ξ_1 of NSs in S_1 satisfies the below conditions:

- I. 0_{\aleph} , $1_{\aleph} \in \xi_1$,
- II.
- $W_1 \cap W_2 \in T$ being $W_1, W_2 \in \xi_1$, $\cup W_i \in \xi_1$ for arbitrary family $\{W_i | i \in K\} \subseteq \xi_1$.

Here, the (S_1, ξ_1) or S_1 is entitled as NTS along with every NS in ξ_1 is known as neutrosophic open set (briefly, NOS). The complement \overline{K} of an NOS K in S_1 is termed as neutrosophic closed set (NCS for short) in S_1 .

Definition: 2.5:[10, 11]: Consider K be an NS in an $NTSS_1$. Thereupon $\Re int(K) = \bigcup \{M_1 | M_1 \text{ is an } \Re OS \text{ in } S_1 \text{ with } M_1 \subseteq K\}$ is named as neutrosophic interior ($\Re int$ in short) of K; $\Re cl(K) = \bigcap \{M_1 | M_1 \text{ is an } \Re CS \text{ in } S_1 \text{ along with } M_1 \supseteq K\}$ is named as neutrosophic closure ($\Re cl$ in short) of K.

Definition: 2.6:[3]: Let S_1 be a nonempty set. Wherever "r,t,s be real standard or non standard subsets" of $]0^-, 1^+[$ thereupon the NS $x_{r,t,s}$ is known as "neutrosophic point(in short, NP)in X" given by $x_{r,t,s}(x_p) =$ (r,t,s), $if x = x_p$ for $x_p \in X$ is named as the support of $x_{r,t,s}$, where r signify the "degree of membership value, $(0,0,1), \quad if x \neq x_p$ t indicates the degree of indeterminacy along with s as the degree of non-membership value" of $x_{r,t,s}$.

Definition 2.7: [7]: A NP $x_{(\alpha,\beta,\gamma)}$ is named as neutrosophic θ -cluster point ($\aleph\theta$ -cluster point, shortly) of a NS K iff considering respective W in Neq-nbd of $x_{(\alpha,\beta,\gamma)}$ with Ncl(W) qK. The collection of all N θ -cluster points of K is labelled as neutrosophic θ -closure besides represented as $NCl_{\theta}(K)$.

An NS K will be N θ -closed set (N θ CS in precise) iff K= $NCl_{\theta}(K)$. The complement of a N θ CS is N θ -open set (in precise, N θ OS).

NEUTROSOPHIC θ -COMPACT SPACES

Definition 3.1: A collection $\{W_i \mid j \in J\}$ of N θ OSs in NTS S_1 is termed as neutrosophic θ -open cover (NTOcover) of a set R if $R \subseteq \bigcup \{W_i / j \in J\}$

Definition 3.2: A NTS S_1 is known as neutrosophic θ -Compact Spaces (&TCS) if each &TO-cover of S_1 has a countable subcover.

Definition 3.3: A member R of a NTS S_1 is termed as NTCS if for each collection $\{W_i \mid j \in J\}$ of N θ OSs of S_1 in order that $R \subseteq \bigcup \{W_i \mid j \in J\}$, there is a finite subset J_0 of J so as $R \subseteq \bigcup \{W_i \mid j \in J\}$.

Remark 3.4: As every N θ OS is NOS, so every neutrosophic compact space is \aleph TCS.

Theorem 3.5: S_1 is XTCS iff each family of N θ -closed subsets of S_1 with f.i.p. attribute has a non-empty intersection.

Proof: Consider S_1 be a XTCS and $R = \{R_j \mid j \in J\}$ be any family of $N\theta$ -closed subsets of S_1 including f.i.p. Assume that $\bigcap \{R_i / j \in J\} = O_N$. Then $\bigcup \{R_i^c / j \in J\} = 1_N \text{i.e.} \{R_i^c / j \in J\}$ is an XTO-cover of S_1 . As, S_1 is RTCS, there is a finite subset J_0 of J such that $\bigcup \{R_i^c/j \in J\} = 1_N$. This inferred that $\bigcap \{R_i/j \in J\} = 0_N$ which deny the presumption that R has a f.i.p. Thence $\bigcap \{R_j / j \in J\} \neq O_N$.

Let $\mathbb{G} = \{G_i \mid i \in I\}$ indicate XTO-cover of X along with the family $\mathbb{G} = \{G_i^c \mid i \in I\}$ of a N θ CS. As \mathbb{G} is a cover of S_1 , $\bigcap \{G_i^c \ / \ i \in I_o\} = O_N$. Hence $\mathbb G$ doesn't have the f.i.p. i.e. there are bounded number of $\mathbb N \theta \mathrm{OSs}$ $\{G_1, G_2, -----, G_n\}$ in \mathbb{G} such that $\bigcap \{G_i^c / i = 1, 2, ---n\} = O_N$. This implicit that $\{G_1, G_2, --------, G_n\}$ is a bounded subcover of X in \mathbb{G} . Accordingly, S_1 is NTCS.

Theorem 3.6: Consider (S_1, \mathfrak{F}) indicate the NTS and \mathfrak{F}_{θ} denote N-topology on S_1 generated utilizing the subspace of all N θ OSs in S_1 . Then (S_1, \mathfrak{F}) is NTCS if and only if $(S_1, \mathfrak{F}_{\theta})$ is N-compact.

Proof: Consider $(S_1, \mathfrak{I}_{\theta})$ be N-compact along with $R = \{R_j \mid j \in J\}$ denote the NTO-cover of S_1 in \mathfrak{I} . As for each $j \in J$, $R_j \in \mathfrak{I}_{\theta}$, R is an N-open cover of S_1 in \mathfrak{I}_{θ} . Since $(S_1, \mathfrak{I}_{\theta})$ is N-compact, R has a finite subcover of X. Henceforth, (S_1, \mathfrak{I}) is NTCS.

Theorem 3.7: Let J be a N θ -closed subset of a NTCS S_1 . Then J, is also NTCS.

Proof: Consider J as a N θ CS of S_1 along with $K = \{K \mid i \in I\}$ indicate NTO-open cover of J. Since J^c is N θ -open subset of S_1 , $K = \{K_i \mid i \in I\} \cup J^c$ is a NTO-cover of S_1 . As S_1 is NTCS, there is a finite subset I_o of I so as $\bigcup \{K_i \mid i \in I_o\} \cup J^c = 1_N$. Hence J is NTCS relative to S_1 .

Recall [7] that a function μ : $(S_1, \mathfrak{F}) \to (S_2, \mathfrak{F}^1)$ is known as neutrosophic strongly θ -continuous (in short \mathfrak{K} Str θ -continuous) if for each point $x_{(\alpha,\beta,\gamma)}$ in S_1 with N-open q-neighborhood W of $\mu(x_{(\alpha,\beta,\gamma)})$, there arises a N-open q-neighborhood Q of $x_{(\alpha,\beta,\gamma)}$ such that $\mu(Cl_{\theta}(Q)) \subseteq W$.

Theorem 3.8: (i) \aleph Str- θ -continuous image of \aleph TCS is N-compact.

(ii) Consider (S_1, \mathfrak{F}_1) and (S_2, \mathfrak{F}_2) denote NTSs with $\mu: (S_1, \mathfrak{F}_1) \to (S_2, \mathfrak{F}_2)$ be a N θ -irresolute. For a subset K of S_1 is XTCS, then $\mu(K)$ is XTCS.

Proof: (i) Let $\mu: (S_1, \mathfrak{I}_1) \to (S_2, \mathfrak{I}_2)$ denote $\Re \operatorname{Str} \theta$ -continuous mapping from $\Re \operatorname{TCS} S_1$ onto NTS Y. Consider $R = \{R_i / i \in I\}$ be a N-open cover of S_2 . In view of μ is $\Re \operatorname{Str} \theta$ -continuous function, $\mu: (S_1, \mathfrak{I}_{\theta}) \to (S_2, \mathfrak{I}_2)$ is N-continuous function

(ii) Let $M = \{ M_i / i \in I \}$ be a NTO-cover of $\mu(K)$ in S_2 . As μ is N θ -irresolute, for each M_i , $\mu^{-1}(M_i)$ is a N θ OS. Moreover, $\{\mu^{-1}(M_i) / i \in I \}$ is NTO-cover of K. As, K is XTCS relate to S_1 , there prevails a finite subset I_0 of I so as $K \subseteq \bigcup \{\mu^{-1}(M_i) / i \in I_0 \}$. Therefore $\mu(K) \subseteq \bigcup \{\mu^{-1}(M_i) / i \in I_0 \}$. Hence, $\mu(K)$ is XTCS relative to S_2 .

Theorem 3.9: Let K_1 and K_2 be the subsets of NTS S_1 . If M is NTCS and K_2 is $N\theta$ CS in S_1 , then $K_1 \cap K_2$ is NTCS. **Proof:** Let $R = \{R_i / i \in I\}$ be a NTC-open cover of $K_1 \wedge K_2$ in S_1 . As, K_2^c is $N\theta$ OS in S_1 , $(\bigcup \{R_i / i \in I\}) \cup K_2^c$. Since K_1 is NTCS, here is a finite member I_o of I in order that $K_1 \subseteq (\bigcup \{R_i / i \in I\}) \cup K_2^c$. Hence $K_1 \cap K_2 \subseteq (\bigcup \{R_i / i \in I\})$. So, $K_1 \cap K_2$ is NTCS.

Definition 3.10: Consider (S_1, \mathfrak{I}_1) and (S_2, \mathfrak{I}_2) denote NTSs. A mapping $\mu: (S_1, \mathfrak{I}_1) \to (S_2, \mathfrak{I}_2)$ is named as neutrosophic strongly θ -open if $\mu(W)$ is N θ OS of Y for every N θ OS W of X.

Theorem 3.11: Consider μ : $(S_1, \mathfrak{F}_1) \to (S_2, \mathfrak{F}_2)$ be neutrosophic strongly θ -open, bijective and S_2 is NTCS, then S_1 is NTCS.

Proof: Let $\{J_i: i \in I\}$ be an NTO-cover of S_1 and $\{\mu(J_i): i \in I\}$ is NTO-cover of S_2 . Since S_2 is NTCS, there is a finite subset I_o of I so as finite collection $\{\mu(J_i): i \in I_o\}$ covers S_2 . As $1_{\sim X} = \mu^{-1}(1_{\sim Y}) = \mu^{-1}\mu(\bigcup_{i \in I_0}J_i) = \bigcup_{i \in I_0}J_i$ and therefore S_1 is NTCS.

NEUTROSOPHIC θ -ALMOST COMPACT SPACES

Definition 4.1: An NTS S_1 is termed as Neutrosophic θ - Almost Compact Space (precisely, &TACS) is and only of every family of NTO-cover { $\mu_i : i \in I$ } of S_1 , there arises a finite subset I_0 of I so as $\bigcup_{i \in I_0} NCl_\theta(\mu_i) = 1_N$.

Definition 4.2: An NTS S_1 is called as Neutrosophic θ-Regular space (NTRS precisely) if for each N θ OS K ∈ S_1 , $K = \bigcup \{K_i \in I^X \mid K_i \text{ is N}\theta OS, NCl_\theta \leq K\}.$

Theorem 4.3: Let X be an NTS. If S_1 is XTACS and XTRS then S_1 is XTCS.

Proof: Consider $\{K_i: i \in I\}$ be an NTO-cover of S_1 such that $\bigvee_{i \in I} K_i = 1_N$. Since S_1 is NTRS , $K_i = \bigcup \{L_i \in I^X \ / \ L_i \text{ is } \mathsf{N}\theta\mathsf{OS}, \mathsf{NCl}_\theta \subseteq K_i\}$ for each $i \in I$. Since $1_N = \bigcup_{i \in I} (\bigcup_{i \in I} L_i)$ and S_1 is NTACS , there arises a finite set I_0 of I such that $\bigcup_{i \in I_0} \mathsf{NCl}_\theta(L_i) = 1_N$. But, $\mathsf{NCl}_\theta(L_i) \subseteq K_i(\mathsf{NInt}_\theta(\mathsf{NCl}_\theta(L_i))) \subseteq \mathsf{NCl}_\theta(L_i)$. We have $\bigcup_{i \in I_0} \mathsf{NCl}_\theta(L_i) = 1_N$ Hence X is NTCS .

Theorem 4.4: An NTS S_1 is XTACS iff, for each collection $\{W_i : i \in I\}$ of N θ OSs having f.i.p, $\bigcap_{i \in I} NCl_{\theta}(W_i) \neq 0_{\sim}$

Proof: Consider a family $\{W_i: i \in I\}$ of N θ OSs having f.i.p.. Assume that $\bigcap_{i \in I} NCl_{\theta}(W_i) \neq 0_{\sim}$ and then $\bigcap_{i \in I} \overline{NCl_{\theta}(W_i)} = \bigcup_{i \in I} NInt_{\theta}(\overline{W_i}) = 1_{\sim}$. As, S_1 is \aleph TACS, there prevails a

bounded member I_o of I in order that $\bigcup_{i \in I_0} NCl_{\theta}(NInt_{\theta}(\overline{W_i}) = 1_{\sim}$ This implies that $\bigcup_{i \in I_0} NCl_{\theta}(NInt_{\theta}(\overline{W_i}) = 1_{\sim}$. Thus, $\bigcap_{i \in I_0} NInt_{\theta}(NCl_{\theta}(W_i)) = 0_{\sim}$. But $W_i = NInt_{\theta}(W_i) \subseteq NInt_{\theta}(NCl_{\theta}(W_i))$. This implies that $\bigcap_{i \in I_0} W_i = 0_{\sim}$ which is negation with f.i.p. of the collection.

Conversely, consider $\{W_i : i \in I\}$ of N θ OSs so as $\bigcup_{i \in I} W_i = 1_{\sim}$. Presume that there arises no finite subset I_o of I such that $\bigvee_{i \in I_o} NCl_{\theta}(L_i) = 1_N$. Since, $\{\overline{NCl_{\theta}(W_i)} : i \in I\}$ has the FIP then $\bigcap_{i \in I} NCl_{\theta}(\overline{NCl_{\theta}(W_i)}) \neq 0_{\sim}$ This implies that $\bigcup_{i \in I} \overline{NCl_{\theta}(\overline{NCl_{\theta}(W_i)})} \neq 1_{\sim}$. Hence $\bigcup_{i \in I} NInt_{\theta}(NCl_{\theta}(W_i)) \neq 1_{\sim}$ which is in contradiction with $\bigcup_{i \in I} W_i = 1_{\sim}$

REFERENCES

- 1. I. Arokirarani, R. Dhavaseelan, S. Jafari and M. Parimala, Neutrosophic Set and Systems, 16, 16-19 (2017).
- 2. R. Dhavaseelan and Md. Hanif Page, Neutrosophic Sets and Systems,29, 71-77 (2019) DOI: 10.5281/zenodo.3514403.
- 3. R. Dhavaseelan and S. Jafari, New Trends in Neutrosophic Theory and Applications, 2,261-273 (2017).
- 4. R. Dhavaseelan, S. Jafari and Md. Hanif Page, creat. Math. Inform., 27, 2, 133 139 (2018)
- 5. R. Dhavaseelan and Md. Hanif Page, Neutrosophic Sets and Systems, 29, 71-77 (2019), DOI: 10.5281/zenodo.3514403.
- 6. Md. Hanif Page and P. G. Patil, Some New Contra Continuous Functions in Topology, Communication in Mathematics and Application, (ISSN-0975-8607) 7, 2, 81-91, (2016), dx.doi.org/10.26713%2Fcma.v7i2.377
- Md. Hanif Page, R. Dhavaseelan and B. Gunasekar, Neutrosophic Sets and Systems, 38, 41-50 (2020), DOI: 10.5281/zenodo.4300400.
- 8. Md. Hanif Page and V.T. Hosamath, Italian Journal of Pure and Applied Mathematics, 44, 764-774 (2020).
- 9. A.A. Salama and S.A. Alblowi, IOSR Journal of Mathematics, 3(4) 31-35 (2012).
- 10. A.A. Salama, F. Smarandche and K, Valeri, Neutrosophic Sets and Systems, 4, 4-8 (2014).
- 11. F. Smarandache, A *Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability*; American Research Press: Rehoboth, NM, USA (1999).
- 12. F. Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA (2002).
- 13. F. Smarandache, J. Defense Resources Management, 1(1), 107-116 (2010).
- 14. Yeon Seok Eom and Seok Jong Lee, International Journal of Fuzzy Logic and Intelligent Systems,13(3), 224-230 (2013).http://dx.doi.org/10.5391/IJFIS. 2013.13.3.224.